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 A B S T R A C T

Monitoring the dynamics of CO2 in subsurface reservoirs allows the conformance of carbon capture and storage 
(CCS) projects to be assessed. Full waveform inversion (FWI) of data from dense, time-lapse seismic surveys 
can provide high resolution images of dynamic changes. However, FWI solutions remain highly non-unique, 
so uncertainties must be accounted for to ensure that conformance verification is robust. Time-lapse seismic 
FWI is therefore expensive because, first, dense surveys are costly to acquire, and second, quantifying realistic 
uncertainties requires extreme computational power and memory. We first introduce a significantly less costly 
method to quantify Bayesian uncertainties in the maximum a posteriori (MAP – most likely) solutions of 
time-lapse seismic velocity changes. The method embodies strong prior information from the baseline survey 
to inform inversions of monitoring surveys. In contrast to comparable methods, these uncertainty estimates 
are shown to be of a reasonable magnitude to inform subsequent decision-making. This method also allows 
the quality of prospective survey designs to be assessed in terms of expected confidence in time-lapse imaging 
results, at reasonable computational cost. We therefore perform a time-lapse seismic survey design study to 
assess the quality of more economically attractive surveys. We demonstrate for the first time that even if 
extremely sparse acquisition geometries are deployed, potentially even involving only a single seismic source 
and recordings on a single fibre-optic cable, reasonable images of subsurface time-lapse velocity changes are 
produced, and uncertainties remain sufficiently low to enable robust decision-making.
1. Introduction

Carbon capture and storage (CCS) within the Earth’s subsurface 
has emerged as an essential strategy for mitigating atmospheric CO2
buildup from fossil fuel combustion if global warming is to be limited 
to 1.5 or even 2 degrees above the pre-industrial average tempera-
ture (Lee et al., 2023). A critical aspect of any CCS project is to verify 
conformance of the reservoir performance with pre-injection forecasts. 
This requires that subsurface CO2 migration is monitored, and any 
significant leakage is detected. Several approaches have been devel-
oped to track CO2 migration, most involving numerical simulations of 
reservoir properties and dynamics (Shahkarami et al., 2014; Li et al., 
2016), geochemical monitoring (Emberley et al., 2005; Harbert et al., 
2020), and geophysical monitoring (Lumley, 2001; Fawad and Mondol, 
2021). Among these, geophysical methods are considered to be the 
most effective for imaging the spatial heterogeneity of dynamic changes 
in subsurface properties.

While some geophysical methods exhibit a strong sensitivity to 
changes in the subsurface distribution of CO2 (e.g., electrical and 
electromagnetic methods – Zhdanov et al., 2013; Gasperikova and Li, 
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2021), this does not translate into accurate images or maps of the 
changing distribution of CO2 due to the well-known non-uniqueness 
in solutions found from such potential methods (Wei and Sun, 2021). 
Despite their relatively lower sensitivity to changes in CO2 distribution, 
seismic monitoring methods produce high resolution, spatially resolved 
estimates of changes in properties of a reservoir and surrounding 
rock mass following CO2 injection (Nakata et al., 2022, 2024), by 
solving inverse or inference problems based on surface or borehole 
seismic observations (Tarantola, 2005). The principal disadvantage of 
seismic methods is their cost: seismic data are usually expensive to 
acquire and process compared to some other geophysical methods, 
which may exceed budgets available for monitoring of CO2 storage 
sites. This is particularly true when realistic estimates of uncertainties 
in the results are needed, in order to ensure that environmental and 
financial risks associated with operation or leakage of CO2 from sub-
surface stores, can be mitigated. The computational cost of estimating 
realistic uncertainties is usually high, which may exceed budgets of 
available computational power (Gebraad et al., 2020; Levy et al., 2022; 
Siahkoohi et al., 2023; Zhang et al., 2023; Lomas et al., 2023; Zhao and 
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Curtis, 2024b). In this paper we therefore introduce and test a method 
to estimate useful uncertainty estimates using resource-constrained 
seismic acquisition and processing methods, to be more consistent with 
budgets that may be available for future CO2 storage monitoring.

Full waveform inversion (FWI) is a seismic imaging method that 
constructs high resolution seismic velocity models of the Earth’s sub-
surface from seismic waveform data (Tarantola, 1984; Fichtner et al., 
2009; Virieux and Operto, 2009). The method has been used for so-
called time-lapse monitoring of subsurface CO2 storage (Li et al., 2021; 
Sinha et al., 2024; Nakata et al., 2024), wherein seismic surveys are 
conducted periodically to collect data that reflect changes in the sub-
surface. Images of changes in seismic velocity are estimated using FWI 
of the data from multiple surveys.

A variety of time-lapse FWI methods have been proposed. The most 
straightforward approach is the parallel difference strategy, in which 
two (baseline and monitoring) datasets are inverted independently. 
Time-lapse changes are then determined by subtracting the inverted 
monitoring model from the inverted baseline model (Plessix et al., 
2010). However, the convergence of FWI and final model for each 
dataset are affected by survey repeatability, data quality and compu-
tational parameters, which may vary between surveys. Consequently, 
this method often results in strong inversion artefacts (Asnaashari 
et al., 2015). The second strategy, known as the sequential difference 
method, uses the inverted baseline model both as the initial model 
and as additional prior information in the inversion of the monitor-
ing data (Asnaashari et al., 2012). The assumption is that time-lapse 
changes in the subsurface are expected to be localised and to have 
small amplitude, making the baseline inversion solution an ideal start-
ing point and prior constraint for the monitoring inversion. A third 
alternative is the double difference method, where only the differ-
ences between the two datasets are inverted to derive a differential 
subsurface model (Watanabe et al., 2004; Zheng et al., 2011; Zhang 
and Huang, 2013; Sinha et al., 2024). The main advantage of this 
strategy is that any data that are unexplained by the baseline inversion 
results may be disregarded in the monitoring inversion (see below), 
significantly reducing time-lapse imaging artefacts (Asnaashari et al., 
2015; Yang et al., 2016). A fourth technique is the joint inversion 
of both baseline and monitoring datasets to obtain velocity models 
at two epochs simultaneously within a single inversion process. This 
approach helps to mitigate imaging artefacts caused by illumination dif-
ferences and convergence issues, but can be extremely computationally 
expensive (Maharramov and Biondi, 2014; Maharramov et al., 2016).

Recently, Sinha et al. (2024) proposed to use a combination of 
time-lapse FWI and passive seismic imaging methods (e.g., dispersion 
inversion using seismic ambient noise data) to reduce monitoring cost 
in CCS projects. In this approach, passive methods are used to moni-
tor subsurface changes routinely, serving as an early warning trigger 
system. If unexpected changes are detected, more detailed monitoring 
will be deployed using time-lapse FWI associated with active seismic 
surveys. However, it has been shown that ambient noise is likely to be 
insufficient to monitor some CO2 storage reservoirs (Stork et al., 2018). 
In addition, two main issues still exist with the detailed monitoring 
methods of Sinha et al. (2024) as well as all of the aforementioned 
studies. First, the cost of conducting active seismic surveys are still 
high since dense acquisition geometries are normally used. Second, 
time-lapse inversion is executed within an optimisation framework in 
which a single optimal set of model parameters (subsurface properties) 
is estimated by minimising a misfit function defined between synthetic 
and observed waveform data. Given that seismic inverse problems 
are inherently under-determined, large uncertainties often exist in the 
solutions, implying that an infinite number of different models fit the 
observed data to within measurement uncertainties (Mosegaard and 
Sambridge, 2002; Tarantola, 2005; Gebraad et al., 2020; Zhang and 
Curtis, 2020; Khoshkholgh et al., 2022). The reliability and hence 
value of any single model estimate therefore always remains unclear. 
Our work is motivated by the need to address these two problems. 
2 
Specifically, in order to make fully risk-based decisions concerning 
containment of future CCS sites based on seismic data, it will be 
necessary to estimate uncertainty in the full, nonlinear FWI problem 
of imaging subsurface CO2 migration, and to both acquire and process 
the seismic data at significantly reduced cost compared to existing 
methods.

Bayesian inference is commonly employed to account for uncer-
tainties in an inverse problem, by estimating the so-called posterior
probability density function (pdf), which describes all plausible model 
parameter values that are consistent with the observed data. Monte 
Carlo sampling methods have been used extensively in probabilistic 
geophysical inverse problems, in which an ensemble of samples (model 
realisations) is drawn from the posterior pdf to represent the solu-
tion’s uncertainty (Mosegaard and Tarantola, 1995; Sambridge et al., 
2006; Bodin and Sambridge, 2009; Sen and Stoffa, 2013; Fichtner and 
Simutė, 2018; Khoshkholgh et al., 2021; Zunino et al., 2023). How-
ever, these sampling-based methods often suffer from high costs due 
to computational inefficiencies in high dimensional inverse problems, 
primarily due to the curse of dimensionality (Curtis and Lomax, 2001), 
and to difficulties in detecting statistical convergence of Monte Carlo 
algorithms (Gelman and Rubin, 1992).

