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ABSTRACT

Three-dimensional seismic full-waveform inversion (3D
FWI) is a highly nonlinear and computationally demanding in-
verse problem that constructs 3D subsurface seismic velocity
structures using seismic waveform data. To characterize non-
uniqueness in the solutions, we demonstrate Bayesian 3D FWI
using an efficient method called physically structured varia-
tional inference and apply it to 3D acoustic Bayesian FWI.
The results provide reasonable posterior uncertainty estimates,
at a computational cost that is only an order of magnitude
greater than that of standard, deterministic FWI. Furthermore,
we deploy variational prior replacement to calculate Bayesian
solutions corresponding to different classes of prior information

at low additional cost. The results obtained using prior informa-
tion that models should be smooth show loop-like high uncer-
tainty structures that are consistent with the fully nonlinear
inversion results presented previously. These structures disap-
pear when smoothing is not imposed, so we conclude that they
may be caused by smoothness constraints in tomographic prob-
lems. We further analyze a variety of prior hypotheses by con-
structing Bayesian L-curves, which reveal the sensitivity of the
inversion process to different prior assumptions. To our knowl-
edge, this is the first study that allows such prior hypotheses to
be compared in probabilistic 3D FWI at a feasible computa-
tional cost. This work shows that fully probabilistic 3D FWI
can be performed and used to test different prior hypotheses,
at a cost that may be practical, at least for small problems.

INTRODUCTION

Seismic full-waveform inversion (FWI) uses phase and ampli-
tude information from observed waveform data to estimate compat-
ible subsurface seismic velocity maps (Virieux and Operto, 2009).
FWI is often implemented using deterministic methods, such as gra-
dient-based optimization, in which a measure of the misfit between
the observed and simulated seismograms is minimized iteratively.
Given the highly nonlinear nature of the FWI problem, achieving a
good initial model is crucial to avoid convergence to a locally op-
timal solution, and due to the ill-posed nature of most FWI prob-
lems, additional regularization is also required to stabilize every
inversion (Zhdanov, 2002; Asnaashari et al., 2013; Aghamiry
et al., 2018). Although this approach provides a single point esti-
mate of a solution, it unfortunately cannot readily be extended to

estimate accurate uncertainty in the solutions and, therefore, cannot
be used to assess risks in post imaging decision-making processes
robustly (Arnold and Curtis, 2018; Ely et al., 2018; Siahkoohi et al.,
2022; Zhang and Curtis, 2022; Zhao et al., 2022).
Bayesian inference solves inverse problems within a probabilistic

framework, in which a family of all potential solutions and their
uncertainties are described by the so-called posterior probability
distribution function (PDF). The posterior PDF is calculated using
Bayes’ rule to update prior knowledge about model parameters with
new information from observed data. Monte Carlo sampling meth-
ods are commonly used to sample the Bayesian posterior PDF to
quantify uncertainties. However, applying conventional Monte
Carlo methods to Bayesian FWI is computationally expensive
due to the many model parameters involved, which incurs the curse
of dimensionality (Curtis and Lomax, 2001; Sambridge and
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Mosegaard, 2002; Scales, 2005). Efficient sampling techniques
have been developed in attempts to address this issue by either
reducing the dimensionality (the number of unknown parameters)
of the sampling problem (Ray et al., 2016; Tsai et al., 2023; Hu
et al., 2024; Mulder and Kuvshinov, 2024), using data-model gra-
dient information to enhance sampling efficiency (Gebraad et al.,
2020; Zhao and Sen, 2021; Berti et al., 2023; Zunino et al.,
2023), or a combination of both (Biswas and Sen, 2022). Never-
theless, direct posterior sampling methods such as these remain
a computational challenge.
Monte Carlo methods are expensive, in part, because no structure

is imposed a priori on the sampling distribution; sampling algorithms
must therefore be sufficiently flexible to adapt to and explore any
PDF topography to any level of detail. Variational inference offers
an alternative to Monte Carlo methods for solving Bayesian prob-
lems. The method searches for an estimate of the posterior PDF that
has a particular structure imposed a priori. This usually comes in the
form of a family of PDFs, which is expected to contain an acceptable
approximation to the posterior PDF. The best estimate of the posterior
PDF within that family can then be found by optimization rather than
random sampling. Because the range of possible PDF estimates is
infinitely smaller than the range of general PDFs explored by Monte
Carlo methods, variational methods can be more efficient and easier
to scale to high-dimensional problems. Recently, variational methods
have been applied to 2D Bayesian FWI and have been shown to re-
duce its computational cost while still providing acceptable estimates
of the posterior distribution (Zhang and Curtis, 2021; Bates et al.,
2022; Wang et al., 2023; Izzatullah et al., 2024; Sun et al., 2024;
Xie et al., 2024; Yin et al., 2024; Zhao and Curtis, 2025).
This work concerns 3D FWI, which is typically included among

the most computationally challenging problems in subsurface sci-
ence. Nevertheless, Zhang et al. (2023) apply variational methods to
a synthetic acoustic 3D Bayesian FWI problem, demonstrating the
feasibility of finding solutions. Lomas et al. (2023) andWalker et al.
(2024) then apply one of the methods to a field data set collected
with an airgun source and ocean bottom nodes over a salt body in
the Gulf of Mexico. Although there was no independent test of the
solution quality, they estimated that uncertainties were higher
around the boundaries of the salt body, as is generally expected
in true seismic imaging solutions (Galetti et al., 2015).
Hoffmann et al. (2024) also perform 3D FWI and local uncertainty
estimation using a source subsampling strategy and ensemble Kal-
man filter (Evensen, 1994). In most of these 3D FWI studies, a spa-
tial smoothing operator is used a priori to improve the convergence
rate of the inversion. However, the obtained posterior distribution
may then underestimate uncertainties, which in part exclude the true
solution (Zhang et al., 2023). Moreover, the type and strength of the
regularization applied are effectively subjective hypotheses, and
they are difficult to choose in practice because almost any form
of regularity in the true Earth varies spatially. Thus, in principle,
each such hypothesis should be analyzed and tested. Considering
the huge computational cost of 3D FWI, analyzing different hypoth-
eses by comparing the Bayesian inversion results that follow from
each one is usually impractical.
We demonstrate an efficient Bayesian 3D FWI and an approach

