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Abstract Full waveform inversion (FWI) creates high resolution models of the Earth's subsurface structures
from seismic waveform data. Due to the non‐linearity and non‐uniqueness of FWI problems, finding globally
best‐fitting model solutions is not necessarily desirable since they fit noise as well as the desired signal in data.
Bayesian FWI calculates a so‐called posterior probability distribution function, which describes all possible
model solutions and their uncertainties. In this paper, we solve Bayesian FWI using variational inference, and
propose a new methodology called physically structured variational inference, in which a physics‐based
structure is imposed on the variational distribution. In a simple example motivated by prior information from
imaging inverse problems, we include parameter correlations between pairs of spatial locations within a
dominant wavelength of each other, and set other correlations to zero. This makes the method far more efficient
compared to other variational methods in terms of both memory requirements and computation, at the cost of
some loss of generality in the solution found. We demonstrate the proposed method with a 2D acoustic FWI
scenario, and compare the results with those obtained using other methods. This verifies that the method can
produce accurate statistical information about the posterior distribution with hugely improved efficiency (in our
FWI example, 1 order of magnitude reduction in computation). We further demonstrate that despite the possible
reduction in generality of the solution, the posterior uncertainties can be used to solve post‐inversion
interrogation problems connected to estimating volumes of subsurface reservoirs and of stored CO2, with
minimal bias, creating a highly efficient FWI‐based decision‐making workflow.

Plain Language Summary This paper introduces a method to assess uncertainties in seismic images
of the subsurface at substantially reduced cost, and to use the information within those uncertainties to answer
explicit high‐level questions about volumes of subsurface reservoirs and of stored CO2. Computation efficiency
is achieved by explicitly imposing specific correlation structures (originating from physical properties of such
spatial imaging problems) on subsurface images a priori. This prevents computing power from being used to re‐
discover such structures each time an imaging process is performed. In our two‐dimensional example in which
we image using seismic full waveform inversion, computational cost is reduced by an order of magnitude and
fully nonlinear uncertainties can be characterized both in subsurface structural parameters, and in answers to
high‐level questions.

1. Introduction
Seismic full waveform inversion (FWI) is a method that generates models of the subsurface seismic velocity
structure of the Earth given recorded seismograms. This is achieved using both kinematic (phase) and dynamic
(amplitude) information in the waveforms (Fichtner et al., 2009; French & Romanowicz, 2014; Tarantola, 1984;
Virieux & Operto, 2009). Traditionally, FWI problems are solved using gradient‐based local optimization
methods, where a misfit function between observed and predicted waveform data is minimized iteratively
(Plessix, 2006). This process often requires additional regularization a priori, such as the addition of smoothing or
damping terms to the objective function, to stabilize the optimization and improve convergence rates (Asnaashari
et al., 2013; Sen & Roy, 2003; Zhdanov, 2002). However, these terms may introduce biases to the final inversion
results. In addition, it is challenging to find a good approximation to the true Earth structure using these methods
due to the strong non‐linearity of the forward function and the non‐uniqueness of the inverse problem solution
(Boyd & Vandenberghe, 2004).

Recently, FWI has been solved probabilistically using a suite of methods collectively referred to as Bayesian
inference. In Bayesian FWI, prior knowledge about Earth model parameters is updated with new information
from the observed waveform data to calculate a posterior probability distribution function (pdf), according to
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Bayes' rule. In principle this distribution incorporates all prior information combined with all information from
the data, and expresses the information in terms of constraints on the model parameters. Bayesian inference thus
solves the FWI problem by describing all possible model parameter values that fit the data set to within its
uncertainty. The range and probability of different possible models can be used to reduce risk during subsequent
decision‐making when solving real‐world interrogation problems (Arnold & Curtis, 2018; Ely et al., 2018;
Poliannikov & Malcolm, 2016; Siahkoohi et al., 2022; X. Zhang & Curtis, 2022; X. Zhao et al., 2022). Note that
regularization terms used in deterministic inversion can act similarly to prior information used in Bayesian
inference, both of which would bias the inversion results if defined incorrectly.

Different kinds of Bayesian inference methods have been employed to perform probabilistic FWI. A direct
generalization from deterministic FWI involves approximating the posterior pdf with a Gaussian distribution,
centered around an estimated maximum a posteriori (MAP) model obtained using local optimization methods
(Bui‐Thanh et al., 2013; Fang et al., 2018; Gouveia & Scales, 1998; Zhu et al., 2016), or through local, low rank
pdf approximations using a data assimilation technique (Thurin et al., 2019). If both the likelihood function and
prior distribution are assumed to be Gaussians, then this MAP velocity model is equivalent to that obtained using
l2 regularized deterministic FWI (W. Wang et al., 2023). While this kind of method appear to produce proba-
bilistic results, the center point of the resulting posterior distribution may be affected by the starting point of the
inversion, and the variances of the Gaussians may not fully capture the uncertainty arising from non‐linearity of
the forward function (Z. Zhao & Sen, 2021).

Fully non‐linear Bayesian FWI can be solved using sampling techniques such as Markov chain Monte Carlo
(McMC), where random samples are drawn from the posterior distribution. The inversion results are represented
by statistics of the sampled models, such as the mean and standard deviation. For complex posterior distributions
such as those that are multimodal, some form of posterior histograms or movies of posterior samples are also
analyzed. However, due to the typical high dimensionality (number of parameters to be estimated) of FWI
problems, direct sampling methods, including the commonly used Metropolis‐Hastings Markov‐chain Monte
Carlo (MH)‐McMC (Hastings, 1970; Metropolis et al., 1953; Mosegaard & Tarantola, 1995; Sambridge &
Mosegaard, 2002), become impractical. Some studies therefore employ a target‐oriented FWI strategy to reduce
the dimensionality and thus improve the sampling efficiency (Ely et al., 2018; Fu & Innanen, 2022; Kotsi
et al., 2020b), but these generally have to assume that modeled structure and properties outside of the target
volume do not adversely affect waveform fits.

Several advanced techniques have also been introduced to improve the sampling efficiency of McMC for
Bayesian FWI, including reversible‐jump McMC (RJ‐McMC) (P. Guo et al., 2020; Ray et al., 2016, 2018;
Sambridge et al., 2006; Visser et al., 2019), Hamiltonian Monte Carlo (de Lima, Corso, et al., 2023; de Lima,
Ferreira, et al., 2023; Dhabaria & Singh, 2024; Gebraad et al., 2020; Kotsi et al., 2020a; Zunino et al., 2023),
informed‐proposal Monte Carlo (Khoshkholgh et al., 2021, 2022) and other gradient based random sampling
methods (Berti et al., 2023; Biswas & Sen, 2022; Z. Zhao & Sen, 2021). Nevertheless, as with other classes of
methods, Monte Carlo sampling is known to become computationally intractable for high‐dimensional parameter
spaces due to the curse of dimensionality (Curtis & Lomax, 2001).