Variational inference offers an alternative approach which uses 
optimisation methods to solve Bayesian inverse problems (Blei et al., 
2017; Zhang et al., 2018). For certain geophysical inverse problems, 
variational methods have shown greater efficiency and scalability to 
higher dimensional problems (larger models), and they also allow 
convergence to be detected more easily than for Monte Carlo sampling 
methods (Nawaz and Curtis, 2018, 2019; Zhang and Curtis, 2020; Zhao 
et al., 2021; Siahkoohi et al., 2021, 2023; Levy et al., 2022; Zidan et al., 
2022; Smith et al., 2022; Zhang et al., 2023; Sun et al., 2023; Lomas 
et al., 2023; Izzatullah et al., 2024; Sun et al., 2024).

Recent studies in time-lapse FWI have begun to emphasise uncer-
tainty quantification. Kotsi et al. (2020a,b) conducted full waveform 
time-lapse imaging and uncertainty estimation using a local forward 
solver to reduce the computational cost associated with the forward 
simulations. Fu and Innanen (2022) used a Markov chain Monte Carlo 
(McMC) method combined with a target-oriented inversion scheme, 
which reduced the dimensionality of the inverse problem by updat-
ing only a selected subset of model parameters during the inversion 
process. Zhang and Curtis (2024) implemented variational inference in 
Bayesian time-lapse FWI, comparing probabilistic versions of sequen-
tial difference and joint inversion strategies against a deterministic 
double difference method. Their results indicate that joint inversion 
provides the most precise estimates of velocity changes and their un-
certainties. de Lima et al. (2024) investigated the sequential approach 
in a Bayesian framework using the Hamiltonian Monte Carlo (HMC) 
method, integrating probabilistic baseline inversion results as prior 
knowledge to enhance the monitoring estimates.

In this work, we develop and test a novel method for time-lapse 
FWI and uncertainty quantification aimed at monitoring subsurface 
CO2 storage and detecting potential migration following injection, in 
a computationally tractable manner. We first deploy a fully nonlinear, 
probabilistic and computationally efficient variational Bayesian inver-
sion method, specifically the physically structured variational inference 
method (PSVI – Zhao and Curtis, 2024c), to invert baseline waveform 
data for the subsurface seismic velocity structure. Strong prior infor-
mation derived from those inversion results is then injected into the 
monitoring inversion as follows.

Given the localised nature of time-lapse changes within some vicin-
ity of the injection point, the considerably smaller amplitude of these 
changes (typically one or two orders of magnitude lower than the mag-
nitude of parameter values), and the fact that repeat surveys are often 
acquired such that they approximately span a subset of the acquisition 
geometry used in the baseline survey, it is expected that parameter 
values that provide good fits to the baseline survey should be close (in 
parameter space) to values that provide good fits to the monitor survey 
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data. This suggests that point-estimates of properties such as the pdf 
maxima for the monitor survey, should be different to those from the 
baseline but comparable. Therefore, to conduct the monitoring survey 
inversion, we generate a set of posterior samples from the baseline 
inversion results. Each sample is adjusted by the baseline data to obtain 
a local estimate of the maximum a posteriori (MAP) solution. The set 
of MAP solutions spans a manifold within parameter space, and the 
resulting set of models characterises uncertainty in the Bayesian MAP 
manifold for the baseline survey. This is illustrated schematically in Fig. 
1a. We show that this uncertainty is significant, which implies that the 
standard method of using a single model as a reference for subsequent 
monitoring inversions is likely to lead to substantially biased results.

The set of baseline MAP samples is then used as strong prior infor-
mation for the monitoring survey. This information is ‘strong’ in the 
sense that the MAP manifold is more focused on better-fitting baseline 
models than is the full baseline Bayesian posterior distribution (e.g., as 
used by de Lima et al. (2024)). Since velocity changes due to CO2
injection are generally expected to be small (Kim et al., 2013), in the 
monitoring inversion we use each of the manifold samples as an initial 
model for a linearised (deterministic) optimisation which finds local 
models that fit data from the monitoring survey. Each of the models 
found in this way is a MAP sample of the Bayesian posterior distribution 
in the monitoring survey. Measures of uncertainty in the MAP time-
lapse changes can therefore be estimated, by comparing each of the 
MAP baseline samples to their corresponding MAP monitoring samples. 
An illustrative example is provided in Fig.  1b.

Our method therefore estimates uncertainties in time-lapse changes, 
which are not equivalent to Bayesian uncertainties found in Zhang and 
Curtis (2024) and de Lima et al. (2024), since we estimate uncertainties 
in the time-lapse changes of the MAP manifold of models that provide 
a good fit to the data, rather than in the full Bayesian posterior pdf. 
We justify this approximation herein, first by showing that the compu-
tational cost reduction offered by this method is significant, and that 
the results are accurate and useful even when using sparse and cost-
effective acquisition geometries. Second, introduction of the method is 
timely since the calculation of a full Bayesian solution of the baseline 
survey, and hence the ability to find representative samples of the full 
baseline MAP manifold (which differentiates this method from previous 
uses of MAP solutions), have only recently become computationally 
feasible, using methods discussed above. And finally, we show below 
that through careful reasoning, this method allows information about 
subsurface CO2 distributions to be estimated even when monitoring 
using sparse data acquisition relative to the baseline survey.

Posterior uncertainties are implicitly conditioned on survey acqui-
sition geometries since different geometries lead to observed datasets 
that contain different information about parameters of interest (Maurer 
et al., 2010; Strutz and Curtis, 2024). So after verifying that this method 
of uncertainty assessment is effective, we apply it to address the follow-
ing question: can ultra-sparse acquisition geometries, and the efficient 
computational method above, be used to detect time-lapse changes 
sufficiently accurately to quantify practically useful uncertainties? This 
is of particular relevance to CCS monitoring, given that remuneration 
or financial reward expected for monitoring of CO2 is expected to be 
limited. To answer this question, we apply the method to different 
acquisition geometries, varying the number of sources and receivers in 
the monitoring survey. We show that indeed, a very sparse acquisition 
geometry (even using only a single seismic source) together with the 
new processing method, may produce reliable, informative and useful 
results.

The rest of this paper is organised as follows. We first introduce 
the proposed time-lapse FWI methodology, followed by a numerical 
example demonstrating its effectiveness. We then apply the proposed 
method to time-lapse monitoring with sparse acquisition geometries. 
Finally, we present a brief discussion and draw conclusions.
3 
2. Methodology

2.1. Variational Bayesian inversion of baseline data

The inversion of baseline data is performed under a probabilistic 
framework by calculating the posterior probability density function 
(pdf) using Bayes’ rule 

𝑝(𝐦1|𝐝1) =
𝑝(𝐝1|𝐦1)𝑝(𝐦1)

𝑝(𝐝1)
(1)

where 𝑝(⋅) stands for a probability distribution. Term 𝑝(𝐦1) represents 
the prior information about the unknown baseline model parameter 
vector 𝐦1, and 𝑝(𝐝1|𝐦1) is called the likelihood, defined to be the 
probability of observing the baseline data 𝐝1 given any value of 𝐦1. 
Throughout this paper we use subscripts 1 and 2 to denote variables 
associated with the baseline and monitoring inversions, respectively. 
Term 𝑝(𝐝1) is a normalisation constant (it is independent of 𝐦1 and 
thus does not vary with the Earth model) called the evidence. Typically, 
a Gaussian distribution is used to represent data uncertainties in the 
likelihood function 
𝑝(𝐝1|𝐦1) ∝ exp

[

−1
2
(𝐝1 − 𝐝(𝐦1))𝑇𝛴−1

𝐝1
(𝐝1 − 𝐝(𝐦1))

]

(2)

where 𝛴−1
𝐝1

 is the covariance matrix of the data uncertainties, and 𝐝(𝐦1)
is the synthetic data predicted by a model vector 𝐦1. In practice, 𝛴−1

𝐝1
is often assumed to be a diagonal matrix since there is currently no 
known way to determine reliable off-diagonal waveform covariances 
from standard seismic data sets. The resulting posterior distribution 
𝑝(𝐦1|𝐝1) describes the probability of any possible model 𝐦1, calculated 
from its consistency with the combination of baseline data and prior 
information.

Estimating or characterising the probability distribution on the left 
of Eq.  (1) is called Bayesian inference, or Bayesian inversion (since the 
conditional relationships in distributions on the left and right sides of 
the equation are inverted). In variational Bayesian inference, a family of 
probability distributions (known as the variational family) is defined, 
from which we select an optimal member that best approximates the 
unknown posterior pdf. This can be accomplished by minimising the 
Kullback–Leibler (KL) divergence (a measure of difference) between 
the variational and posterior distributions (Kullback and Leibler, 1951): 
this is an optimisation problem which provides a fully probabilistic 
result — an approximate posterior probability distribution.