to analyze different prior hypotheses. The novel contributions of
this work can be summarized as follows:
First, we show Bayesian 3D FWI with substantially improved ef-

ficiency compared with previous methods. The improvement is

attributed to the use of a recently introduced variational method:
physically structured variational inference (PSVI) (Zhao and
Curtis, 2024b), which has been proven to provide relatively accurate
inversion results, including uncertainty estimates at greatly reduced
computational cost in 2D FWI problems. Our experiment shows that
with PSVI, fully nonlinear 3D Bayesian FWI can be solved using
only an order of magnitude more computation than traditional, deter-
ministic FWI. To further improve the accuracy of the 3D FWI results
reported in previous studies, we use a multiscale inversion strategy
(Bunks et al., 1995) by performing Bayesian FWI across three fre-
quency bands, using relatively low, intermediate, and high-frequency
data in an attempt to reduce cycle skipping.
Second, to analyze, test, and potentially select between different

prior hypotheses, we apply a variational prior replacement (VPR)
methodology (Zhao and Curtis, 2024c) to obtain inversion results
corresponding to different prior PDFs at a negligible additional
computational cost. We compare VPR results with those obtained
from independent Bayesian inversion and find that VPR cannot pro-
vide perfect estimates of posterior uncertainties due to the extreme
complexity of this 3D FWI problem. We therefore introduce a
method to fine-tune the VPR results with a small amount of extra
computation, which significantly improves the results.
Finally, we use the posterior PDFs obtained using different prior

distributions to construct a so-called Bayesian L-curve, from which
we analyze different prior assumptions and select one optimal
choice among different hypotheses.
In the next section, we summarize the methods deployed in this

study. Next, we apply PSVI to 3D FWI and compare the inversion
results with those from other variational and Monte Carlo methods,
from which we identify two potential problems that affect the in-
version accuracy. We then show how these issues can be addressed
and present improved inversion results. In addition, we compare
inversion results obtained using different prior hypotheses by build-
ing a Bayesian L-curve. Finally, we discuss the implications of this
work and draw conclusions.

METHODOLOGY

Variational Bayesian inversion

Bayesian inference calculates the posterior PDF of model param-
eters m given the observed data dobs using Bayes’ rule

pðmjdobsÞ ¼
pðdobsjmÞpðmÞ

pðdobsÞ
; (1)

where pðmÞ represents prior information aboutm, and pðdobsjmÞ is
the likelihood of observing dobs given any value of m. The term
pðdobsÞ is a normalization constant called the evidence.
In this work, we focus on variational inference, in which an op-

timal variational distribution qðmÞ is selected from a family of pre-
defined probability distributions to best approximate the true but
unknown posterior distribution pðmjdobsÞ. This is often accom-
plished by minimizing the Kullback-Leibler (KL) divergence, a
measure of difference, between the posterior and variational distri-
butions (Kullback and Leibler, 1951), or equivalently by maximiz-
ing the evidence lower bound (ELBO) of log pðdobsÞ defined as
(Blei et al., 2017)

ELBO½qðmÞ� ¼ EqðmÞ½log pðm; dobsÞ − log qðmÞ�; (2)
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where EqðmÞ½gðmÞ� ¼ ∫ mqðmÞgðmÞdm, which calculates the ex-
pectation of a function gðmÞ with respect to the probability distri-
bution qðmÞ. Finding the optimal qðmÞ by maximizing equation 2
is an optimization problem with a fully probabilistic result.

Physically structured variational inference

PSVI is an efficient variational method that, in one implementa-
tion, uses a transformed Gaussian distribution with a specific covari-
ance structure to best fit the posterior distribution (Zhao and Curtis,
2024b). A Gaussian distributionN ðμ;ΣÞ is characterized by a mean
vector μ and a covariance matrix Σ. To ensure positive semi-definite-
ness, the covariance matrix is often re-parameterized using a
Cholesky factorization Σ ¼ LLT, where L is a lower triangular ma-
trix. Avariational distribution qðmÞ can then be obtained by applying
an invertible transform f to the Gaussian distribution

log qðmÞ ¼ log N ðμ;LLTÞ − log j det½∂mf−1ðmÞ�j: (3)

The term det½·� calculates the absolute value of the determinant of
the Jacobian matrix ∂mf−1ðmÞ, which accounts for the volume
change effected by f (Rezende and Mohamed, 2015). This trans-
form converts a Gaussian random variable defined in an unbounded
space into the space of physical model parametersm, which is often
bounded (Kucukelbir et al., 2017).
Modeling a full covariance matrix requires nðnþ 1Þ=2 hyper-

parameters to construct L (n being the number of model parameters
or the dimensionality of an inverse problem), which is infeasible in
3D FWI problems in which n is typically of an order greater than
105. However, modeling only the diagonal elements (the commonly
applied, so-called “mean-field approximation”) ignores all correla-
tions between the model parameters, resulting in a significant
underestimation of the uncertainties in the posterior distribution
(Kucukelbir et al., 2017; Zhang et al., 2023). To avoid these two
extremes, PSVI focuses on capturing the most important (dominant)
posterior correlations in the model vectorm, guided by prior knowl-
edge of the physics controlling typical imaging inverse problems.
Specifically, our implementation of PSVI includes posterior corre-
lations between pairs of locations that are in spatial proximity
to each other, typically within one dominant wavelength in FWI
problems, because wavefield reflection and refraction respond to
physical properties of the subsurface, averaged spatially over ap-
proximately 1 wavelength. All other parameter correlations are
ignored. This structure of posterior correlations has been observed
to emerge naturally in a number of previous nonlinear studies, val-
idating this approach (Zhao and Curtis, 2024b).
We implement PSVI by defining specific off-diagonal elements of