In contrast to random sampling, variational inference solves Bayesian inversion through optimization. In vari-
ational methods, we define a family of known and tractable distributions, referred to as the variational family.
From this family, an optimal member is chosen to approximate the true posterior pdf by minimizing the difference
between the variational and posterior distributions (Bishop, 2006; Blei et al., 2017; C. Zhang et al., 2018; X.
Zhang et al., 2021). Variational inference solves Bayesian problems under an optimization framework, and the
optimization result is fully probabilistic. In some classes of problems it can therefore be relatively more efficient
and scalable to high dimensional problems with large data sets. Variational inference has been applied to a variety
of geophysical inverse problems, including travel time tomography (Levy et al., 2022; X. Zhang & Curtis, 2020a;
X. Zhao et al., 2021), seismic migration (Siahkoohi & Herrmann, 2021; Siahkoohi et al., 2020, 2021, 2023),
seismic amplitude inversion (Zidan et al., 2022), earthquake hypocenter inversion (Smith et al., 2022) and slip
distribution inversion (L. Sun et al., 2023). However, most of these applications have relatively lower dimen-
sionality and weaker non‐linearities compared to FWI.

X. Zhang and Curtis (2020b) introduced a variational method called Stein variational gradient descent (SVGD—
Q. Liu & Wang, 2016) to transmission FWI where sources emulating earthquakes are located underneath the
velocity structure to be imaged, with receivers on the top surface. SVGD was then applied to 2D reflection FWI
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with realistic priors (Izzatullah et al., 2023; X. Zhang & Curtis, 2021a), and 3D acoustic FWI using synthetic data
(X. Zhang et al., 2023) and field data (Lomas et al., 2023). A stochastic version of SVGD (Gallego & Insua, 2018)
was also employed to improve performance for 3D FWI (X. Zhang et al., 2023). X. Zhao and Curtis (2024a)
introduced boosting variational inference (BVI—F. Guo et al., 2016; Miller et al., 2017) for 2D acoustic FWI,
where a mixture of Gaussian distributions is used to approximate the true posterior distribution, resulting in an
analytic expression for the posterior distribution. Bates et al. (2022) performed medical ultrasound tomography of
the brain using FWI, where a mean field (diagonal) Gaussian distribution is employed as the variational distri-
bution. Alternatively, W. Wang et al. (2023) improved the resolution of inversion results by decomposing the
variational objective function into two terms and re‐weighting them, however that method nevertheless tends to
underestimate posterior uncertainties. Yin et al. (2024) used conditional normalizing flows to quantify un-
certainties in migration‐velocity models.

Other than in W. Wang et al. (2023), in the above studies variational methods were applied to improve the ef-
ficiency of Bayesian FWI. For 2D FWI, the required number of forward simulations used to estimate means and
variances of subsurface parameters was reduced to the order of 100,000 by X. Zhao and Curtis (2024a), marking a
significant reduction given that the dimensionality of the FWI problem tackled was higher than 10,000. Un-
fortunately, despite this improvement, the computational cost of solving the forward function in FWI remains
prohibitively expensive for many practitioners. Consequently, performing Bayesian FWI in realistic projects
using current variational methods is still impractical, even with advanced forward simulation strategies (Treeby &
Cox, 2010; Y. Wang et al., 2019; X. Zhao et al., 2020).

In this paper, we propose an efficient and accurate variational methodology for Bayesian FWI by imposing
physics‐based structure on the variational family. The new method incorporates expected posterior parameter
correlations explicitly. We show that this leads to significantly improved accuracy with nearly the same
computational cost compared to several existing variational methods, or put another way, reduced cost for the
same accuracy.

This rest of this paper is organized as follows. In Section 2, we first establish the framework of variational full
waveform inversion. Then we introduce the concept of Automatic Differentiation Variational Inference (ADVI),
and present our new method which we refer to as physically structured variational inference (PSVI). We end this
section by providing a workflow to apply PSVI to Bayesian inverse problems. In Section 3, we demonstrate the
proposed method with a 2D synthetic FWI example, and compare the inversion results with those obtained using
three other variational methods and to those from traditional linearized optimization based deterministic inversion
methods. In Section 4, we interpret the inversion results by solving two post‐inversion interrogation problems.
Finally, we provide a brief discussion of the proposed method and draw conclusions.

2. Methodology
2.1. Variational FWI

FWI uses full waveform data recorded by seismometers to constrain the Earth's interior structure, typically
described by a subsurface velocity model. The forward function is defined to predict waveform data that could be
recorded at receivers given a subsurface velocity model. This prediction involves solving a wave equation, either
in the time or frequency domain, often in two or three dimensions, and potentially adding measurement noise to
the data. For simplicity, we assume that the subsurface consists of an acoustic, isotropic, lossless medium with
constant density, thereby ignoring exclusively elastic properties including shear waves, attenuation, and aniso-
tropic properties. This simplification allows the scalar acoustic wave equation to be used in forward simulations
which reduces computational load.

In deterministic FWI, the following l2 norm data misfit function is typically defined between simulated waveform
data dsyn and observed data dobs:

χ =
1
2
‖dsyn − dobs‖2

2 (1)

This function is minimized iteratively using gradient based optimization methods, where gradients of the misfit
function with respect to model parameters are calculated using the adjoint state method (Plessix, 2006).
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In Bayesian FWI, information about the velocity model is characterized by a posterior probability distribution
function (pdf) which describes the uncertainties associated with different potential models given the observed
data. This can be calculated using Bayes' rule:

p(m|dobs) =
p(dobs|m) p(m)

p(dobs)
(2)

where p(⋅) denotes a probability distribution. Symbol x| y indicates conditional dependence between two random
variables x and y, and reads as x given y. Term p(m) describes the prior information available on the model
parameter m, and p(dobs|m) is the likelihood, meaning the probability of the synthetic waveform data dsyn
generated by a given model m through forward simulation matching the observed data dobs. A Gaussian distri-
bution is often used to define the data likelihood function:

p(dobs|m)∝ exp[−
(dsyn − dobs)TΣ− 1

d (dsyn − dobs)
2

] (3)

where Σd is the covariance matrix of the data error. If a diagonal matrix with a fixed value for all diagonal el-
ements is used to define Σd (i.e., Σd = σ2I where σ is a scalar value controlling the magnitude of the data noise
and I is the identity matrix), then the likelihood can be expressed as a function of data misfit χ in Equation 1:

p(dobs|m)∝ exp[−
χ
σ2] (4)

and minimizing χ is equivalent to maximizing the likelihood. The denominator p(dobs) in Equation 2 is referred to
as the evidence and is a normalization constant to ensure that the posterior solution p(m|dobs) is a valid probability
distribution.

Bayesian inversion is often solved by Monte Carlo sampling methods. However, the required number of samples
increases exponentially with the dimensionality of the inverse problem (the number of unknown model param-
eters), due to the curse of dimensionality (Curtis & Lomax, 2001). It is very expensive to obtain statistics of
posterior pdf's in FWI using Monte Carlo methods, especially when the Earth modelm contains more than 10,000
parameters, as is standard in spatially 2D FWI problems (Gebraad et al., 2020). What is worse, 3D FWI problems
contain a significantly larger number (possibly many more than a million) of model parameters, making it almost
impossible to solve using purely random sampling methods.