We employ physically structured variational inference (PSVI – Zhao 
and Curtis, 2024c) for the baseline inversion. PSVI has previously 
been applied to Bayesian 2D FWI (Zhao and Curtis, 2024d) and 3D 
FWI (Zhao and Curtis, 2024b), demonstrating its efficiency and abil-
ity to deliver inversion results with reasonable uncertainty estimates. 
Our implementation uses a transformed Gaussian distribution with a 
specific covariance structure to approximate the true posterior pdf, 
characterised by a mean vector 𝝁 and a covariance matrix 𝜮. We 
emphasise that this is not the same as the Gaussian approximations that 
are often calculated using linearised inversion algorithms, since those 
produce only local approximations to the posterior density structure 
around a particular maximum a posteriori (MAP) solution. Instead, PSVI 
fits a transformed Gaussian to the full posterior probability density 
structure. The covariance matrix 𝜮 obtained from PSVI therefore also 
provides different information from the inverse Hessian matrix esti-
mated in linearised inversion. The former describes an approximation 
to the Bayesian posterior uncertainty of the solution, whereas the latter 
is simply a matrix of (second-order) derivatives evaluated at a single 
point in parameter space.

In our current implementation of PSVI, we include only specific (im-
portant) correlations in the posterior estimate of uncertainty in vector 
𝐦1. These consist of correlations between pairs of parameters that are 
spatially proximal, roughly within one dominant wavelength in FWI. 
This is to capture trade-offs in velocity estimates that occur locally, 
because far-field seismic wavefields only respond to wavelength-scale 
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Fig. 1. Schematic example of probabilities and samples of parameter values 𝑥 and 𝑦, used to illustrate the proposed time-lapse FWI method. (a) Posterior pdf from the baseline 
survey data, which has three main modes. Darker colour represents higher probability; the baseline MAP manifold is shown in black. Orange and green dots denote a set of 
baseline posterior samples 𝐦1 and MAP samples 𝐦∗

1 , respectively. Pink arrows show the model updates found by solving Eq.  (3), i.e., 𝐦∗
1 −𝐦1. (b) Posterior pdf using data from 

an imagined monitoring survey performed using a fully repeated baseline survey design. The pdf is highly consistent with that in (a) because time-lapse changes are expected 
to be small relative to heterogeneity in the velocity structure itself. During the monitoring inversion, we would update baseline MAP samples 𝐦∗

1 (green dots from (a)) into the 
corresponding monitoring MAP samples 𝐦∗

2 (red dots) by minimising Eq.  (4). (c) Posterior monitoring pdf using data collected from a sparse survey. Sparse monitoring data are 
relatively uninformative compared to the baseline data. The posterior pdf is thus relatively unconstrained — and the MAP manifold is broader than those in (a) and (b). Red stars 
denote the updated monitoring MAP samples of this pdf. Yellow arrows in (b) and (c) represent estimated time-lapse changes 𝛿𝐦 = 𝐦∗

2 −𝐦∗
1 .
averages of properties at sub-wavelength scales (Capdeville et al., 
2003). All other inter-parameter correlations in 𝐦1 are ignored. This 
is accomplished by setting 𝜮 to be sparse, with tunable parameters in 
specific off-diagonal elements, and fixing all other elements to be zero. 
The mean 𝝁, and all non-zero parameters in 𝜮, are determined by op-
timisation: theoretical and implementational details of PSVI, together 
with results that verify its effectiveness, are provided in Zhao and Curtis 
(2024c).

In a Bayesian 3D FWI problem, Zhao and Curtis (2024b) estimated 
posterior distributions for a variety of different sets of prior infor-
mation, using the method of prior replacement (Walker and Curtis, 
2014; Zhao and Curtis, 2024d). This method is highly efficient but 
the results are approximate, so Zhao and Curtis (2024b) showed that 
they can be refined by invoking Bayes’ rule again but with a limited 
additional computational budget. The updated results provide more 
accurate posterior statistics. We introduce a similar refinement step to 
the baseline inversion results in the current paper to improve estimates 
of time-lapse changes. We draw a set of samples from the baseline pos-
terior pdf, and adjust each one locally, by maximising the logarithmic 
posterior probability value using a linearised inversion method with a 
low number of iterations: 
𝐦∗

1 = argmax
𝐦1

log 𝑝(𝐦1|𝐝1) = argmax
𝐦1

[log 𝑝(𝐝1|𝐦1) + log 𝑝(𝐦1)] (3)

The updated sample 𝐦∗
1 is a local estimate of the maximum a posteriori

(MAP) solution around the original sample 𝐦1 (we use superscript ∗ to 
denote MAP estimates), and is therefore a sample of the manifold of 
baseline MAP solutions. We illustrate this idea with a 2-dimensional 
schematic example presented in Fig.  1a, in which model vector 𝐦
contains two unknown parameters 𝑥 and 𝑦. The grey contour shows 
the baseline posterior pdf, with darker colour representing higher prob-
ability. Orange dots represent a set of posterior samples 𝐦1, which are 
updated by solving Eq.  (3), resulting in a set of baseline MAP samples 
𝐦∗

1, denoted by green dots. Pink arrows connecting each pair of orange 
and green dots quantify model updates in this step, i.e., 𝐦∗

1−𝐦1. As we 
will show below, this update step ensures that time-lapse estimates are 
calculated using two MAP model solutions obtained from baseline and 
monitoring inversions, respectively, which are directly comparable.

2.2. Deterministic update using monitoring data

In a subsurface CCS project, time-lapse variations are typically 
localised to some extent around and above the CO2 injection point 
which is known a priori, and are often expected to be small (usually 
one or two orders of magnitude smaller than the actual model pa-
rameter values (Kim et al., 2013)). This implies that the true baseline 
model should closely resemble the monitoring model (Asnaashari et al., 
2015). The baseline inversion results obtained in the previous section 
4 
should therefore provide both (1) reasonable initial or reference values 
of model parameters, and (2) additional prior information for the 
monitoring inversion.

Ideally, the inversion of the monitoring data would be performed in 
a fully probabilistic manner using Bayesian inversion methods, as de-
tailed in Zhang and Curtis (2024) and de Lima et al. (2024). They used 
the sequential difference strategy in a probabilistic manner (i.e., the 
posterior pdf from baseline inversion is used as an initial value for 
monitoring inversion), and obtained posterior pdf’s of both baseline and 
monitoring inversions. Posterior statistics of time-lapse changes, such as 
the mean and standard deviation models, are calculated from the two 
posterior pdf’s. However, using a method that inverts for the posterior 
pdf of baseline and monitoring models in separate steps creates a prob-
lem: it is then not straightforward to draw samples of, nor to derive a 
parametric probability distribution to describe, velocity changes. These 
are crucial for interpretation and decision-making (Arnold and Curtis, 
2018; Zhao et al., 2022; Zhang and Curtis, 2022), such as confirm-
ing or rejecting putative CO2 migration or leakage. Joint Bayesian 
inversion (Zhang and Curtis, 2024) offers an alternative methodology 
to compute a joint probability distribution and samples of both the 
baseline and time-lapse models simultaneously. However, this approach 
potentially doubles the parameter and data space dimensionalities, and 
thus exacerbates the effects of the curse of dimensionality. In addition, 
considering the strong prior information derived both from the baseline 
inversion and from the small amplitude and localised nature of time-
lapse changes in a CCS project, one might question whether a fully 
nonlinear Bayesian inversion of the monitoring data is necessary to 
quantify uncertainties in time-lapse variations.