L as the real number parameters to be optimized during inversion; all
other elements are set to zero, thus assuming the spatial independence
of the corresponding parameter pairs (Zhao and Curtis, 2024b). This
results in a sparse structure forL, and thus, also the covariance matrix
Σ, requiring only a manageable number of hyperparameters to be
optimized during the inversion while still capturing what are typically
found to be the most significant correlations.
We acknowledge that this approach does ignore some inter-param-

eter correlations, which are not strictly zero. However, now that we
have managed to perform fully nonlinear Bayesian FWI in our pre-
vious work (e.g., Zhao and Curtis, 2024b), we observe clearly that the
dominant posterior correlations almost always occur locally, between

cells that are up to a wavelength or so apart horizontally and verti-
cally. This is because, within a wavelength, there is little ability to
resolve much more than the average velocity values. Therefore,
sub-wavelength velocities can be varied such that they preserve
the correct mean value without compromising data fit. Correlations
with parameters in cells that are further afield break down very rap-
idly because those parameters are also most strongly correlated with
the values in cells in their local neighborhoods. In other words,
although it is true that there are far-field correlations, they are demon-
strably (and intuitively) far less important than those in local neigh-
borhoods. In 3D FWI problems, we are obliged to make some
approximations to reduce memory requirements when constructing
a covariance matrix. To illustrate, in the following section we present
a 3D FWI example with a grid size of 101 × 101 × 63. If we consider
even a single-precision floating-point format (each element has a size
of four bytes), storing a full covariance matrix requires about one TB
of memory, which is infeasible for most cases in reality.
Considering the computational cost of 3D Bayesian FWI, a top

priority is to improve its efficiency. PSVI does so at the cost of some
loss of generality in the solution found due to the Gaussian founda-
tions for the posterior distribution. Zhao and Curtis (2024b) demon-
strate that the method, nevertheless, produces reasonable statistical
information about the full, nonlinear posterior distribution. We there-
fore accept the loss of generality and use the method in this work.

Variational prior replacement

The prior replacement was developed for situations wherein we
wish to calculate various Bayesian solutions to an inverse problem
using different classes of prior information given the same observed
data set (Walker and Curtis, 2014). The variational version of the
method used here, called variational prior replacement (VPR), was
developed to improve its computational efficiency (Zhao and
Curtis, 2024c). Suppose we have two different prior PDFs,
poldðmÞ and pnewðmÞ, (hereafter, subscripts old and new will be used
to denote the order in which the PDFs are estimated or used). Ac-
cording to Bayes’ rule (equation 1), the two posterior probability dis-
tributions can be calculated by

poldðmjdobsÞ ¼
pðdobsjmÞpoldðmÞ

poldðdobsÞ
≈ qoldðmÞ; (4)

and

pnewðmjdobsÞ ¼
pðdobsjmÞpnewðmÞ

pnewðdobsÞ
;

¼ pðdobsjmÞpoldðmÞ
poldðdobsÞ

pnewðmÞ
poldðmÞ

poldðdobsÞ
pnewðdobsÞ

;

¼ kpoldðmjdobsÞ
pnewðmÞ
poldðmÞ ;

≈ kqoldðmÞpnewðmÞ
poldðmÞ ;

≈ qnewðmÞ: (5)

In equation 4, the (old) Bayesian problem given data dobs and
prior PDF poldðmÞ is solved using variational inference, and the
solution poldðmjdobsÞ is approximated by the variational distribution

Efficient 3D Bayesian FWI R375

D
ow

nl
oa

de
d 

09
/2

0/
25

 to
 8

1.
15

2.
12

4.
19

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

24
-0

77
4.

1



qoldðmÞ. The third and fourth lines in equation 5 are obtained
by substituting equation 4 into the second line. The ratio
pnewðmÞ=poldðmÞ updates the solution that includes the old prior
to a solution that contains the new one, and we set a constant
k ¼ poldðdobsÞ=pnewðdobsÞ. This implies that the new posterior dis-
tribution can be calculated from the old one by updating prior in-
formation post inversion, as shown byWalker and Curtis (2014): the
inversion corresponding to the new prior distribution does not need
to be solved from scratch.
Evaluating k requires the two evidence terms to be calculated,

which is computationally intractable. Zhao and Curtis (2024c) in-
troduce a second variational distribution qnewðmÞ to approximate
pnewðmjdobsÞ (the fifth line in equation 5) by minimizing the KL
divergence between the new posterior and qnewðmÞ, without requir-
ing the value of k to be known explicitly. This step is called VPR.
A variety of variational inference methods can be used to calcu-

late qoldðmÞ and qnewðmÞ (Kucukelbir et al., 2017; Zhang and
Curtis, 2020; Zhao et al., 2021). In this paper, we use PSVI because
it is efficient, and importantly, because its probability value is easy
to evaluate for any model parameter values post inversion. Using
PSVI to find qoldðmÞ thus allows us to efficiently perform VPR
to find qnewðmÞ in the fifth line of equation 5, which approximates
the solution for any of the alternative prior distributions.

3D BAYESIAN FWI EXAMPLE

We consider a synthetic 3D acoustic FWI problem. As shown in
Figure 1a, the true velocity model used in this test is part of the 3D
overthrust model (Aminzadeh et al., 1996), which contains
63 × 101 × 101 grid cells in the Z (depth), Y, and X directions,

respectively, with a cell size of 50 m in each direction.
Figure 1c–1e shows three 2D slices of the true velocity structure
at locations Y = 2.5 km, X = 2.5 km, and Z = 1.25 km (horizontal
slice), respectively. We deploy 81 impulsive sources (the red stars)
and 10,201 receivers (the white dots) at the surface with spacings of
500 m and 50 m, respectively. Both observed and synthetic data are
generated by solving the 3D acoustic wave equation using a time-
domain pseudo-analytical method (Etgen and Brandsberg-Dahl,
2009) with an Ormsby wavelet (Ryan, 1994).
We define a uniform prior distribution for velocity values at dif-

ferent depths, with the upper and lower bounds shown in Figure 1b.
We use this uniform prior PDF and a diagonal Gaussian likelihood
function (implying uncorrelated data noise, which is not a require-
ment of the method) to perform variational Bayesian inversion.

Comparison with previous results

We apply PSVI to the preceding 3D FWI problem and compare
the inversion results with those obtained from three other methods
presented in Zhang et al. (2023): mean field automatic differentia-
tion variational inference (mean field ADVI) (Kucukelbir et al.,
2017), Stein variational gradient descent (SVGD) (Liu and
Wang, 2016), and stochastic SVGD (sSVGD) (Gallego and
Insua, 2018). The inversion settings in this example are identical
to those used in Zhang et al. (2023), allowing us to compare the
four sets of results directly. We set the initial value of PSVI to
be a standard Gaussian distribution, as suggested by Kucukelbir
et al. (2017). This results in a laterally homogeneous initial mean
velocity model, with velocity values at different depths being the
mean of the uniform prior distribution shown in Figure 1b.