In this paper, we use variational inference to solve Bayesian FWI problems. In variational methods, a family of
distributions (called the variational family) Q(m) = {q(m)} is defined, from which we select an optimal member
to approximate the true (unknown) posterior distribution. The optimal distribution can be found by minimizing
the difference (distance) between the posterior and variational distributions. Typically, the Kullback‐Leibler (KL)
divergence (Kullback & Leibler, 1951) is used to measure the distance between two probability distributions,
defined as the following expectation term

KL[q(m)‖ p(m|dobs)] = Eq(m) [log q(m) − log p(m|dobs)] (5)

The KL divergence of two distributions is non‐negative, and equals zero only when the two distributions are
identical. Substituting Equation 2 into 5, we find that minimizing the KL[q(m)‖ p(m|dobs)] is equivalent to
maximizing the following evidence lower bound (ELBO) on log p(dobs) since log p(dobs) is a constant inde-
pendent of q(m):

ELBO[q(m)] = log p(dobs) − KL[q(m)‖ p(m|dobs)]

= Eq(m) [log p(m,dobs) − log q(m)]
(6)

In this way, we convert a random sampling problem into a numerical optimization, while the optimization result is
still a probability distribution that approximates the true posterior pdf.
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A key challenge in variational inference is to choose the variational family Q(m). This determines both the
accuracy and efficiency of the variational methods: increasing the complexity (and hence, expressivity) of Q(m)
increases the approximation accuracy as well as the optimization complexity. Given the expensive nature of
forward simulations in FWI, our primary goal is to reduce computational costs (by reducing the number of
forward simulations) while maintaining accuracy at an acceptable level. In the following sections we introduce a
method called automatic differentiation variational inference (ADVI—Kucukelbir et al., 2017), and propose an
alternative effective variational methodology for FWI.

2.2. ADVI

ADVI is a well‐established variational method that defines a Gaussian variational distribution q = N(μ,Σ),
parametrized by a mean vector μ and a covariance matrixΣ (Kucukelbir et al., 2017). In addition, since a Gaussian
distribution is defined over the space of real numbers and since in most geophysical imaging problems model
parameters are bounded by physical constraints (e.g., seismic velocity should be a positive number), an invertible
transform (a bijection) is applied to the Gaussian random variables to ensure that the transformed model pa-
rameters satisfy their physical constrains. We use the commonly used logit functions

mi = f (θi) = ai +
bi − ai

1 + exp(− θi)

θi = f − 1 (mi) = log(mi − ai) − log(bi − mi)

(7)

where θi is a Gaussian random variable defined in an unconstrained space (from minus to plus infinity), and mi is
the converted model parameter bounded by the lower and upper bounds ai and bi, respectively. The transformed
probability distribution can be calculated through the change of variable formula

log q(m) = log q(Θ) − log|det(∂Θ f (Θ))| (8)

where q(Θ) = N(μ,Σ) is the Gaussian variational distribution in the unbounded space. Term |det( ⋅ )| calculates
the absolute value of the determinant of the Jacobian matrix ∂Θ f (Θ), which accounts for the volume change in
parameter space corresponding to this transform (Kucukelbir et al., 2017; Rezende & Mohamed, 2015). Variable
Θ is optimized by the ADVI algorithm, and the corresponding q(m) is used to approximate the true posterior
distribution.

To determine the optimal Gaussian distribution in the unbounded space, we maximize the ELBO[q(m)] in
Equation 6 with respect to μ and Σ using a gradient based optimization method. The two gradient terms can be
calculated by

∇μELBO = EN(0,I) [∇m log p(m,dobs)∇μm − ∇μ log q(m)] (9)

∇ΣELBO = EN(0,I) [∇m log p(m,dobs)∇Σm − ∇Σ log q(m)] (10)

where log q(m) (and its gradients) can be calculated analytically using Equation 8. The expectations are taken
with respect to a standard normal distribution N(0, I) rather than the variational distribution log q(m), by
applying a reparametrization trick (Kingma & Welling, 2014). This allows the gradients to be moved inside the
expectation terms. If the joint distribution log p(m,dobs) has analytically tractable gradients with respect tom, the
whole process of computing the two gradients above can be automated, hence the name ADVI (Kucukelbir
et al., 2017).

The calculation of Equation 10 involves computing |Σ|, where | ⋅ | denotes the determinant of a matrix. Direct
calculation of |Σ| has a computational complexity of O(n3), which becomes prohibitively expensive for high
dimensional inference problems such as FWI. Therefore, we often use a Cholesky factorization to parametrize Σ

Σ = LLT (11)
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where L is a lower triangular matrix. Since |L| can be calculated easily as the product of its diagonal elements, the
determinant |Σ| can be obtained easily by |Σ| = |L|2. Note that the diagonal elements of L are associated with the
variances of model parameters, and should be non‐negative to ensure that L and Σ are positive semidefinite. The
off‐diagonal values of L contain correlation information between model parameters.

For a n‐dimensional problem, we need n(n + 1)/2 parameters to construct a full matrix L, and consequently a
full covariance matrix Σ. The corresponding method is known as full rank ADVI (Kucukelbir et al., 2017). For
example, in Figure 1a, the velocity model comprising 110 × 250 pixels requires 378,138,750 parameters to
describe the full matrix L. This number becomes computationally intractable for large scale 2D and 3D FWI
problems.

Alternatively, a mean field approximation is often used to reduce computational complexity, where L and Σ are
parametrized by diagonal matrices. The variational distribution becomes a diagonal Gaussian distribution, which
neglects correlations between different model parameters. In this way, the total number of variables that must be
optimized is 2n (both μ and Σ contain n independent elements), so is doubled compared to a conventional
deterministic inversion, a computational overhead that is manageable for most problems. Mean field ADVI has
been applied to Bayesian FWI in several studies (Bates et al., 2022; W. Wang et al., 2023; X. Zhang et al., 2023),
demonstrating that the method is computationally efficient and is able to provide an accurate mean model of the
posterior distribution. However, in problems with significant posterior correlations, it tends to strongly under-
estimate posterior parameter uncertainties since correlation information is neglected a priori (X. Zhang
et al., 2023).

Figure 1. (a) P wave velocity of the Marmousi model used in a 2D acoustic full waveform inversion test. Source locations are indicated by red stars and the receiver line
is marked by a white line. Dashed black lines display the locations of two vertical profiles used to compare the posterior marginal probability distributions in Figure 4.
(b) Upper and lower bounds of the Uniform prior distribution at different depths. (c) Observed data set which contains 12 common shot gathers. (d) Velocity structure
inside the white box in (a), and crosses in cells discussed in the main text.
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2.3. PSVI

Full rank ADVI and mean field ADVI represent two extreme approaches to construct L: the former aims to
optimize all off‐diagonal elements of L to capture the full correlation information ofm, whereas the latter sets the
off‐diagonal elements to zero to reduce computational requirements. In the following, we parametrize L using a
physics‐guided structure, which models a subset of its off‐diagonal elements.