We now introduce a novel method for conducting the monitoring 
inversion and evaluating uncertainties in the results. In the previous 
section, we obtained a set of MAP models 𝐦∗

1 from posterior samples 
of the baseline inversion results 𝑝(𝐦1|𝐝1) using Eq.  (3). We assume 
that these samples are sufficient to characterise the most significant 
components of posterior uncertainty in MAP models of the baseline 
inversion. Considering that time-lapse changes expected during a CCS 
project are typically small, we update each baseline MAP model sample 
𝐦∗

1 within the parameter space to become consistent with the mon-
itoring data using linearised inversions. An issue occurs if a sparse 
monitoring survey is used, so the resulting monitoring data would be 
relatively uninformative compared to the baseline data. The posterior 
pdf from the posterior data alone will then be relatively unconstrained, 
as illustrated in Fig.  1c; clearly, estimating time-lapse changes by sim-
ply comparing the posterior distributions of baseline and monitoring 
surveys in panels (a) and (c) would result in extremely high uncertain-
ties (Zhang and Curtis, 2024; de Lima et al., 2024). However, assuming 
that changes to parameter values describing the Earth model between 
the two epochs are small, the baseline MAP samples must be close to 
the MAP samples of the posterior pdf that would have been obtained in 
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the imaginary situation wherein the full baseline survey geometry had 
been repeated, represented in Fig.  1b. While the posterior pdf provided 
by data from a more economical, reduced-density survey design will 
be less constrained and hence may contain a much more extensive 
MAP manifold, it must therefore at least contain MAP values that are 
approximately consistent with the MAP values of that imagined survey, 
since both surveys interrogate the same true Earth structure. We use 
this reasoning to assume that if we update each baseline MAP sample 
(green dot in Fig.  1c) into the corresponding closest MAP sample of 
the monitoring survey (red dot), these will be approximately equal to 
the posterior MAP samples that we would have obtained given data 
from the imagined full survey (Fig.  1b). Thus, we use the baseline 
MAP samples, and the assumption that changes are small relative to 
background velocity heterogeneity, as strong prior information about 
the location of the MAP solutions of the imaginary survey’s posterior 
distribution; this significantly reduces uncertainty in the time-lapse 
solution from that which would have been estimated from a sparse 
monitor survey by directly using the posterior distribution depicted 
schematically in Fig.  1c. Yellow arrows connecting those green and red 
dots illustrate model updates during this monitoring inversion, and are 
therefore interpreted as samples of possible time-lapse changes.

This update can be achieved using a deterministic (iterative lin-
earised) inversion scheme. In this approach, each MAP sample 𝐦∗

1 is 
used as a starting point for the monitoring inversion. The goal is to 
find a locally optimal MAP model 𝐦∗

2, which minimises the following 
regularised misfit function iteratively,

𝜒(𝐦∗
2) =

1
2

[

(𝐝2 − 𝐝(𝐦∗
2))

𝑇𝛴−1
𝐝2

(𝐝2 − 𝐝(𝐦∗
2))

]

+ 1
2

[

(𝐦∗
2 −𝐦∗

1)
𝑇𝛴−1

𝐦∗
2
(𝐦∗

2 −𝐦∗
1)
]

(4)

where 𝐝2 and 𝐝(𝐦∗
2) are the observed monitoring data and the syn-

thetic data predicted by model parameter 𝐦∗
2, respectively. 𝛴−1

𝐝2
 is 

the estimated covariance matrix of the monitoring data uncertainties 
(again usually assumed to be diagonal), and 𝛴−1

𝐦∗
2
 is a covariance matrix 

that encapsulates a priori uncertainty information about the difference 
between any pair of MAP model samples 𝐦∗

2 and 𝐦∗
1. Assuming that 

𝛴−1
𝐦∗
2
 is a diagonal matrix, each diagonal element stands for the prior 

variance of the corresponding model parameter difference between 
baseline and monitoring surveys. The first term on the right hand side 
of Eq.  (4) calculates a data misfit value (weighted by 𝛴−1

𝐝2
) which 

is equivalent to the logarithm of the likelihood function in Eq.  (2), 
and is interpreted as a function of 𝐦∗

2. The second term integrates 
prior information derived from the baseline MAP model sample 𝐦∗

1, 
and can be interpreted as the logarithm of a Gaussian prior centred 
around 𝐦∗

1 with a covariance matrix 𝛴−1
𝐦∗
2
. Therefore, minimising Eq. 

(4) essentially updates the previously obtained MAP model 𝐦∗
1 which 

fits the baseline data, to create a new MAP model 𝐦∗
2 which fits 

the monitoring data (yellow arrows in Fig.  1b). This explains why 
we perform the refinement step for the baseline model sample 𝐦1
in Eq.  (3): by doing so we obtain paired MAP samples of baseline 
and monitoring inversions, such that the resulting time-lapse estimates 
are consistent and can be compared directly. Since we perform this 
inversion many times from different starting points (many different 
baseline samples 𝐦∗

1), the spread of final models represents an estimate 
of uncertainty in the MAP model 𝐦∗

2 (multiple yellow arrows in Fig. 
1b).

Given precise knowledge about the injection location and injection 
rate over time in a CCS project, and the assumption that time-lapse 
variations are localised around the injection point, we use a target-
oriented strategy for the monitoring inversion (minimising Eq.  (4)). 
In this approach we update only a predetermined target area around 
the injection location (Asnaashari et al., 2015; Fu and Innanen, 2022), 
the extent of which can potentially be chosen using fluid flow simula-
tion (Kolditz et al., 2012; Guo et al., 2016) or by integrating external 
information from different imaging and inversion results (Raknes and 
5 
Arntsen, 2014). Conceptually, this target-oriented strategy is equivalent 
to setting the diagonal elements of 𝛴−1

𝐦∗
2
 that represent parameters 

outside of the target region to zero, effectively assuming that there is 
no prior uncertainty for those parameters. However, this is not actually 
implemented because then 𝛴−1

𝐦∗
2
 would no longer be positive semi-

definite. Instead, we simply update parameters within the designated 
target area. Within this defined target area, we set the prior parameter 
variance to be relatively large around the injection location to allow 
for significant model updates, and the variance values decay for spatial 
locations further from the injection point to suppress potential imaging 
noise.

We use the double difference method for the monitoring inver-
sion (Watanabe et al., 2004; Zheng et al., 2011; Zhang and Huang, 
2013; Sinha et al., 2024). Instead of minimising the misfit between the 
observed and simulated data, this method minimises the misfit 𝛥𝐝 of the 
difference between the two datasets 𝐝2 and 𝐝1, yielding the following 
expression: 
𝛥𝐝 = (𝐝2 − 𝐝1) − (𝐝(𝐦∗

2) − 𝐝(𝐦∗
1))

= 𝐝𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 − 𝐝(𝐦∗
2)

(5)

where 𝐝𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 𝐝2 − 𝐝1 + 𝐝(𝐦∗
1) is called the composite data, and 

can be viewed as a new dataset adjusted by the residual data of the 
baseline MAP model 𝐦∗

1. This adjustment ensures that data which are 
unexplained in the baseline survey (those not fit by baseline model 𝐦∗

1: 
𝐝1−𝐝(𝐦∗

1)) are disregarded in inversions of monitoring survey data. To 
implement the double difference method, we replace 𝐝2 in Eq.  (4) by 
𝐝𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒, which allows the double difference residual in Eq.  (5) to be 
minimised using the same regularised FWI scheme introduced above 
(Eq.  (4)).

The proposed time-lapse FWI algorithm can therefore be imple-
mented as follows:

1. Perform fully nonlinear Bayesian inversion of the baseline sur-
vey data and estimate the posterior pdf 𝑝(𝐦1|𝐝1). In this work, 
we apply PSVI to accomplish this step.

2. Generate 𝑛 random samples from 𝑝(𝐦1|𝐝1), each of which is 
refined using Eq.  (3) to obtain the corresponding MAP sample 
𝐦∗

1.
3. For each 𝐦∗

1, perform regularised double difference FWI to 
obtain the updated MAP model 𝐦∗

2. This is accomplished by 
minimising Eq.  (4) and replacing 𝐝2 by 𝐝𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒.

4. Retrieve samples of time-lapse changes by 𝛿𝐦 = 𝐦∗
2 − 𝐦∗

1 and 
estimate their uncertainties by considering 𝛿𝐦 obtained from 
all pairs of 𝐦∗

1 and its update 𝐦∗
2.

Note first, that it is important that the samples from step 1 are dis-
tributed approximately according to the baseline posterior distribution 
so that the solutions in step 2 span the MAP manifold; and second, that 
the linearised inversions of each of the 𝑛 model samples in steps (ii) 
and (iii) are independent, and can therefore be fully parallelised.

3. Examples

3.1. Problem setup

In this section, we present a synthetic experiment which we use 
to validate the proposed method for time-lapse monitoring and uncer-
tainty assessment. As depicted in Fig.  2a, the target baseline velocity 
structure is a part of the Marmousi model (Martin et al., 2006), con-
sisting of 110 × 250 grid cells in the vertical and horizontal directions, 
respectively, with a cell size of 20 m in each direction. A blue plus 
indicates the CO2 injection location. For the baseline survey, we place 
12 active sources (red stars in Fig.  2a) on the surface with a spacing 
of 400 m, and 250 receivers (along the white line in Fig.  2a) on the 
horizontal seabed (200 m depth) with a spacing of 20 m.
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Fig. 2. (a) True baseline P-wave velocity model. Red stars and a white line denote 
source and receiver locations in the baseline survey, respectively. (b) P-wave velocity 
model at the monitoring stage. Values of velocity change in this panel are amplified 
by a factor of 20 to highlight the three areas with velocity variations. (c) True P-
wave velocity changes due to the imagined injection and migration of CO2. In each 
figure, a red box highlights the region in which the velocity model is updated in the 
monitoring inversion, and a blue plus denotes the imagined injection location of CO2. 
Three numbers in (b) and (c) mark three areas of time-lapse changes considered in this 
example.