Figure 2 shows the inversion results of the ver-
tical slice shown in Figure 1c, obtained using dif-
ferent methods indicated in the title of each
panel. From top to bottom, each row shows
the posterior mean velocity, standard deviation,
and relative error maps, respectively, where the
relative error is the absolute difference between
the true and mean velocities divided by the stan-
dard deviation at each point. Each mean velocity
map recovers the main features of the true veloc-
ity model. However, we also observe that some
structures are inverted incorrectly, such as those
inside the dashed black boxes in Figure 2, which
are supposed to be horizontal according to the
true velocity model displayed in Figure 1c. This
is possibly because all four inversions fail to re-
cover the correct low-wavenumber components
of the true model due to 2π phase shifts in for-
ward-modeled waveform data that fit the ob-
served data equally well — a phenomenon
often referred to as cycle skipping in FWI. Mean
field ADVI provides the lowest posterior uncer-
tainties due to its theoretical assumption of an
uncorrelated Gaussian posterior PDF. Uncer-
tainty values from SVGD and PSVI are larger
than those from mean field ADVI, but smaller
than those from sSVGD. Most of the relative er-
rors in the four plots in the bottom row remain
relatively high because they all underestimate

Figure 1. (a) The true velocity model. The source and receiver locations are indicated by
the red stars and white dots at the surface (the latter are so close together that they may be
observed as a pale haze). (b) The upper and lower bounds of a uniform prior distribution
over seismic velocity at each depth. (c), (d), and (e) show two vertical and one horizontal
2D slices of the true velocity model at Y = 2.5 km, X = 2.5 km, and Z = 1.25 km,
respectively. These three sections are marked by the dashed black lines in (a). The
dashed red lines in (c) display the locations of two vertical profiles along which posterior
marginals are compared in the main text.
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the posterior uncertainties to some extent for such a high-dimen-
sional inverse problem.
To justify the preceding statements and to better compare the four

sets of results, in Figure 3, we compare the posterior marginal dis-
tributions obtained from the four methods along two vertical pro-
files at horizontal locations of 1 km (top row) and 3 km (bottom
row), respectively. The locations of these two profiles are displayed
by dashed red lines in Figure 1c. In Figure 3, red
lines show the true velocity profile. Overall, the
marginal distributions in Figure 3c and 3d shows
similar features and are broader than those in Fig-
ure 3a and 3b, indicating that PSVI and sSVGD
provide better posterior uncertainty estimates, on
average, compared with the other two methods.
However, the preceding four results, especially

those obtained using PSVI and sSVGD, show
some consistent but incorrect patterns. First, the
posterior marginals in the first row in Figure 3 pro-
vide biased phase information in which the true
velocity profile is excluded from the posterior
PDFs, as marked by white arrows. PSVI uncer-
tainties are significantly narrower in that section
of the profile, accentuating the error, presumably
because the algorithm is stuck at a local minimum
of the variational optimization problem that hap-
pens to have low values for the velocity standard
deviations. This section corresponds to the results
highlighted by the dashed black boxes in Figure 2,
due to the incorrectly inverted low-wavenumber
component (cycle skipping). Second, in Figure 3,
we observe roughly the same magnitude of pos-
terior uncertainties (i.e., similar width of those

marginal PDFs) in the shallower and deeper parts of the model. Given
that the sensitivity of the surface seismic data should often be higher
in the near surface than in deeper parts of the Earth, we would expect
to observe higher uncertainties at depth. This is caused by additional
prior information (spatial smoothness) imposed on the inversion.
In the following section, we solve these two issues to improve the

inversion results.

Figure 2. Single frequency band inversion results obtained using four different methods, at the vertical section Y = 2.5 km. The true velocity
model is shown in Figure 1c. From top to bottom, each row shows the posterior mean velocity, standard deviation (std), and the relative error
maps, respectively. The relative error is the absolute difference between the true and mean velocities (the error) divided by the standard
deviation at each point. The dashed black boxes highlight structures that are not correctly inverted by any method due to cycle skipping.

Figure 3. Posterior marginal PDFs obtained using different methods, extracted at two
locations marked by the dashed red lines in Figure 1c. The red lines show the true veloc-
ity profile. The white arrows highlight the posterior marginal PDFs that fail to find the
correct solution, due to cycle skipping.

Efficient 3D Bayesian FWI R377

D
ow

nl
oa

de
d 

09
/2

0/
25

 to
 8

1.
15

2.
12

4.
19

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

24
-0

77
4.

1

https://library.seg.org/action/showImage?doi=10.1190/geo2024-0774.1&iName=master.img-001.jpg&w=500&h=237
https://library.seg.org/action/showImage?doi=10.1190/geo2024-0774.1&iName=master.img-002.jpg&w=311&h=207


Improved inversion results

In this section, we show how to improve the 3D FWI results. To
avoid cycle skipping, similarly to the common strategy in linearized
FWI problems, we use a multiscale inversion approach by inverting
waveform data from low frequencies to high frequencies (Bunks
et al., 1995). We consider three frequency bands referred to as
the low- (1–6 Hz), intermediate- (1–10 Hz), and high-frequency
band (1–13 Hz). Variational optimizations using data in intermedi-
ate and high-frequency bands used results from the previous band as
a starting point. The starting point for the low-frequency band varia-
tional inversion is set to be a standard Gaussian distribution within
an unconstrained space, as shown in equation 3 and suggested by
Kucukelbir et al. (2017). In preparation for subsequent sections, we
refer to the final solution using high-frequency data as qoldðmÞ.
Any regularization (a form of prior information) is somewhat ar-

bitrary, as we will never know whether the imposed prior informa-
tion is consistent with the true Earth or not a priori, and thus whether
the regularization will spuriously bias the inversion results. We
therefore remove all regularizations (note that spatial smoothing
is imposed in the previous tests) and use the uniform PDF displayed
in Figure 1b as prior information for FWI. As long as the posterior
solution is not unduly constrained by the boundaries of the uniform
distribution, we assume that the inversion is mainly constrained by
the likelihood function, and hence, by observed waveform data.
Note that this will increase the effective support of the posterior
PDF (the hyper-volume over which it is significantly greater than
zero), thereby increasing the complexity of this FWI problem, com-
pared with more strongly regularized problems (e.g., with tighter
uniform bounds). Due to limited computational resources, we only