In most imaging problems, accurate correlation information plays an important role in capturing true structures
such as the continuity of properties across neighboring spatial volumes. Since modeling a full covariance matrix
(i.e., full rank ADVI) for high dimensional problems is practically intractable, another approach is to model the
most important correlations in vectorm, guided by physical properties (prior knowledge) of imaging problems. To
illustrate, Figure 1d shows a 2D velocity structure discretized using nx × nz square grid cells in horizontal and
vertical directions, with each cell representing a velocity value at the corresponding spatial location. It is often the
case that any grid cell, such as the onemarked by a black dot in Figure 1d, is strongly correlatedwith its surrounding
cells (e.g., cells marked by white pluses). The magnitude of correlations between this central cell and other cells
decreases as the distance between two locations increases. Cells that are far away from the black dot (e.g., cells
denoted by red crosses in Figure 1d) are only weakly correlated with the black‐dotted cell, so these correlations can
safely be ignored. This feature has been observed in many different imaging problems (Ardizzone et al., 2018;
Biswas & Sen, 2022; Gebraad et al., 2020); a clear example displaying such correlations in a velocity profile with
depth is shown in Figure 6 of X. Zhang and Curtis (2021b), from the results of surface wave dispersion inversion
using two independent nonlinear inversion methods (invertible neural networks and Monte Carlo).

This suggests that it might suffice to model correlations only between parameter values that are spatially close to
each other, that is, which lie within a dominant wavelength (since dominant wavefield interactions involved in
reflection and refraction respond to controlling physical properties averaged spatially over ∼1 wavelength), and
ignore those that are far away by assuming a particular sparse structure for L. We therefore set off‐diagonal
elements of L which represent the main correlations of interest as parameters to be optimized during varia-
tional inversion, while imposing all other off‐diagonal elements to be zero. Note that we thus impose only a
structure on L rather than placing constraints on the values of its (non‐zero) off‐diagonal elements: those values
are updated freely during inversion.

Recall that the 2D velocity model displayed in Figure 1d has nx × nz cells with nx and nz being the numbers of
cells in horizontal and vertical directions, defined by vectorm in row‐major order (i.e., the first nx elements ofm
comprise the first row of the 2D image, the second nx elements comprise the second row, and so on). As illustrated
in Equation 12 below, the first‐order off‐diagonal elements (blue ones in Equation 12 that are directly below the
diagonal elements) contain correlation information between two horizontally adjacent grid cells, and off‐diagonal
elements that are nx rows below the main diagonal elements (red ones in Equation 12) describe correlations
between two vertically adjacent cells

(12)

where subscript n = nx × nz is the dimensionality ofm. Note that in Equation 12, the first subscript i indicates a
block of off‐diagonal elements that are i rows below the main diagonal (i.e., at an offset of i from the main di-
agonal), and the second subscript j indicates that li,j is the jth element of that off‐diagonal block. This differs from
the commonly used indexing scheme in which the two subscripts imply the row and column number of an
element. If we set all remaining elements of L to zero, then covariance matrix Σ = LLT mainly has non‐zero
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entities only at two off‐diagonal blocks located 1 and nx rows below and above the main diagonal elements
(similar to the red and blue elements in Equation 12). If such a covariance matrix Σ is used, the variational
distribution would also capture a specific spatial correlation structure that includes parameter correlations be-
tween pairs of adjacent cells in both horizontal and vertical directions. Thus, for the grid cell denoted by the black
dot in Figure 1d, we would model correlations between this cell and its four adjacent cells inside the red box in
Figure 1d: all other correlations are set to zero.

We can impose any desired correlation structure on Σ, by setting the corresponding off‐diagonal blocks in L as
unknown control parameters (i.e., parameters that define L) and optimizing them during inversion. The size of the
defined correlation template should be relatively small compared to the dimensionality of the problem, so the total
number of parameters required to construct L would also be relatively small compared to that in full rank ADVI.
For example, if the white pluses in Figure 1d are used to define a 5 × 5 correlation kernel then the required
number of parameters to construct Σ is smaller than 13n. Here n is the dimensionality of model vectorm, and the
number 13 consists of 1 main diagonal block and 12 off‐diagonal blocks representing 12 different offsets between
cells marked by the white crosses and the central cell in the 5 × 5 kernel. Since each off‐diagonal block contains
fewer parameters than the main diagonal block (i.e., the blue and red elements in Equation 12 are fewer than the
diagonal elements), the total number of parameters is smaller than 13n, which is a significant reduction compared
to n(n + 1)/2 parameters used in full rank ADVI.

We implement the aforementioned approach to parametrize the matrix L and obtain a sparse approximation of the
covariance matrix. For the avoidance of doubt, even though a (transformed) Gaussian is used to parametrize the
posterior pdf and gradients are used in the optimization, the posterior uncertainties estimated by this method (and
by other forms of ADVI) are approximations to the full, non‐linearized, posterior distribution. The inversion
results from our new method thus effectively and efficiently capture structured full‐posterior correlations. Since
this structure originated from the inherent physical properties of imaging problems, we name the method as PSVI.

2.4. PSVI Workflow

In this section, we provide details about how to implement and perform Bayesian inversion using PSVI. Similarly
to ADVI, in PSVI we update a variational distribution q(m) (defined by a vector μ and a matrix L) to maximize
the ELBO (Equation 6) using gradient based optimization methods. This can be achieved easily using advanced
automatic differentiation libraries such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019),
where gradients of the ELBO can be calculated automatically. To explain, we rewrite Equation 6 as:

ELBO[q(m; μ,L)] = EN(0,I) [log p(m,dobs) + log q(m)]

≈
1
k
∑
k

i=1
[log p(mi,dobs) + log q(mi)]

(13)

where the first line is simply the reparametrization trick (derivation details can be found in Appendix A of X. Zhao
et al. (2021)). The expectation term in the first line is approximated by Monte Carlo integration, resulting in the
second line. Since we would normally perform many iterations to maximize the ELBO, the Monte Carlo
approximation would converge statistically toward the correct solution, even if only a small number of (k in this
case) samples are used in each iteration—perhaps only a single sample (Kucukelbir et al., 2017) is sufficient for
some problems. To estimate the ELBO, we draw random samples ϵi from a multivariate standard normal dis-
tribution, which are first transformed to Θi distributed according to N (μ,LLT) , then converted to mi:

mi = f (Θi) = f (μ + Lϵi) (14)

using Equation 7. After that, we can calculate log p(mi,dobs) and log q(mi) easily. Note that all calculations
involved in the second line in Equation 13 are analytic except for log p(mi,dobs) (for most geophysical problems
log p(mi,dobs) and its gradient with respect to mi are calculated using numerical methods, e.g., the adjoint state
method) whose gradient information can be registered into the computational graph of the automatic differen-
tiation engine (e.g., an example of how to do this can be found in Paszke et al. (2017)). Therefore, the gradient of
the ELBO can be calculated automatically.
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This suggests the following algorithm to implement PSVI for Bayesian inversion:

1. Initialization: set μ = 0 and L = I (L is a sparse matrix with specific off‐diagonal elements registered as
unknown parameters to be optimized);

2. Draw k random samples ϵi from N(0, I);
3. Calculate the corresponding model samples mi using Equation 14;
4. Estimate the ELBO (Equation 13) and its gradient (using automatic differentiation) to update μ and L;
5. Repeat 2–4 until the estimates of μ and L converge to stable values.

Given that the computational cost of updating the variational parameters is negligible in comparison to forward
and gradient calculations in FWI, the proposed method is almost as efficient as mean field ADVI.