Fig.  2b illustrates the true velocity structure at the monitoring stage 
following imagined CO2 injection and migration, and Fig.  2c displays 
the actual time-lapse changes resulting from the injection and potential 
migration of CO2. These changes are identified in three localised areas 
marked with annotations 1, 2 and 3 on Figs.  2b and 2c. Area 1 
corresponds to a region directly above the injection point, where the 
rising and laterally migrating CO2 is imagined to have decreased the P-
wave velocities. For clarity and to differentiate the time-lapse change 
from geological features presented in the baseline model and imaging 
artefacts that we show below, this area is deliberately shaped into a 
non-geological triangular form (this approach was shown to be effective 
in Zhang and Curtis (2024)). The other two areas (annotations 2 and 
3) are imagined to have been caused by the migration of CO2: in area 
2 CO2 is migrating along a fault, while area 3 shows CO2 that migrated 
upwards into a low velocity zone representing a secondary reservoir. 
In this example, we assume no significant non-CO2-related subsurface 
changes between the two surveys. A red box in each figure indicates 
a target region (the volume in which the velocity model is updated 
during the monitoring inversion) which encompasses all three areas. 
Note that the amplitude of the time-lapse changes is amplified by a 
factor of 20 in Fig.  2b to make them visible; their true magnitudes 
are approximately −80 m/s as shown in Fig.  2c. Areas 2 and 3 are 
above the depths where the phase transition to super-critical fluid is 
likely to occur for CO2 (typically around 800 m depth), so the CO2 in 
these areas would in reality be in gas phase producing larger velocity 
anomalies. We nevertheless assume the same order of magnitude of 
velocity anomalies in all three areas to represent a situation in which 
CO2 is only partially and diffusely saturated in areas 2 and 3, to increase 
the difficulty of this test problem.

In this work, both observed and synthetic waveform data are gen-
erated by solving a 2D acoustic wave equation using a time-domain 
6 
pseudo-spectral method (Wang et al., 2019; Zhao et al., 2020) with 
a Ricker wavelet of 10 Hz dominant frequency. In addition, we add 
1 percent uncorrelated Gaussian noise to the observed baseline and 
monitoring data. For both variational and least-squares inversions, 
the gradient of the data misfit with respect to the velocity model is 
calculated using the adjoint state method (Plessix, 2006; Fichtner et al., 
2006).

3.2. Test of inversion method

We first test the effectiveness of the proposed time-lapse monitoring 
method in a relatively simple scenario in which the acquisition geome-
try used in the monitoring survey is exactly the same as that used in the 
baseline survey, as displayed in Fig.  2a. We first apply PSVI to invert 
the baseline survey data. Since it is often the case that we have limited 
prior knowledge about a target region before the baseline inversion, we 
adopt a non-informative uniform distribution over an interval of width 
2500 m/s as the prior information for the baseline inversion (Fig.  3a). 
The likelihood function is characterised by a Gaussian with a diagonal 
covariance matrix (Eq.  (2)), with a data noise level of 1%.

After inversion, we generate 500 samples from the posterior pdf. 
Fig.  4a shows statistics of these posterior samples. Each sample is then 
refined using Eq.  (3) to find the maximum a posteriori (MAP) model 
solution. This adjustment is accomplished using the LBFGS optimisation 
method (Liu and Nocedal, 1989), with a maximum of 10 iterations. An 
early stop criterion, in which relative reduction of misfit function values 
between two adjacent iterations is smaller than 0.001, is applied in this 
step. The refinement of the 500 samples are parallelised using 1 Intel 
Xeon Platinum CPU with 48 cores. Differences between the two samples 
before and after the refinement step are also calculated. Figs.  4b and 
4c display statistics of the 500 adjusted samples, and the corresponding 
samples of model differences, respectively. From top to bottom row, 
one random sample, the mean, and standard deviation maps of the 
three sets of samples are displayed. High consistency is observed be-
tween Figs.  4a and 4b, and model differences due to the refinement step 
in Fig.  4c are orders of magnitude smaller than the parameter values 
in Figs.  4a and 4b. This illustrates that the refinement step described 
in Eq.  (3) does not change the mean or standard deviation statistics of 
the baseline inversion results significantly compared to the magnitude 
of the parameter values themselves, but that the change is of the same 
order of magnitude as the time-lapse velocity variations. The refined 
samples are used to perform the monitoring inversion.

For better comparison between the baseline and monitoring in-
version results, we also display the baseline inversion results after 
refinement in Fig.  5a (i.e., Figs.  4b and 5a are the same). Since we use 
a uniform prior distribution (Fig.  3a) without injecting any additional 
correlation information into the inversion, all posterior samples are 
spatially rough with large velocity variations between neighbouring 
cells. The mean model offers a relatively accurate estimate of the 
true baseline model given that the observed data have a dominant 
frequency of only 10 Hz. The standard deviation map shows similar 
geometrical structures to the mean model. The uncertainties increase 
with depth since the sensitivity of seismic data decreases with depth. 
Similar patterns have also been observed in previous studies (Gebraad 
et al., 2020; Biswas and Sen, 2022).

We then perform the monitoring inversion using the method pro-
posed above, in which each of the 500 baseline MAP model samples 
(after refinement) is updated deterministically to fit the monitoring 
data by minimising Eq.  (4). The LBFGS method with a maximum of 
30 iterations is again used to solve the optimisation problem (Liu 
and Nocedal, 1989). The same early stop criterion and computational 
resources are used as those used in the refinement step. During the 
monitoring inversion, we only update velocity values within the red box 
in Figs.  2 and 5 using the target-oriented scheme. We implement the 
double difference method and calculate the composite data set using 
Eq.  (5). For the monitoring inversion, we define the likelihood using 
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Fig. 3. (a) Uniform prior distribution for the baseline inversion. Its upper and lower bounds vary with depth. (b) Prior standard deviation map of 𝛿𝐦 used to define 𝛴−1
𝐦∗

2
 in Eq. 

(4).
Fig. 4. Statistics of (a) posterior baseline inversion results, (b) baseline maximum a posteriori models after the refinement step in Eq.  (3), and (c) pairwise differences between 
individual samples used to construct panels a and b. In each column, one random sample, the mean, and standard deviation maps are displayed from top to bottom. Note that 
panel b and Fig.  5a display the same results.
the same diagonal covariance matrix for data uncertainties as used 
in the baseline inversion. The prior model covariance matrix 𝛴−1

𝐦∗
2
 is 

also defined as a diagonal matrix. We assign the largest diagonal value 
(1002 m2/s2) to the model parameter at the CO2 injection location (blue 
pluses in Fig.  2). This value decays as the spatial locations diverge from 
the injection point. We include the additional prior information that 
CO2, being less dense than brine, is likely to migrate upwards from 
the injection point over short time-scales (before significant dissolution 
occurs) after being injected into the subsurface (Ghosh and Ojha, 2020). 
This understanding suggests that time-lapse changes induced by the 
injection and migration of CO2 are more probable above the injection 
area than below, so we reduce the corresponding diagonal elements 
in 𝛴−1

𝐦∗
2
 by a factor of 0.5 for model parameters located beneath the 

injection point. Fig.  3b displays the prior standard deviation map of 
velocity change used to define the diagonal elements of 𝛴−1

𝐦∗
2
 in Eq.  (4).

Fig.  5b shows the results from the monitoring inversion. The first 
row displays the updated velocity model sample, starting from the 
baseline model sample displayed in the top row in Fig.  5a. The second 
and third rows represent the mean and standard deviation maps of 
the 500 updated MAP model samples obtained through deterministic 
(linearised) inversion. No significant differences are observed between 
Figs.  5a and 5b, since time-lapse changes are in this case 1 order of 
magnitude smaller than the actual velocity values of the target area.

We then calculate the MAP samples of time-lapse changes through 
𝛿𝐦 = 𝐦∗

2 − 𝐦∗
1 for each pair of baseline and monitoring samples. 

Fig.  5c illustrates the corresponding results – the top row shows the 
difference between the two samples in the first row in Figs.  5a and 5b. 
The subsequent two rows show the mean and standard deviation maps 
of the MAP samples of time-lapse changes. Both the posterior sample 
and the mean map provide reasonably accurate estimates of the true 
velocity changes displayed in Fig.  2c. Some imaging artefacts which 
7 
reflect the geological features of the true velocity model are visible, 
but are much smaller than the actual time-lapse changes. Such artefacts 
are common in time-lapse FWI studies and have been noted in other 
research (Asnaashari et al., 2015; de Lima et al., 2024; Zhang and 
Curtis, 2024).