perform PSVI in this test. After obtaining reasonable inversion
results using this noninformative, broad prior distribution, we
efficiently analyze different prior assumptions in the next section
using the VPR methodology.
Figure 4 shows the final inversion results obtained using high-

frequency band data; interim results using low and intermediate fre-
quency bands are presented in Appendix A. The top two rows dis-
play two vertical sections at Y = 2.5 km and X = 2.5 km. The bottom
row illustrates one horizontal section at a depth Z = 1.25 km. The
three sections are marked by dashed black lines in Figure 1a. From
left to right, Figure 4a–4d shows the three true velocity sections, the
average velocity, the standard deviation, and the relative error maps
of the posterior probability distribution, where the relative error is
the absolute difference between the true and mean velocities divided
by the standard deviation at each point.
The three mean sections resemble the true velocity structures (note

that even for an entirely correct solution, this need not be the case in
probabilistic inversions because the mean of the models is a statistic,
not a model in itself). This is especially true in the shallow subsurface
above 2 km, where high-resolution structures are accurately inverted.
However, the mean and true values diverge at deeper levels, possibly
due to reduced data sensitivity, as the standard deviations broadly
increase with depth. The overall relative errors are less than three,
indicating that the differences between the true and inverted mean
models are within three standard deviations, as would be expected
of the true solution to this Bayesian problem. Note that in Figure 4d,
higher relative errors (shown in yellow) are present near the surface
because, in fact, the true model deliberately lies outside of the prior
bounds shown in Figure 1b, to assess the method’s behavior in such
circumstances (Zhang et al., 2023). Overall, the inverted images and

Figure 4. High frequency 3D variational Bayesian FWI results obtained using PSVI and the uniform prior distribution displayed in Figure 1b.
The top two rows show vertical sections at Y = 2.5 km and X = 2.5 km, and the bottom row shows a horizontal section at Z = 1.25 km.
(a)–(d) The true velocity model, the mean, the standard deviation, and the relative error (calculated by the absolute difference between the true
and mean velocities divided by the standard deviation at each point) maps of the posterior distribution, respectively.
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the posterior uncertainties in Figure 4 are significantly more accurate
than those displayed in Figure 2.

Testing different prior hypotheses

In addition to the uniform prior distribution, we now consider a
set of smoothed prior distributions. Define a second-order finite-dif-
ference operator S to calculate the curvature of the model parameter
values between adjacent grid cells in a spatial 3D velocity model
represented by a model vector m (Zhao and Curtis, 2024c). This
is further applied to m to impose spatial smoothness, by imposing
a Gaussian distribution on the product Sm

pðSmÞ ∝ exp

�
−
ðSmÞTðSmÞ

2σ2s

�
; (6)

where σs is a hyperparameter that controls the strength of the spatial
smoothness assumed (a smaller σs causes the probability of any par-
ticular rough model to become lower). Equation 6 can be interpreted
as applying a Tikhonov matrix S to m (Golub et al., 1999). Then,
the smoothed model prior PDF can be expressed as

psmoothðmÞ ∝ pðSmÞpoldðmÞ; (7)

where poldðmÞ is the (old) uniform prior distribution defined in the
previous section. We consider seven smoothed prior PDFs with dif-
ferent σs values: 2000, 1000, 500, 250, 125, 62.5, and 31.25, respec-
tively. In the subsequent part of this paper, we also denote the uniform
prior distribution as σs ¼ ∞, indicating no smoothing. These eight
prior PDFs are used to mimic a real situation in which we have differ-
ent prior hypotheses and wish to analyze their consequences.
The posterior PDFs, using each of the seven smoothed priors, are

obtained by replacing the uniform prior PDF in the inversion results
poldðmjdobsÞ from the previous section (Figure 4) by the respective
smoothed prior PDFs, using VPR. Thus, no additional inversion is
performed to obtain these results. In Appendix B, we verify the re-
sults of VPR by comparing them to those obtained by performing
independent Bayesian inversions (the verification of VPR in 2D
FWI was also conducted by Zhao and Curtis [2024c]). Figure 5
shows the results using all eight prior PDFs on the vertical section
at Y = 2.5 km. From left to right, each column shows one posterior
sample, the mean, the standard deviation, and the relative error
maps of the posterior distribution, respectively. From top to bottom,
each row presents the posterior PDF obtained using the σs value
indicated on the left of the figure.
From Figure 5a to 5h, as the magnitude of smoothness increases,

stronger prior information favoring spatially smooth structures is
injected into the inversion results. Consequently, both the posterior
samples and the mean velocity maps become smoother with fewer
spatial variations. The standard deviations decrease (note that differ-
ent colorbar scales are used in the standard deviation maps in the
third column); this leads to increased relative errors, as (true) large
velocity contrasts between neighboring cells are precluded by the
prior information for small σs.
Figure 6 shows the posterior marginal PDFs of two vertical

velocity profiles at locations X = 1 km (the top row of Figure 6)
and X = 3 km (the bottom row), marked by dashed red lines in Fig-
ure 1c. Figure 6a shows the posterior marginal PDFs obtained from
the uniform prior distribution, and Figure 6b–6h shows those from
the smoothed prior PDFs — the smoothness values σs are noted in

the title. In each figure, the red line shows the true velocity profile,
and the black line displays the inverted mean velocity profile. We
observe that with the increase in the magnitude of smoothness in-
jected by the prior information, the posterior marginal PDFs be-
come smoother, with fewer spatial variations (and therefore,
lower uncertainties), similar to the conclusions drawn earlier.
By comparing each set of results with the true velocity model in