3. 2D Acoustic FWI Example
3.1. Bayesian FWI

In this section, we test the proposed PSVI algorithm in a 2D acoustic FWI example. The true velocity model,
shown in Figure 1a, is obtained by truncating the original Marmousi model (Martin et al., 2006) and down-
sampling it into 110 × 250 regular grid cells. The grid cell size is 20 m in both directions. For simplicity, we
maintain a constant density. We simulate 12 sources on the surface with a spacing of 400 m (indicated by red stars
in Figure 1a). A receiver line containing 250 receivers at an interval of 20 m is placed on the seabed at 200 m depth
(white line in Figure 1a). The observed waveform data are generated by solving the 2D acoustic wave equation
using a time‐domain finite difference method. The simulation length is 4 s with a sample interval of 2 ms. The
source function is a Ricker wavelet with a dominant frequency of 10 Hz. Figure 1c displays this observed
waveform data set.

We define a Uniform prior distribution for the velocity values in each grid cell. Figure 1b shows the lower and
upper bounds of the prior distribution at different depths. We set the velocity in the water layer (down to 200 m
depth) to its true value during inversion. The likelihood function is a Gaussian distribution (Equation 3) with a
diagonal covariance matrix Σd assuming independence among all data points. The data noise is assumed to be 1%
of the average over the set of maximum amplitude values, one from each trace. This indicates that the likelihood
function is defined using Equation 4 (based on the l2 misfit function in Equation 1). The same finite difference
solver is used to calculate the synthetic waveform data dsyn, and the gradient of the data misfit (negative log‐
likelihood function) with respect to the velocity model is computed using the adjoint‐state method (Ples-
six, 2006). We follow the workflow described in Section 2.4 to perform PSVI, in which Monte Carlo integration is
used to estimate the ELBO. The automatic differentiation framework provided by PyTorch is used to build a
computational graph, which calculates the ELBO and its gradient with respect to the variational parameters
automatically (Paszke et al., 2019). The optimization process is carried out using the Adam algorithm (Kingma &
Ba, 2014).

We apply mean field ADVI and PSVI to this Bayesian FWI problem. Considering the dimensionality of this
problem (100 × 250 = 25,000), full rank ADVI is not performed since constructing a full covariance matrix
would be extremely expensive in terms of both memory requirements and computational cost. For mean field
ADVI, we use a diagonal Gaussian distribution to approximate the posterior distribution in the unbounded space.
For PSVI, a 5 × 5 correlation kernel is employed to model the main correlations between model parameters, as
illustrated by the white pluses in Figure 1d for the central black dotted cell. The choice of this correlation kernel is
based on the estimated dominant wavelength of this problem (approximately 200 m in shallow subsurface). In
both tests, variational parameters (μ and L) are updated for 5,000 iterations, with two random samples per
iteration used to approximate the ELBO[q(m)] and its gradients with respect to μ and L using Equation 13.
Figure 2 displays the negative ELBOs for these two tests as a function of iterations, indicating that both algorithms
achieve a reasonable level of convergence with nearly the same convergence speed, even though PSVI has far
more parameters to optimize.

Figures 3a and 3b depict the inversion results. The mean, standard deviation and the relative error (computed by
dividing the absolute error between the true and mean models by the standard deviation model) of the posterior
distribution are displayed from top to bottom row. The two mean velocity maps exhibit similar features across
most locations, generally resembling the true velocity map in Figure 1a. The inversion results struggle to recover
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some thin layers in the deeper part of the model, potentially due to the relatively low frequency (10 Hz) data used
for FWI. Additionally, certain discrepancies are observed between these two maps at specific locations. For
example, in the tilt layers annotated by red and black arrows in Figures 3a and 3b, the mean velocity model from
mean field ADVI displays discontinuities, while the PSVI results show more continuity, closely resembling the
true velocity model. One possible reason for this discrepancy is that accurate correlation information is crucial for
recovering the continuity of spatial locations, especially for these thin layers. All correlations between pairs of
model parameters are neglected in mean field ADVI, and thus the results may fail to recover the true velocity
structures at these locations. By incorporating physically structured correlations between cells within a dominant
wavelength, the proposed method improves the inversion accuracy.

Figure 2. Variation of the negative evidence lower bound with respect to iterations.

Figure 3. Mean (top row), standard deviation (middle row), and relative error (bottom row) of the posterior distribution obtained using (a) mean field ADVI, (b) PSVI,
(c) boosting variational inference, and (d) stochastic Stein variational gradient descent, respectively. The relative error is the absolute error between the mean and true
models divided by the corresponding standard deviation. Arrows in (a) highlight regions where mean field Automatic Differentiation Variational Inference (ADVI) fails
to recover the correct velocity structures that should be spatially continuous, therefore relative errors from mean field ADVI are large. Physically structured variational
inference (PSVI) provides more accurate inversion results that are similar to the true velocity model and to those obtained from two independent inversion methods,
since in PSVI the main posterior correlation information is considered.
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Both inversion results show increased uncertainties with greater depth, since the sensitivity of observed seismic
data decreases at depth, thus deeper parts of the model are less constrained by the data. The standard deviation
values obtained from mean field ADVI are generally smaller than those from PSVI, especially in the shallower
subsurface above 1.5 km depth. This is because mean field ADVI tends to underestimate posterior uncertainties
by neglecting correlations. Similar phenomena have been observed in previous studies (Ely et al., 2018; W. Wang
et al., 2023; X. Zhao & Curtis, 2024a). Therefore, the relative errors from mean field ADVI are larger compared to
those from the proposed method, especially at locations with a depth of 1 km and a horizontal location between
0 and 1.5 km, where the mean model deviates from the true model by more than 3 standard deviations. This
discrepancy suggests a low credibility of the inversion results obtained from mean field ADVI. As marked by a
white arrow in Figure 3a, lower uncertainty noise is observed, which correspond to layers that are not continuous
in the mean velocity map marked by a red arrow. This feature again proves that mean field ADVI provides biased
uncertain estimates. By contrast, such uncertainty structures are not observed in Figure 3b, indicating that PSVI
has the capability to correct some biases introduced by mean field ADVI.

To validate the inversion results displayed in Figure 3b, we apply two additional variational methods to this
problem: boosting variational inference (BVI—F. Guo et al., 2016; Miller et al., 2017) and stochastic Stein
variational gradient descent (sSVGD—Gallego & Insua, 2018). BVI and sSVGD are two entirely independent
Bayesian inference methods which have been applied to acoustic FWI problems, and have shown to provide
reasonably correct mean and variance statistics of posterior solutions in two and three dimensional Earth models
(X. Zhang et al., 2023; X. Zhao & Curtis, 2024a). In this work, they are used to verify our results. Figures 3c and
3d depict the inversion results obtained using BVI and sSVGD, respectively. They present very similar features
compared to those displayed in Figure 3b: the same continuous structures in the deeper part of the model (denoted
by red and black arrows) are observed in the mean velocity maps, and similar higher standard deviation values
associated with lower relative errors (distributed within 2 standard deviations) are also present.