In the bottom row in Fig.  5c, the overall standard deviation values 
below the injection location are smaller than those above it (thus we 
observe obvious change in standard deviation values around the injec-
tion depth), due to the prior information injected during the monitoring 
inversion: that injected CO2 is likely to migrate upwards. Higher uncer-
tainties are present at locations where true velocity variations occur. 
In addition, since we impose strong prior information obtained from 
the baseline inversion and from the inherent characteristics of time-
lapse problems (that time-lapse changes are small and localised), the 
standard deviation values in the bottom row in Fig.  5c are smaller than 
the values of the time-lapse changes themselves top two rows ensuring 
that this form of uncertainty analysis is useful for decision-making. This 
differs from the uncertainty results obtained from Bayesian time-lapse 
FWI presented in Zhang and Curtis (2024) and de Lima et al. (2024), 
in which significantly higher uncertainties are reported, because first 
they imposed weaker prior information than we impose here, and 
second they estimated Bayesian uncertainty on 𝛿𝐦 whereas we estimate 
nonlinear uncertainty on the MAP model of 𝛿𝐦.

To summarise, this example shows that the proposed method is 
able to detect time-lapse variations of the type and magnitude of those 
caused by CO2-related subsurface changes between baseline and mon-
itoring surveys, and to quantify useful uncertainty information on the 
MAP given perfectly repeated acquisition geometries. If unexpected but 
significant subsurface changes occur, the estimated time-lapse changes 
might be biased.
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Fig. 5. Statistics of (a) baseline MAP solutions, (b) monitoring MAP solutions, and (c) time-lapse changes. Note that panel a and Fig.  4b display the same results. In each column, 
one random sample, the mean, and standard deviation maps are displayed from top to bottom. Red box in each figure indicates the target region in which the model is updated 
using monitoring data. In this test, both baseline and monitor surveys have exactly the same acquisition geometry as that displayed in Fig.  2a.
Fig. 6. True velocity change models with different acquisition geometries in the monitoring survey. In each figure, numbers of sources and receivers are indicated in the title, 
and their locations are denoted by red stars and blue triangles, respectively. A red box illustrates the area in which velocity values are updated during the monitoring inversion.
Finally, we discuss the computational cost of the proposed method. 
For variational baseline inversion, we update the variational distribu-
tion for 5000 iterations, and 2 samples per iteration are used to estimate 
the gradients of the variational parameters, requiring 10,000 forward 
model evaluations. In the refinement and monitoring inversion steps, 
we update 500 model samples drawn from the baseline posterior pdf 
with 10 and 30 iterations, respectively. In addition, early stopping is 
applied during these two steps. In total, the number of FWI simulations 
should therefore be no more than 30,000. The reported computational 
cost could be further reduced by using fewer baseline posterior sam-
ples that are carefully designed so as to be representative of the key 
components of the probability distribution (Zhao and Curtis, 2024a). 
While these processing costs may seem high, below we show that 
they are compensated by the fact that ultra-sparse seismic acquisition 
geometries can be deployed, while still achieving accurate results with 
this processing method.

3.3. Time-lapse monitoring using sparse acquisition geometries

We now perform a set of tests designed to address critical ques-
tions regarding seismic survey configurations, to address the specific 
8 
questions: can sparse acquisition geometries detect time-lapse changes 
accurately? If so, what constitutes the simplest effective geometry, or 
in other words, the minimum numbers of sources and receivers that 
are required? Given the high costs associated with conducting seismic 
surveys, these questions are of practical importance: there is a clear 
need to minimise the numbers of sources and receivers in monitoring 
surveys while still achieving reasonably reliable time-lapse change 
estimates.

We consider 6 different source-receiver acquisition geometries. 
Starting from the densest geometry that replicates the configuration 
used in the previous test – i.e., 12 sources and 250 receivers (denoted 
S12-R250), we gradually reduce the numbers of sources and receivers 
used in the monitoring survey, respectively containing 6 sources and 
50 receivers (S6-R50), 4 sources and 24 receivers (S4-R24), 3 sources 
and 12 receivers (S3-R12), 2 sources and 10 receivers (S2-R10), and 
1 source and 6 receivers (S1-R6). The acquisition geometries are 
displayed in Fig.  6. This diminishes the amount of information provided 
by the monitoring data and thus the accuracy of time-lapse imaging, 
making it more difficult to discriminate true velocity variations from 
imaging artefacts and potentially leading to incorrect interpretation of 
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Fig. 7. Mean of MAP time-lapse changes obtained using different acquisition geometries in the monitoring survey. Only regions inside of the red boxes in Fig.  6 are displayed. 
In each figure, numbers of sources and receivers are indicated in the title. Dashed black lines in (a) display the locations of four vertical profiles used to compare the marginal 
pdf’s of velocity changes in Fig.  10.
Fig. 8. Standard deviations of MAP time-lapse changes obtained using different acquisition geometries in the monitoring survey. In each figure, numbers of sources and receivers 
are indicated in the title.
CO2 migration or leakage in the subsurface. Note that for simplicity, 
these acquisition geometries are defined heuristically without applying 
more sophisticated optimal experimental design methods (Maurer and 
Boerner, 1998; Curtis, 1999a,b, 2004a,b; Maurer et al., 2010; Bloem 
et al., 2020; Strutz and Curtis, 2024) since to-date these methods have 
only been developed and tested for FWI problems in which waveform 
physics is assumed to be linear (Maurer et al., 2017; Krampe et al., 
2021; Mercier et al., 2025). We also hold the acquisition geometry of 
the baseline survey constant because a dense seismic survey is always 
likely to be performed initially, to identify the area targeted for CO2
injection. The objective is to be able to monitor subsurface changes 
continuously over time at reduced monitoring survey cost by using 
fewer sources and receivers.

For each test involving different acquisition geometries, we update 
the same 500 posterior baseline samples with refinement (Eq.  (3)) to 
perform the monitoring inversion. The same data covariance matrix 
and prior model used in the previous example are applied.

Fig.  7 illustrates the MAP mean of time-lapse changes obtained 
from different acquisition geometries in the monitoring survey. We only 
9 
display regions inside of the red boxes in Fig.  6 for clearer illustration. 
For each case, source and receiver numbers are indicated in the title of 
each figure, and their spatial locations are denoted by red stars and blue 
triangles in Fig.  6, respectively. Note that Fig.  7a (S12-R250) is exactly 
the same as that displayed in the second row in Fig.  5c. Although the 
shape of the true velocity changes is observed across all six mean maps, 
there is a noticeable decrease in the amplitude of the recovered time-
lapse variations from Fig.  7a to 7f. Additional subsurface structures are 
observed as we simplify the acquisition geometry. These are imaging 
artefacts, which show similar amplitude to the true velocity changes but 
do not represent real changes. These phenomena become particularly 
obvious in Fig.  7f in which only one source is deployed. In this case 
it is difficult to distinguish between true velocity changes and imaging 
artefacts. As also shown in Zhang and Curtis (2024), these artefacts 
follow geological strata, so they can certainly bias interpretations of 
dynamics in time-lapse results. This suggests that employing a sin-
gle source with sparse receivers may be insufficient for accurate and 
reliable monitoring of subsurface changes.

The corresponding standard deviation of the MAP models obtained 
using monitoring data from different acquisition geometries are shown 
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Fig. 9. Relative error maps of MAP time-lapse changes obtained using different acquisition geometries in the monitoring survey. The relative error is the absolute error between 
the mean and true velocity change models divided by the corresponding standard deviation at each point.
Fig. 10. Marginal pdf’s of MAP time-lapse changes along four vertical profiles, obtained using different acquisition geometries in the monitoring survey. The locations of these 
profiles (top to bottom rows) are denoted by black dashed lines (left to right, respectively) in Fig.  7a. In each figure, black and red lines show the mean and true velocity changes, 
and two horizontal white lines show vertical locations of the inversion area in the monitoring inversion.
in Fig.  8 (again Fig.  8a and the last row in Fig.  5c display the same 
model). Overall in these maps, relatively higher uncertainties are 
present in areas with actual time-lapse variations, since these are the 
main sources of uncertainty in this time-lapse problem. Moreover, the 
magnitude of the standard deviations tends to decrease from Fig.  8a 
to 8f; this occurs because fewer data are provided by the monitoring 
10 
survey to update velocity models obtained from the baseline survey 
inversion, so the magnitude of estimated changes (and their variation 
between different samples) are smaller. Note that Fig.  8 displays the 
uncertainties in the velocity change 𝛿𝐦 rather than in the velocity 
model 𝐦∗

2 produced during the monitoring inversion. In an extreme 
situation where no monitoring data is available, the baseline velocities 
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Fig. 11. Acquisition geometries for the monitoring survey using one source and six receivers, but with different source locations. Key as in Fig.  6.
Fig. 12. Mean, standard deviation, and relative error maps of MAP time-lapse changes obtained using one source and six receivers, but with the different source locations displayed 
in Fig.  11.
would remain unchanged during the monitoring inversion. Then, both 
the mean and standard deviation of time-lapse changes calculated using 
the proposed method would be zero. This highlights the difference be-
tween this method and direct Bayesian inversion of velocity change 𝛿𝐦
in which posterior statistics of 𝛿𝐦 would be equal to the corresponding 
prior statistics if no monitoring data is provided. This arises because 
the second term in Eq.  (4) regularises the inversion by encoding that 
𝐦∗

2 should be close to 𝐦∗
1 unless the monitoring data dictates otherwise. 