Figure 1c, we find that the posterior PDFs become more tightly con-
strained around the true values as we increase the magnitude of the
smoothness up to σs ¼ 500 in Figure 5d, especially in the deeper
parts of the model. Interestingly, in the third column of Figure 5c
and 5d, we observe higher uncertainties at the boundaries between
strata below a depth of 1.5 km, capturing the expected “uncertainty-
loop” characteristic of the posterior uncertainties proposed by
Galetti et al. (2015). However, Figure 5 shows that uncertainty
loops appear because smoothness is applied to models and do
not appear when the models are allowed to be rough. This is con-
sistent with the results of Galetti et al. (2015), which were obtained
using a trans-dimensional Monte Carlo travel-time tomography
method that imposed strict smoothness (indeed, constant velocity)
over large areas of the model. We, therefore, qualify the proposition
of Galetti et al. (2015) by hypothesizing that posterior uncertainty
loops are, in fact, a product of the smoothness constraints in tomo-
graphic problems (including FWI).
The inversion results become worse in Figure 5e–5h, as the effect

of prior information overpowers the information in the observed
data, resulting in biased posterior solutions and overly smoothed
structures. Not surprisingly, most of the relative errors are then
greater than three. We conclude that the smoothed prior distribu-
tions with σs ¼ 1000 or σs ¼ 500 (Figure 5c and 5d) are relatively
good choices for this FWI problem.
However, in reality, we never know the true velocity structure, so

we cannot calculate or use relative errors to choose between prior
distributions, except in synthetic tests, such as those shown in Fig-
ures 5 and 6. In deterministic FWI, an order of preference is often
constructed by calculating the data misfit values arising from the
different inversion results (referred to as an L-curve). Following
a similar approach, we compare the eight posterior distributions
by drawing N = 100 samples from each posterior PDF and perform-
ing forward simulations to calculate the corresponding misfit values
between the observed and synthetic data. This results in eight
approximate probability distributions of misfit values from the in-
version results using different priors, shown in Figure 7a. As ex-
pected, the overall misfit values increase as more smoothness is
injected into the inversion.
The mean and standard deviation of each distribution are shown

in Figure 7b by black dots and red error bars, connected by a red
line, which we call a Bayesian L-curve. Moving from left to right
along the curve, the magnitude of prior information (relative
smoothness in this case) decreases from σs ¼ 31.25 (the top-left
point) to σs ¼ ∞ (no smoothing — the bottom-right point).
An arrow marks the case with σs ¼ 1000, and we observe that
the data misfits start to decrease significantly if we further increase
the roughness value σs of the prior information beyond this point,
implying that this value provides a balance between information
from the smoothing distribution (used to narrow the possible param-
eter space) and the observed data (used to achieve good data fits).
From a Bayesian point of view, if we do not know the smoothness

of the true Earth, then we have little reason to choose any one of
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these posterior distributions — they are all part of the posterior
uncertainty. We may have sufficient prior intuition to suspect
that posterior models are too rough in Figure 5a and too smooth

in Figure 5h, but it is difficult to establish a probability distribution
over levels of smoothness a priori. Hierarchical Bayesian methods
might be used to estimate this distribution a posteriori. However,

Figure 5. Inversion results obtained using (a) the uniform prior PDF and (b)–(h) the seven smoothed priors with decreasing values of σs (an
equivalently increasing smoothness), in a vertical section Y = 2.5 km. From left to right, they represent one posterior sample, the mean velocity,
the standard deviation, and the relative error maps.
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such an approach introduces physical inconsistency into Bayesian
inversion results (Mosegaard and Curtis, 2024). Alternatively,
in a departure from Bayesian methods, we might decide to
consider only a subset of these various results, for example, those
around σs ¼ 1000.
More generally, many different types of prior

hypotheses can be represented by a hypothesis
space H, as schematically represented in Fig-
ure 7c. Given a rather uninformative uniform prior
distribution in the old posterior PDF, we can, in
principle, inject any additional prior assumptions
into the inversion; each would have different ef-
fects on the inversion results, between which
we may wish to discriminate. For example, we
consider another prior assumption from real-geol-
ogy. The geology-informed prior information is
obtained by subsampling a set of realistic geologic
images using a predefined window size. These
subimages are used to calculate a local correlation
matrix between the parameter pairs that lie within
that window size, thereby defining prior correla-
tions between pairs of model parameters used in
this test (Zhao and Curtis, 2024c). We consider
five such geologic prior distributions constructed
using different local cubic windows with edge
lengths of two, four, six, eight, and 10 cells, re-
spectively. Again, the corresponding posterior dis-
tributions are calculated using VPR by replacing
the old uniform prior distribution with each geo-
logic prior distribution in turn.
Figure 8 shows the corresponding posterior

PDFs, where the sizes of the correlation windows
used are denoted on the left side of Figure 8.
Figure 8a shows the results obtained using the
uniform prior distribution. We observe that larger
prior correlation windows generally yield better

inversion results that more closely match the true velocity model
(Figure 1c), as a larger window can provide more accurate
prior correlation information, which improves the inversion results.
However, note that a larger window also has higher memory
requirements.

Figure 6. Posterior marginal PDFs at two vertical locations marked by the dashed red lines in Figure 1c. (a) Results obtained using the uniform
prior PDF, and (b)–(h) results using the smoothed prior PDFs with different σs values.

Figure 7. (a) Probability density functions for data misfit values calculated from posterior
PDFs displayed in Figure 5 using differently smoothed priors. (b) Bayesian L-curves rep-
resenting the average data misfits and their standard deviations (error bars) with respect to
different prior hypotheses. The horizontal axis represents the normalized (relative) weak-
ness of prior information applied by each prior distribution; a value of 1 represents the
noninformative, uniform prior PDF represented in Figure 1b. The red line denotes the
L-curve found by requiring smoothness in the prior PDFs, and the dashed blue line de-
notes the equivalent curve when requiring consistency with geologic prior information.
(c) A schematic diagram of the space H containing all possible prior hypotheses. The
black dot represents a noninformative uniform prior distribution, and we denote different
prior assumptions, such as smoothed and geologic prior PDFs, by different paths
(arrows) through H in this study.
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These inversion results are then used to construct a Bayesian
L-curve, as displayed by the dashed blue line in Figure 7b. From
left to right along this dashed blue line, the correlation window size
decreases from 10 × 10 × 10 (the top-left point) to 0 × 0 × 0 (the
bottom-right point), with the latter being the uniform prior PDF
with no prior correlation. This indicates that the strength of geologic
prior information decreases from left to right. The data misfits are
lower than those from smoothing priors in red because geologically
informed priors impose less smoothness vertically than horizontally
(which is correct in the true model and often in the Earth).