To further analyze the accuracy of the inversion results, in Figure 4 we compare the posterior marginal distri-
butions obtained from the four tested methods along two vertical profiles at horizontal locations of 1 km (top row)
and 2.6 km (bottom row), respectively. The location of these two profiles are displayed by dashed black lines in
Figure 1a. The first profile (at a horizontal location of 1 km) is strategically placed in regions where the relative
errors from mean field ADVI (Figure 3a) are higher, while the second one (at 2.6 km) is centrally located within
the imaging region. Red lines show the true velocity values and black lines show the mean velocity values ob-
tained using different methods. Overall, the marginal distributions in Figure 4a are narrower compared to those in
Figure 4b–4d, indicating lower posterior uncertainties akin to Figure 3. In the first row of Figure 4 between depths
of 0.7–1 km and 1.3–1.8 km, the true velocity values are excluded from the posterior distribution obtained using
mean field ADVI, whereas those values correctly reside within the high probability region of the posterior pdfs
obtained using the other three methods. These phenomena again prove that mean field ADVI tends to under-
estimate the posterior uncertainties and introduce biases into the inversion results. By including the main cor-
relation information between adjacent grid cells, PSVI yields better inversion results that are highly consistent
with two entirely independent methods. Therefore, we assert that the posterior standard deviations derived from
PSVI are likely to be correct.

Given that PSVI is designed to capture correlations between spatially close grid cells, we compare the posterior
correlation coefficients between model parameters estimated using different methods. Figure 5 shows the
covariance matrices for velocity values within the white box in Figure 1a, obtained using the above four inversion
methods. Mean field ADVI uses a transformed diagonal Gaussian distribution to approximate the posterior pdf
and disregards correlations between model parameters, thus the posterior covariance matrix predominantly ex-
hibits strong diagonal values corresponding to the variances of model parameters. By incorporating a specific
(desired) correlation structure into the variational distribution, the covariance matrix obtained using PSVI dis-
plays off‐diagonal values representing correlations between different parameters, which are not observed from the
results using mean field ADVI. Due to the use of a 5 × 5 correlation kernel (as represented by the white pluses in
Figure 1d), we only include correlation information between a given grid cell and cells within two layers of cells
surrounding it. As a result, Figure 5b displays four off‐diagonal blocks (two above and two below the diagonal
elements). We observe negative correlations between neighboring cells (in the first off‐diagonal block below and
above the diagonal values) and positive correlations between every second neighboring cells (found in the second
off‐diagonal block).
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In Figures 5c and 5d, similar negative off‐diagonal correlation blocks are observed in the covariance matrices
obtained using BVI and sSVGD. This confirms that in this test we successfully capture the correct correlation
information between adjacent cells by using PSVI. While there may be positive correlations with cells two layers
apart, these are not visible; this may be because Figures 5c and 5d show a general “speckle” of non‐zero
background correlation values that are absent in Figure 5b. In PSVI, we construct a sparse covariance matrix
with specific non‐zero off‐diagonal elements, and set all other values to zero. This neglects correlations between
locations that are spatially far away from each other. It should be noted that we do not know whether any of the
values in Figures 5c and 5d are correct, since they do not match between the two panels. In the next section, we
also prove that these non‐zero background correlations play a less significant role in a simulation of a real‐world
decision‐making process. So again we suggest that our implementation of PSVI has modeled the most prominent
and consistent features of the correlation structure.

Full rank ADVI was not performed in the above example due to the extreme cost of both memory requirements
and computation. In Appendix A we run another FWI test with lower dimensionality, making it possible to apply
full rank ADVI and to compare the inversion results directly with those obtained using mean field ADVI and
PSVI. That example provides another demonstration of what information is lost in PSVI when we model specific
correlations only.

Finally, we analyze the efficiency of the proposed method and compare its cost with other methods. As mentioned
in Section 2, the number of unknown control parameters that need to be optimized in PSVI is higher than that in

Figure 4. Posterior marginal distributions colored from dark blue (zero probability) to yellow (maximum value of marginal pdf's in each plot), along two vertical profiles
at distances of 1 km (top row) and 2.6 km (bottom row) obtained using (a) mean field ADVI, (b) PSVI, (c) boosting variational inference and (d) stochastic Stein
variational gradient descent. The locations of these two profiles are represented by black dashed lines in Figure 1a. In each figure, two white lines show the prior bounds,
and black and red lines show the mean and true velocity values. Similarly to Figure 3, mean field Automatic Differentiation Variational Inference provides inaccurate
inversion results (especially in the top row in which the true velocity values are excluded from the posterior pdf) with underestimated posterior uncertainties, whereas the
other three mutually independent methods provide highly consistent marginal pdf's, indicating that those results are likely to be correct.
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mean field ADVI but is significantly lower than that in full rank ADVI. In our test, we find that the computational
cost for optimizing these variational parameters is much cheaper (almost negligible) compared to the cost of
forward and adjoint simulations in FWI. Therefore, the number of simulations serves as a good metric for the
overall cost in this example.

Table 1 summarizes the number of simulations used in each method. The same simulation settings are used in
mean field ADVI and PSVI (10,000 simulations consisting of 5,000 iterations with 2 samples per iteration). For
both BVI and sSVGD, we perform a total of 120,000 forward evaluations. In addition, relatively larger step sizes
are used in these two tests to speedup the convergence of BVI and sSVGD. However, they still remain one order

of magnitude more computationally expensive than mean field ADVI and
PSVI. In addition, Figure 2 shows that mean field ADVI and PSVI present
roughly the same convergence rate given the same number of forward sim-
ulations. This verifies the statement that PSVI is almost as efficient as mean
field ADVI. The latter is known to be a particularly inexpensive (yet biased)
method for Bayesian inversion from previous studies (Bates et al., 2022; L.
Sun et al., 2023; X. Zhang & Curtis, 2020a; X. Zhao et al., 2021). On the other
hand, the PSVI method improves the inversion accuracy and provides similar
results compared to two accurate but more computationally demanding
methods (BVI and sSVGD). Thus, the proposed method is shown to be an
efficient algorithm that has provided reliable uncertainty estimates.

3.2. Deterministic FWI

In this section we compare variational Bayesian FWI results to inversion
results obtained using traditional deterministic FWI methods. We consider

Figure 5. Covariance matrices for velocity values inside the white box in Figure 1a, calculated using the inversion results
from (a) mean field ADVI, (b) PSVI, (c) boosting variational inference, and (d) stochastic Stein variational gradient descent.