In other words, the current method provides a conservative estimate of 
velocity change 𝛿𝐦: in effect, we are testing whether the monitoring 
data contains evidence of |𝛿𝐦| > 0, given prior information about the 
range of 𝛿𝐦 that might be expected.

Fig.  9 shows the relative error maps, computed by dividing the 
absolute error between the true (Fig.  6) and mean (Fig.  7) time-lapse 
models by the standard deviation model (Fig.  8) at each point. Larger 
relative errors occur around the boundaries of true velocity variations 
due to the inability of low frequency waves to encode the location of an 
abrupt change in velocity, creating so-called uncertainty loops (Galetti 
et al., 2015). Such patterns prove that our method produces the ex-
pected characteristics of uncertainty results. Almost all relative errors 
are smaller than 3 which corroborates the accuracy of the results, 
except for those displayed in Fig.  9f.

To further analyse the results, in Fig.  10 we compare the marginal 
pdf’s of MAP velocity changes from the six sets of results along four 
vertical profiles, with locations displayed by dashed black lines in Fig. 
7a. From top to bottom, each row in Fig.  10 represents one profile 
from left to right in Fig.  7a. Red and black lines show the true and 
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mean of MAP velocity changes obtained using different acquisition 
geometries. The second profile is strategically placed to traverse two 
areas of velocity change which occur in close proximity, inherently 
challenging the ability of this method to distinguish between these 
nearby features. Similarly to those displayed in Fig.  7, 8 and 9, all 
velocity changes are observed clearly in these four profiles in Fig.  10. 
However, the results become less accurate with lower uncertainties 
(narrower marginal pdf’s) as the numbers of sources and receivers 
decrease. In Fig.  10f, it becomes difficult to discriminate between the 
true velocity changes and imaging artefacts, especially in the second 
and third rows.

We perform two additional tests to explore the impact of using 
just one source in the monitoring survey, albeit with different source 
locations than those used above. All settings remain the same as those 
used to obtain the results displayed in Figs.  7f, 8f and 9f, other than the 
variation in source location displayed in Fig.  11. Fig.  12 displays three 
sets of results (Fig.  12b represents the results displayed above) obtained 
using different source locations in the monitoring survey, in which 
only the target region within the red boxes in Fig.  11 is displayed. 
We observe that none of these configurations successfully captures 
the true velocity variations, again proving that a single source (and a 
sparse array of receivers) is likely to be inadequate for accurate time-
lapse monitoring. In addition, these tests underscore the importance of 
optimal experimental design (Maurer et al., 2010), particularly when 
employing sparse acquisition geometries in the monitoring survey: 
there is significant variation in results, which highlights the substantial 
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Fig. 13. Acquisition geometries for the monitoring survey using one source and 250 receivers, but with different source locations. Key as in Fig.  6: the 250 blue triangles are too 
close together to distinguish individually, mimicking the dense recordings on a fibre-optic cable.
Fig. 14. Mean, standard deviation, and relative error maps of MAP time-lapse changes obtained using one source and 250 receivers (to mimic fibre-based acquisition systems), 
but with the different source locations displayed in Fig.  13.
influence of source location on the accuracy of the subsurface velocity 
changes detected.

Below we additionally consider using 1 single source and 250 
receivers along the seabed. This mimics a case in which we have a 
fibre cable that is fixed on the seabed, since fibre-based acquisition 
systems are becoming a standard and cheap way to create spatially 
dense sensors for geophysical monitoring. Figs.  13a and 13b show 
two different acquisition geometries considered, and the corresponding 
time-lapse results are displayed in Fig.  14. From top to bottom panel, 
each figure displays the mean velocity, standard deviation, and relative 
error maps of the MAP velocity changes. In Fig.  14a, the left time-lapse 
area is not recovered accurately due to the particular source location 
12 
used in this test. In Fig.  14b, the source location is the same as that 
considered in Figs.  7f, 8f and 9f. Compared to the results displayed 
above, the dense receiver layout provides significantly better time-lapse 
results with more accurate amplitudes. Some imaging artefacts are still 
observed in Fig.  14, which are slightly weaker than the changes that 
we wish to discriminate. This demonstrates that reasonably accurate 
monitoring with a single source would work only if a very dense array 
of receivers is used. However, this requirement is difficult to accomplish 
in realistic 3D monitoring.

These cumulative findings therefore prove that sparse acquisition 
geometries can indeed be deployed in the monitoring survey, and it 
is feasible to obtain accurate time-lapse estimates along with their 



X. Zhao and A. Curtis International Journal of Greenhouse Gas Control 146 (2025) 104433 
corresponding uncertainties. However, in order to use a single source 
it seems likely to be necessary to use a dense grid of receivers.

4. Discussion

In this work, we proposed a time-lapse FWI method that leverages 
strong prior information derived from baseline inversion results to 
enhance monitoring survey inversions, and a fully nonlinear baseline 
inversion in order to provide many samples of possible initial velocity 
structures and maximum a posteriori (MAP) solutions. In our method, 
the calculated time-lapse estimates represent model differences be-
tween each pair of MAP solutions from baseline and monitoring in-
versions. These MAP-to-MAP comparisons are therefore meaningful, 
and the results enable uncertainties in the MAP models of time-lapse 
changes to be estimated. Note that we do not apply much regularisation 
to the baseline and monitoring inversions individually. The posterior 
distributions of each of those surveys individually would therefore 
describe a strongly under-determined result, with many hyper (high-
dimensional) ridges or plateaus of near-constant values in the posterior 
pdf. As a result, each adjusted sample is expected to converge to 
different points on the same ridge or plateau, on different ridges or 
plateaus, or more generally, on the posterior MAP manifold. That is to 
say, we adjust the baseline posterior samples to describe changes in the 
MAP manifold between baseline and monitoring surveys.

While weak prior information was used for the baseline inversion 
because limited prior knowledge about the target is usually available 
before conducting the baseline survey, after the baseline inversion is 
complete our understanding of the target region improves. We would 
know the exact location of injection points, and the amount of CO2
injected into the subsurface, allowing more precise identification of 
potential locations of subsurface changes. Such strong prior information 
enables us to better constrain the monitoring inversion, so we obtain 
relatively small uncertainties in time-lapse changes, even though uncer-
tainties associated with both the baseline and monitoring results remain 
significantly higher as illustrated in Fig.  5.

We noted above that in our approach, the second term in Eq.  (4) 
regularises the time-lapse changes towards zero. Our method there-
fore tests whether the monitoring data contains sufficient evidence to 
estimate |𝛿𝐦| > 0. An alternative approach would be to use each 
sample 𝐦∗

1 of the baseline MAP solution to generate a model 𝐦′
2 (or 

a distribution of such models) that encodes prior information about 
likely time-lapse velocity changes when starting from baseline model 
𝐦∗

1. In that case, the second term in Eq.  (4) could be replaced by a term 
that regularises towards this new distribution of 𝐦′

2; in the limit of the 
monitoring data containing no relevant information, our estimate of 𝛿𝐦
would then reflect the prior information on 𝛿𝐦. However, the latter 
approach would not provide a conservative test of the information 
content provided by sparse acquisition geometries, which was one of 
our goals.

MAP models from the baseline inversion are updated by fine-tuning 
them to the monitoring data, using a deterministic (linearised) inver-
sion, which is valid under the assumption that time-lapse changes are 
typically small, particularly in subsurface CCS projects (Egorov et al., 
2017). Therefore, in our method we assume that uncertainties in the 
MAP monitoring models 𝐦∗

2 are similar to those in the MAP baseline 
models 𝐦∗

1, and that a linearised inversion method (with a low number 
of iterations) for the monitoring inversion is sufficient to update our 
baseline MAP uncertainty estimates to monitoring MAP uncertainties. 
The updated samples are therefore treated as MAP samples of the 
monitoring inversion.

In contrast to our method, Fu and Innanen (2022) implemented a 
linearised deterministic FWI method for their baseline inversion, and 
that inversion result served as the starting point for multiple Markov 
chains that inverted the monitoring data in a probabilistic manner. 
Their choice of a deterministic baseline inversion was primarily to 
minimise computational demands of the McMC algorithm. However, 
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relying on a single initial model can make it prohibitively expensive to 
thoroughly explore the parameter space (to quantify uncertainties) dur-
ing the monitoring inversion using McMC methods. Although efficiency 
is improved in the baseline inversion, the complexity and computa-
tional cost of the monitoring inversion are in principle increased. This 
is particularly true when the monitoring data are collected using sparse 
acquisition geometries, so larger hyper-volumes of parameter space 
remain consistent with the measured monitoring data.