Computational cost

The inversion using the uniform prior distribution (Figure 4) is
performed within three frequency bands, each involving 200, 300,
and 800 iterations for variational inference (optimization) in the

low, intermediate, and high-frequency bands, respectively. In each
iteration, four random samples are used to estimate expectations in
the EBLO[qðmÞ] in equation 2. Therefore, a total of 5200 samples,
including 5200 forward and adjoint simulations, are used to obtain
the inversion results displayed in Figure 4. To further reduce the
computational cost, we use a minibatch of 36 shot gathers, ran-
domly selected from a total of 81 shots in each FWI simulation
(Zhang et al., 2023). For comparison, the same test conducted in
Zhang et al. (2023) was obtained using 4000, 400,000, and
80,000 samples (forward and adjoint simulations) when using au-
tomatic differentiation variational inference ADVI (ADVI)
(Kucukelbir et al., 2017), SVGD (Liu and Wang, 2016), and sto-
chastic SVGD (sSVGD) (Gallego and Insua, 2018), respectively.
SVGD and sSVGD are far more expensive than PSVI; ADVI is
computationally cheaper but provides biased inversion results with
strongly underestimated posterior uncertainties (Zhang et al., 2023).

Figure 8. Inversion results on a vertical section Y = 2.5 km obtained using (a) the uniform prior PDF and (b)–(f) the geologic prior PDFs with
different sizes of local correlation windows, denoted on the left side of each row. From left to right, they represent one posterior sample, the
mean velocity, the standard deviation, and the relative error maps.
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Note that in linearized, deterministic FWI, one typically performs
∼100 iterations to obtain a reasonable result, and a full batch of 81
shots is normally used at each iteration to provide accurate gradient
information. Because forward simulation using 81 shot gathers
would require 2.25 times more computation than using a minibatch
of 36 shots, the computational cost of 100 iterations implemented in
deterministic FWI is equivalent to performing 225 forward evalu-
ations in this study.
With PSVI, we therefore obtain reasonable probabilistic

uncertainty estimates using only an order of magnitude more com-
putation than deterministic FWI, from which no robust uncertainty
information can be obtained. Compared with three to four orders of
magnitude more computation that would be expected using conven-
tional Monte Carlo sampling methods, the reduction in computa-
tional cost is already significant. In addition, this single set of
variational inversion results allows multiple posterior distributions
corresponding to different prior PDFs to be produced using VPR,
without any further FWI simulations, even in three dimensions. For
example, imagine that we wish to test 10 different prior hypotheses.
The computational cost using our method remains roughly the same
as that reported previously. However, for deterministic FWI meth-
ods, we need to solve 10 inversion problems. In this case, our
method employs the same order of computation to solve the inver-
sion problem and provide full uncertainty estimates, compared to
deterministic FWI.

DISCUSSION

Within a Bayesian framework, we solve FWI (or any other in-
verse/inference problems) probabilistically — i.e., all information
is represented by probability distributions, and both unknown
parameters and observations are represented by random variables.
In conventional deterministic FWI, unknowns are defined as a
model vector to be optimized during inversion. In practice, optimi-
zation begins with an initial model obtained from, for example, mi-
gration velocity analysis, travel time tomography, or surface wave
inversion. This initial model must be sufficiently accurate so that the
iterative optimization converges toward the correct solution, which
must, therefore, be close to the true model. In our implementation of
PSVI (variational FWI), we also need a starting point (initial value)
for optimizing the variational distribution; however, this starting
point is a probability distribution rather than a velocity model
(mathematically, a vector). For example, in our test, we used a stan-
dard Gaussian distribution (in the unconstrained space) as the start-
ing point of PSVI. Future work might consider starting with a
Gaussian distribution that has a mean vector defined by results from
migration velocity analysis, travel time tomography, or surface
wave inversion, which will speed up the variational optimization.
We also need to note that in (variational) Bayesian inversion, the

initial distribution is different from prior information (hypotheses).
Given the complexity of 3D FWI, we still need to test different prior
hypotheses and select the optimal one to constrain the inversion
best, even when we have a good initial distribution. This is equiv-
alent to the situation in deterministic FWI, in which a good initial
velocity model cannot replace regularization terms. No matter what
initial models we use, we still need additional regularization terms
to stabilize the inversion process.
All of the posterior PDFs with different priors were obtained

from only a single Bayesian 3D FWI using a uniform prior distri-
bution. However, to translate uncertainties from the model param-

eter space into the data space, hundreds of additional forward
simulations were performed to obtain the data misfit values, which
were used to calculate the Bayesian L-curves displayed in Figure 7.
Alternatively, boosting variational inference implicitly provides a
small number (tens) of representative samples that represent major
components of the uncertainties (Zhao and Curtis, 2024a). These
representative samples might be used to construct Bayesian L-
curves at a significantly reduced computational cost compared to
the approach used here.
A common way to discriminate between prior hypotheses in

Bayesian inference is to calculate the evidence term

pðdobsÞ ¼
Z
m
pðdobsjmÞpðmÞdm (8)

for each hypothesis, which requires an integral over the entire model
parameter space to be evaluated. Although this is computationally
possible for some low-dimensional problems (Strutz and Curtis,
2024), it is infeasible for Bayesian 3D FWI due to the high dimen-
sionality of the problem. Hence, the approach used here is the first
to allow such models and prior hypotheses to be compared in a
probabilistic manner and with manageable computational cost in
three dimensions.
Although we used prior distributions with varying degrees of

smoothness to simulate different prior hypotheses, more realistic prior
distributions that encode geologic information can be used in Baye-
sian inversion (Mosser et al., 2020; Levy et al., 2022; Bloem et al.,
2024; Sun and Williamson, 2024). By using the VPR framework, we
can calculate the corresponding posterior distributions and analyze
different prior hypotheses at a relatively low cost.
Rather than approximating the true solution to the desired inverse