Table 1
Number of Forward and Gradient Evaluations for Mean Field Automatic
Differentiation Variational Inference, Physically Structured Variational
Inference, Boosting Variational Inference, and Stochastic Stein Variational
Gradient Descent

Method Number of gradient evaluations

Mean field ADVI 10,000

PSVI 10,000

BVI 120,000

sSVGD 120,000

Note. The values represent an indication of the computational cost of each
method, as the evaluation of data‐model gradients in FWI is by far the most
expensive part of each calculation.
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the l2 misfit function in Equation 1 with additional damping and smoothing terms to stabilize the inversion
process:

χreg =
1

2σ2‖dsyn − dobs‖
2
2 + λ1‖m − m0‖

2
2 + λ2‖Dm‖2

2 (15)

where σ is the magnitude of data noise, λ1 and λ2 are two parameters controlling the magnitude of the damping
term ‖m − m0‖

2
2 and the smoothing term ‖Dm‖2

2. Model m0 is a reference model and matrix D is a finite‐
difference derivative operator. Equation 15 is minimized iteratively using optimization algorithms and the
optimization result satisfies

m∗ = argmin
m

χreg (16)

The initial model for deterministic FWI is defined to be a laterally‐constant velocity model and the velocity value
at each depth is equal to the mean value of the Uniform prior distribution displayed in Figure 1b. This model is
also used as the reference modelm0. The L‐BFGS (D. C. Liu & Nocedal, 1989) algorithm is used to minimize the
misfit function in Equation 15. Two regularization factors are selected by trial and error. Figure 6c illustrates the
obtained velocity model, which shows inconsistency with the true velocity model especially within the two boxes.
This is because we start FWI from a relatively poor initial model and the algorithm finds a locally optimal solution
due to the strong nonlinearity of the FWI problems. We perform a second test using a multiscale strategy (Bunks
et al., 1995), in which a long wavelength (low wavenumber) velocity model is inverted first using low frequency
waveform data with a dominant frequency of 5 Hz. The initial model in this inversion is the same as that used in
the previous test. The inversion result is displayed in Figure 6a, where long wavelength components are recovered
accurately compared to the true velocity model. We further treat this model as the starting point for the inversion
using high frequency waveform data (with a 10 Hz dominant frequency), the same frequency data that were used
to obtain the variational Bayesian inversion results displayed in Figure 3 and the deterministic FWI in Figure 6c.
The corresponding inversion result is shown in Figure 6b, which resembles both the true velocity model and the
inverted mean models from the four variational inversion results.

This test demonstrates that although deterministic FWI is able to provide an accurate velocity model, the method
relies strongly on a good initial estimate and reference model (with correct long wavelength components) to avoid
finding a locally optimal solution. In addition, the use of regularization terms injects arbitrary prior information
into the inversion process that might not be true; their selection is usually ad hoc and requires many additional
tests to be perform. Note that incorrect prior information might bias Bayesian inversion as well (X. Zhao &
Curtis, 2024b). Nevertheless, regularization terms are not necessary for Bayesian FWI, as displayed in this work
in which a non‐informative Uniform prior distribution is used. This does not prioritize any model sample a priori.
Finally, it is impossible to find all solutions that fit the observed waveform data to within data uncertainties and
therefore to assess reasonable uncertainty information within such a deterministic inversion framework, which is
particularly important for post inversion decision making processes as demonstrated in the next section. This
shows the superiority of the proposed PSVI results and of Bayesian FWI, at additional computational cost.

Figure 6. Deterministic full waveform inversion results obtained using waveform data with a dominant frequency of (a) 5 Hz, (b) 10 Hz but starting from the low
frequency inversion results displayed in (a), and (c) 10 Hz directly. Blue and black boxes highlight differences between these three inversion results.
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4. Interrogating FWI Results
The objective of scientific investigations is typically to answer some specific and high‐level questions. Examples
of questions in the field of geophysics can be: How large is a subsurface structure? Is this a good location for
carbon capture and storage (CCS)? Normally these questions are answered in a biased manner, using only one or
a low number of possible models, and without evaluating uncertainties in the results. Interrogation theory pro-
vides a systematic way to obtain the least‐biased answer to these questions (Arnold & Curtis, 2018). In this
section, we solve two interrogation problems using the FWI results obtained above, to evaluate the potential
practical value of the correlations estimated by PSVI.

Interrogation theory shows that the optimal answer a∗ to a specific question Q that has a continuous space of
possible answers is expressed by the following expectation term:

a∗ = E[T(m|Q)] =∫
m
T(m|Q)p(m|dobs) dm, (17)

where optimality is defined with respect to a squared utility (Arnold & Curtis, 2018). The expectation is taken
with respect to the posterior distribution p(m|dobs) of model parameter m. Term T(m|Q) is a target function
conditioned on the question Q of interest. It is defined to map the high dimensional model parameterm into a low
dimensional target function value t in a target space T, within which the question Q can be answered directly. In
such cases the optimal answer in Equation 17 is simply the expectation or mean of the posterior target function.

4.1. Interrogation for Reservoir Size

Figure 7 shows the inverted mean models of the velocity structure within the white box in Figure 1a, obtained
through (a) mean field ADVI, (b) PSVI, (c) BVI, and (d) sSVGD. In each figure, we observe a low velocity body
at the center of the model section, outlined by a dashed black box. In this first example, we treat this low velocity
zone as a reservoir and use interrogation theory to estimate its size.

Previously, volume‐related questions were answered using seismic imaging results obtained from travel time
tomographic inversion (X. Zhao et al., 2022) and FWI (X. Zhang & Curtis, 2022; X. Zhao & Curtis, 2024a).
Following these studies, we define a target function T(m|Q) as the area of the largest continuous low velocity
body; this function converts a high dimensional velocity model into a scalar value, representing the estimated
reservoir area from a given posterior sample. Note that this process involves using a velocity threshold to
distinguish between low and high velocities. We use the same data‐driven method introduced in X. Zhao
et al. (2022) to determine the least biased estimate of this threshold value. This involves selecting some cells that
are almost definitely inside the low velocity anomaly, others that are almost definitely outside; we then choose the
least‐biased threshold value such that the expected probability of interior cells being below that value equals the
expected probability of exterior cells being above that value, according to the posterior pdf. We are then able to
calculate the target function for every posterior sample.

Figure 8 displays the posterior distributions of the target function (reservoir size) using the four inversion results
obtained previously. In this synthetic test, the true reservoir area is precisely known from Figure 1d and is denoted
by red lines in Figure 8. The optimal (least‐biased) answer estimated from each inversion method corresponds to

Figure 7. Mean velocity maps inside the white box in Figure 1a (corresponding to the true velocity map displayed in Figure 1d), obtained using (a) mean field ADVI,
(b) PSVI, (c) boosting variational inference, and (d) stochastic Stein variational gradient descent. Black dashed boxes show the region where interrogation is performed.
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the mean value of the respective posterior target function (as per Equation 17), and is displayed by a dashed black
line in each figure. As discussed in previous sections, mean field ADVI tends to underestimate posterior un-
certainties and provides biased inversion results. We see that, the corresponding interrogation results in Figure 8a
are also biased: the optimal answer shows a significant error and is far from the true answer, and indeed the true
answer is even excluded from the posterior distribution of the estimated volume. By contrast, if we impose
physically structured correlation information on model parameter, the optimal answer estimated by PSVI aligns
closely with the true answer (Figure 8b). The posterior distribution of the target function also successfully
captures bimodal uncertainties, similar to those obtained using BVI and sSVGD.

4.2. Interrogation for CO2 Storage

In the second example, we apply the inversion results to answer a more realistic and practically interesting
question. Assume the low velocity reservoir identified above is used in a CCS project and is injected with CO2.
The injection of CO2 into a porous rock produces changes in petrophysical parameters of the rock, such as pore
fluid phase and water saturation. These changes further result in variations in seismic response of a reservoir, such
as seismic velocity. Leveraging the FWI results, we can use these variations to monitor the injected CO2 in a
subsurface CCS project by answering the question: what is the total volume of CO2 stored in this reservoir?