We implement the double difference method in the monitoring 
inversion, which requires high repeatability between the baseline and 
monitoring surveys. In instances where this is not fully satisfied, for 
example if the baseline and monitoring surveys have slightly different 
locations, some pre-preprocessing steps such as time-lapse binning, data 
interpolation and wavelet adjustment should be performed first (Fu 
et al., 2020). Even if obtaining both baseline and monitoring data 
from an identical acquisition geometry becomes unfeasible, Asnaashari 
et al. (2015) demonstrated that the sequential difference strategy with 
a target-oriented scheme can still provide similarly robust results to 
those obtained using the double difference strategy. Zhang and Curtis 
(2024) also showed that far greater robustness against larger changes 
in acquisition geometries is obtained by using nonlinear methods such 
as those used to process our baseline survey.

In the monitoring inversion, we use a target-oriented strategy to 
remove imaging artefacts outside of a predefined area. Nevertheless, 
forward and adjoint simulations are still performed in the same volume 
as in the baseline inversion. Several techniques can be implemented 
to improve this. For example, we can use some efficient yet accu-
rate target-oriented wavefield solvers during the monitoring inver-
sion (Robertsson and Chapman, 2000; van Manen et al., 2007; Vasmel 
et al., 2013), or we might focus on waveform data within a window 
specifically relevant to the expected time-lapse changes.

There are several differences between the method proposed herein 
and existing fully nonlinear Bayesian time-lapse FWI methods (e.g., 
Zhang and Curtis, 2024; de Lima et al., 2024). First, our method 
characterises the range of MAP solutions by minimising Eq.  (4), rather 
than solving the monitoring inversion using Bayesian methods. This is 
done firstly because the limited data collected from sparse acquisition 
geometries are likely to be insufficient to constrain a fully nonlinear 
Bayesian inverse problem well in the monitoring inversion: the fewer 
data available for fully nonlinear inversions, the larger is the hyper-
volume of parameter space that must be explored to characterise the 
solution. This is likely to make such inversions infeasible to solve 
numerically due to the curse of dimensionality (Curtis and Lomax, 
2001). It nevertheless remains computationally feasible to use fully 
nonlinear methods for the (non-sparse) baseline survey, and to up-
date each baseline MAP solution using (sparse) monitoring data with 
linearised methods. In addition, we inject strong prior information 
obtained from the baseline inversion and interpret differences be-
tween monitoring and baseline MAP models as models of time-lapse 
changes. Thus the obtained uncertainties are lower than those from 
Bayesian methods, making them easier to analyse in practise. This 
is what allows us to use sparse monitoring surveys to reduce cost. 
Secondly, our method provides samples of velocity changes directly. 
While a Bayesian framework provides full posterior pdf’s for both 
the baseline and monitoring inversions, deriving posterior samples 
of time-lapse changes is not straightforward, and these are impor-
tant for post-inversion decision-making processes (Arnold and Curtis, 
2018). The joint Bayesian inversion approach (Zhang and Curtis, 2024) 
provides such samples simultaneously, yet the method combines the 
baseline and time-lapse model vectors, thereby doubling the dimension-
ality of the inverse problem, making it more difficult and expensive 
to solve. Thirdly, we need to note that results from our method do 
not represent Bayesian uncertainties, since monitoring MAP samples 
are obtained using deterministic (linearised) methods. Nevertheless, 
they represent a set of time-lapse models that fit the baseline and 
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monitoring data, and which are well distributed throughout the MAP 
model manifold.

In real applications, more complex but realistic factors might affect 
the performance of the proposed method. For example, it would be sig-
nificantly more difficult to estimate accurate uncertainties in spatially 
3D FWI problems (Zhang et al., 2023; Lomas et al., 2023; Zhao and 
Curtis, 2024b). The effects of shear waves and surface waves would 
influence the applicability of the method in real-world scenarios when 
elastic properties are considered (Gebraad et al., 2020; Berti et al., 
2025).

In addition, accurate estimation of the target region is important 
since a large region would reduce the accuracy of the obtained time-
lapse estimates, yet if a small target region is considered, a situation in 
which CO2 migrates outside of the predefined target region might arise. 
We therefore risk ignoring this subjectively, leading to biased results. 
This will be more likely to happen when undetected faults exist within 
a survey region. In reality, this target region might be defined more 
accurately by running a fluid flow simulation model. For example for 
some CCS sites, the CO2 storage reservoir is thin so that it extends far 
further in a lateral direction than our examples (Sinha et al., 2024). A 
reservoir simulation will still be able to estimate a reasonably accurate 
target region that captures possible leakage sites before the monitoring 
inversion or survey. The proposed method should therefore also work 
in that case.

In our examples, we did not employ a flow model explicitly. How-
ever, we did consider the injection explicitly in our additional prior 
information for the monitoring inversion: in a real CCS project we 
would know the exact injection location (e.g., blue pluses in Fig.  2) 
and the amount of injected CO2, which will help us to better constrain 
subsurface changes that may be caused by CO2 injection and migration. 
Emulating this process, we defined the prior uncertainties on velocity 
changes displayed in Fig.  3b.

Note that for some CCS projects, reservoirs and target regions would 
have simpler subsurface structures with less (lateral) heterogeneity 
than our test cases. Examples include the Sleipner site (Chadwick 
and Noy, 2015) and the Pelican site (Hoffman, 2018). We use the 
Marmousi model for our examples; this might be more geologically 
complex than some real cases, however, from the point of view of 
testing our inversion method, if the method works well for geologically 
complicated models, then it will certainly work with a much simpler 
model (and the results show that the method works well).

Our method produces samples of MAP models of the time-lapse 
changes. A next step could involve using the time-lapse samples to 
solve an interrogation problem, for example to answer questions such 
as whether CO2 is leaking into particular subsurface volumes (Arnold 
and Curtis, 2018). Moreover, in our example we use 500 samples for 
the monitoring inversion, each updated through a linearised inversion. 
To reduce its computational cost, we could use a technique called 
boosting variational inference (Zhao and Curtis, 2024a), which selects 
tens of representative samples that effectively summarise the range of 
uncertainties required for the monitoring inversion.

We have shown that sparse acquisition geometries are feasible for 
monitoring subsurface changes in time-lapse FWI problems. However, 
numerical tests demonstrate that it appears to be insufficient to use one 
single source for such purposes, unless a very dense array of receivers is 
used such as in fibre-based acquisition systems. Nevertheless, our find-
ing is particularly useful in situations in which a cost-effective solution 
for continuous monitoring is required. For example in a marine seismol-
ogy setting, we could assume source-receiver reciprocity applies to the 
results shown herein, and obtain approximately similar survey designs 
by deploying one or two ocean bottom nodes (OBN) on the seabed and 
firing a number of marine sources, since the cost of deploying each OBN 
may be higher than that of deploying a source at one location. Optimal 
experimental design methods may also be important to improve the 
results presented previously, by identifying the minimum numbers of 
sources and receivers and their optimal locations that ensure a desired 
expected level of accuracy in results (Strutz and Curtis, 2024).
14 
5. Conclusion

We introduce a method to perform time-lapse seismic full waveform 
inversion and quantify statistics of its uncertainties, with a particular 
focus on monitoring subsurface CO2 migration using ultra-sparse ac-
quisition geometries with low monitoring cost. We first use variational 
Bayesian inference to invert the baseline data. This provides strong 
prior information about the subsurface structure, that is subsequently 
injected into the monitoring inversion, executed using a deterministic 
inversion framework. To minimise imaging artefacts unrelated to actual 
subsurface changes, we employ a target-oriented scheme. In a 2D 
acoustic time-lapse FWI example, we simulate putative subsurface CO2
storage scenarios in which velocity reductions are induced by CO2
injection and migration into a fault and a secondary reservoir. The 
method provides accurate estimates of velocity changes and generates 
uncertainties in best-fitting models that are smaller in magnitude than 
the velocity changes themselves, as would be required to make these 
results useful for risk assessment applications. We also investigate 
the effectiveness of our methodology under various sparse acquisition 
geometries, involving different numbers of sources and receivers within 
the monitoring survey. The results demonstrate that sparse acquisition 
geometries can be used to reduce monitoring costs, without compromis-
ing the accuracy of the inversion, but if only a single source (receiver) 
is to be used then this must be compensated by a spatially dense 
array of receivers (sources). Overall, we conclude that our methodology 
is capable of detecting velocity changes and quantifying reasonable 
uncertainties in time-lapse imaging.
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