problem directly, the VPR approximation of each new posterior
PDF includes only information about the true solution that is al-
ready included within the old posterior PDF. It therefore carries over
an imprint of any errors in the latter (Zhao and Curtis, 2024c). VPR
results may therefore differ from independent Bayesian inversion
results. This effect is potentially nonnegligible due to the higher
dimensionality and complexity of 3D Bayesian FWI problems,
as shown in Appendix B; qualitatively, the results are not as good
as those obtained for 2D FWI in Zhao and Curtis (2024c). To im-
prove the results, we can use a relatively lower cost calculation to
refine (fine-tune) the outcomes obtained from VPR using observed
data. We do this by invoking Bayes’ rule again (performing another
variational Bayesian inversion using PSVI), but with a smaller num-
ber of iterations that start from the VPR output because the VPR
solution should already be reasonably close to the true posterior
PDF. For example, we fine-tuned the preceding VPR results by per-
forming variational inversion with an additional 200 iterations using
four samples per iteration. This costs an extra 800 forward and ad-
joint simulations, and the results are shown in Figure 9. These are
improved compared with the initial VPR results and are more sim-
ilar to independent inversion results (more details can be found in
Appendix B). If we wanted to reduce this additional computation
further, we might again depart from formal Bayesian analysis by
using the Bayesian L-curve obtained from VPR to select a smaller
subset of prior hypotheses to consider, then fine-tune only those
VPR posterior PDFs.
In our presented example, the waveform data we used have a low-

est frequency of 1 Hz. In exploration seismology applications, it is
often the case that we do not have high-quality data below 3–5 Hz.
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Recently, several methods have been developed to handle this issue
and improve the performance of deterministic 3D FWI, including
low-frequency waveform data extrapolation using high-frequency
data (Li and Demanet, 2016; Fang et al., 2020). These techniques
can also be applied to our variational Bayesian FWI framework to
avoid problems such as cycle skipping.

CONCLUSION

We solve a 3D Bayesian FWI problem using PSVI, wherein a
transformed Gaussian distribution is used to approximate the
posterior distribution of the fully nonlinear inverse problem. Using
a noninformative uniform prior distribution, we obtain a posterior
solution with reasonable uncertainty estimates. The inversion pro-
gresses through low-, intermediate-, and high-frequency bands, with
a total computational cost only an order of magnitude higher than that
of deterministic FWI. In addition, we explore multiple different prior
distributions and calculate the corresponding posterior distributions
using VPR, without the need for additional FWI simulations. These
results are used to analyze different prior hypotheses through the con-
struction of Bayesian L-curves. We thus demonstrate that accurate
Bayesian FWI and analysis, as well as the choice of prior hypotheses,
are, in principle, now feasible in three dimensions.
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APPENDIX A

INVERSION RESULTS USING LOW AND INTER-
MEDIATE FREQUENCY WAVEFORM DATA

Figures A-1 and A-2, respectively, show the inversion results ob-
tained using low- and intermediate-frequency waveform data, per-
formed using PSVI (Zhao and Curtis, 2024b). Similar to the
inversion results displayed in Figure 4 in the main text, the top
two rows display two vertical sections at locations Y = 2.5 km
and X = 2.5 km, whereas the bottom row illustrates one horizontal
section at Z = 1.25 km. From left to right, each column shows three
true velocity sections (marked by the dashed black lines in
Figure 1a), the corresponding inverted average velocity, the stan-
dard deviation, and the relative error maps of the posterior distri-
bution, wherein the relative error is the absolute difference
between the true and mean values divided by the standard deviation
at each point. Comparing these results with those using high-fre-
quency data (Figure 4), we observe that as the frequency of the
waveform data used for inversion increases, the spatial resolution
improves, and the velocity estimates become more accurate. The
overall relative errors are within three standard deviations, which
is expected of the true posterior probability distribution.

Figure 9. Inversion results after refining the VPR results, which are more similar to independent variational Bayesian inversion results
(presented in Appendix B).
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Figure A-1. Low frequency 3D variational Bayesian FWI results obtained using PSVI and a uniform prior distribution. The top two rows show
two vertical sections at Y = 2.5 km and X = 2.5 km, whereas the bottom row shows a horizontal section at Z = 1.25 km. (a)–(d) The true velocity
model, the mean, the standard deviation, and the relative error maps of the posterior distribution.

Figure A-2. The intermediate frequency 3D variational Bayesian FWI results.
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APPENDIX B

THE VERIFICATION OF VARIATIONAL PRIOR
REPLACEMENT

In this appendix, we test the effectiveness and accuracy of VPR
(Zhao and Curtis, 2024c) for 3D Bayesian FWI by comparing the

posterior solutions obtained using VPR to those obtained from in-
dependent Bayesian inversions. For VPR, we consider the uniform
prior distribution defined in the main text as the old prior PDF,
which is then removed from the old posterior distribution (displayed
in Figure 4 in the main text) and replaced by a smoothed prior
distribution with σs ¼ 1000 (see details in the main text). The cor-

Figure B-1. The VPR results obtained by removing the uniform prior information from the old posterior PDF and imposing a smoothed prior
PDF with a smoothness value of σs ¼ 1000.

Figure B-2. Independent variational Bayesian inversion results obtained using the smoothed prior distribution with a smoothness value of
σs ¼ 1000. This is used to verify the VPR results displayed in Figure B-1.
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responding results are shown in Figure B-1. We then perform an
independent variational Bayesian inversion using the same
smoothed prior distribution. Similar to the uniform prior case, the
inversion is performed using the same three frequency bands of
waveform data with the same number of forward simulations. Fig-
ure B-2 shows the results. The main features of these two results are
roughly consistent, indicating that VPR can replace the old prior
information with the new one in the inversion results without having
to solve a Bayesian inverse problem from scratch repeatedly. Some
small discrepancies between these two sets of results remain, espe-
cially in the deeper parts of the model. This is partly because VPR
introduces a variational distribution qnewðmÞ to approximate the
new posterior PDF pnewðmjdobsÞ, rather than calculating the true
new posterior distribution, as expressed in the fifth line of equation 5
in the main text (Walker and Curtis, 2014; Zhao and Curtis, 2024c).
In addition, this also indicates that VPR might not be as accurate for
this extremely high-dimensional and complex 3D Bayesian inverse
problem, compared with previous tests in 2D (Zhao and Curtis,
2024c). Nevertheless, this result is obtained almost for free, com-
pared with the huge computational cost typically involved in 3D
forward simulation and Bayesian inversion (Zhang et al., 2023).
In the main text, we introduce a fine-tuning scheme to improve
the inversion results displayed in Figure B-1.
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