For the characterization of changes in seismic velocity due to physical parameters related to CO2, especially CO2
saturation (Sco2 ) in the reservoir, we first represent the P wave velocity vp of a saturated rock using the bulk
modulus Ksat, shear modulus Gsat and density ρsat of the rock by

vp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ksat + 4Gsat/3

ρsat

√

(18)

The bulk modulus can be calculated using the Gassmann equation (Gassmann, 1951):

Ksat = Kd +
(1 − Kd

Km
)
2

ϕ
K f
+ 1 − ϕ

Km
−

Kd
K2
m

(19)

where ϕ is the porosity, and Kd, Km and K f are the bulk moduli of dry rock, solid matrix and pore fluid. The
density of a saturated rock can be calculated as

ρsat = (1 − ϕ)ρm + ϕρf (20)

where ρm and ρf are the densities of grain matrix and fluid, respectively. The shear modulus Gsat is not affected by
fluid and only depends on the shear modulus of dry rock Gd

Gsat = Gd (21)

Figure 8. Posterior distributions of the low velocity reservoir size using full waveform inversion results obtained from (a) mean field ADVI, (b) PSVI, (c) boosting
variational inference, and (d) stochastic Stein variational gradient descent, respectively. Red lines denote the true reservoir size, and black dashed lines denote the
optimal size obtained using interrogation theory.
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Assuming the reservoir is saturated by two distinct fluids, water and CO2, the saturation values for water (Sw) and
CO2 (Sco2 ) are constrained by the relation: Sw + Sco2

= 1. Then, the bulk modulus and density of fluid can be
calculated using the mixing rules

ρf = Swρw + Sco2
ρco2

(22)

K f = SewKw + (1 − Sew)Kco2
(23)

where ρw, ρco2
, Kw and Kco2

are the densities and bulk moduli of water and CO2, and e is an empirical value (Brie
et al., 1995). In this example, we use e = 11 as suggested by Kim et al. (2013). The injection of CO2 into a
reservoir alters the saturation values Sw and Sco2

, changing K f and ρf , and thus also vp through Equations 18–23.
Therefore, we can estimate Sco2

using P wave velocity values obtained from FWI.

To simplify the problem, we assume that some of the aforementioned rock physics parameters follow Gaussian
distributions. Their means and standard deviations are estimated from the Sleipner field (Dupuy et al., 2017;
Ghosh & Ojha, 2020; Strutz & Curtis, 2024), as listed in Table 2. Given these parameters, we build a direct
relationship between P wave velocity vp and CO2 saturation Sco2

. The results are depicted by the joint probability
distribution of vp and Sco2

displayed in Figure 9a. The red curve is the reference vp − Sco2
curve obtained using the

mean values from Table 2. In Figure 9a, the posterior distribution of CO2 saturation for any P‐wave velocity value
can be obtained. For example, Figures 9b and 9c illustrate two such posterior pdfs corresponding to velocity
values of 2,045 m/s (solid white line in Figure 9a) and 1,840 m/s (dashed white line). In Figure 9 we observe that
seismic velocity is sensitive to small CO2 saturations (below 0.2) and is insensitive for larger Sco2

values (Kim
et al., 2013).

In the previous interrogation example, we defined the largest continuous low velocity body as the reservoir of
interest for a posterior velocity sample. For each grid cell within the identified reservoir, we substitute its velocity
value into Figure 9a to obtain the posterior pdf of CO2 saturation. Finally, the total (2D) CO2 volume Vco2

stored in
the reservoir can be calculated by

Vco2
=∑VϕSco2

(24)

Table 2
Rock Physics Parameters and Their Associated Standard Deviations (Uncertainties) Estimated From the Sleipner Field (Dupuy et al., 2017; Ghosh & Ojha, 2020)

Parameter Km (GPa) Kd (GPa) Kw (GPa) Kco2
(GPa) Gm (GPa) Gd (GPa) ρm ( kg/m3) ρw ( kg/m3) ρco2

( kg/m3) ϕ (%)

Mean value 39.3 2.56 2.31 0.08 44.8 8.1 2,664 1,030 700 0.3

Uncertainty 1.41 0.08 0.07 0.04 0.81 0.24 3 20 77 0.02

Figure 9. (a) Joint probability distribution of P wave velocity and CO2 saturation given other parameters listed in Table 2. Red curve shows a one‐to‐one mapping
between vp and Sco2

obtained using the mean values in Table 2, and the color scale from red through green to dark blue represents the probability distribution of velocity,
given any value of CO2 and the Gaussian distributions defined in Table 2. (b) and (c) display the posterior distributions of CO2 saturation for velocity values of 2,045 and
1,840 m/s, marked by solid and dashed white lines, respectively, in (a).
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where V is the (2D) volume (i.e., area) of each grid cell in FWI, and the summation is taken over all grid cells
within the reservoir. This defines the target function for this interrogation problem.

Figure 10 displays the posterior distributions of the estimated (2D) CO2 volume obtained using different inversion
methods. Similarly to the example estimating reservoir size displayed in Figure 8, mean field ADVI provides
rather biased interrogation results since it tends to underestimate posterior uncertainties. In contrast, the other
three methods provide similar (and so probably reasonably correct) posterior distributions with two distinct
modes. The three estimated answers are close to the true value, which lies inside the high probability region of the
posterior distributions.

In Figures 8 and 10, posterior histograms from mean field ADVI are hugely biased. In Figure 8, interrogation
results from PSVI and BVI are similar and are slightly different from those from sSVGD; whereas in Figure 10,
results from BVI and sSVGD are similar and are slightly different from the results obtained using PSVI.
Theoretically, both BVI and sSVGD are able to approximate any posterior distribution up to any level of ac-
curacy, even if the posterior distribution is multimodal which is possibly true for FWI problems. On the other
hand, PSVI employs a transformed Gaussian distribution with a particular correlation structure, thus is less ac-
curate for highly nonlinear problems with complex posterior pdf's (note that in algorithm development we often
have to accept such a loss of generality in the solution when we wish to gain efficiency). Nevertheless, these three
methods provide approximately consistent interrogation results, and are significantly better than those using mean
field ADVI. We can therefore conclude from Figures 8 and 10 that uncertainty information provided by PSVI can
be used to answer real‐world questions correctly. Moreover, the non‐zero background correlations ignored by
PSVI (displayed in Figures 5c and 5d) are shown to be less important for post‐inversion decision‐making.

5. Discussion
PSVI can be considered as an intermediate approach between mean field ADVI and full rank ADVI (Kucukelbir
et al., 2017). Mean field ADVI neglects all correlations to reduce computations and thus strongly underestimates
posterior uncertainties. Full rank ADVI includes full correlation information between model parameters but is
computationally intractable for high dimensional problems such as 2D or 3D FWI. PSVI, with its ability to
capture structured correlations, strikes a balance between efficiency and accuracy. In the context of Bayesian
FWI, where problems are often high dimensional and non‐linear, PSVI offers improved inversion results while
maintaining a computational cost comparable to mean field ADVI. For inverse problems with lower dimen-
sionality such that modeling a full covariance matrix is affordable, full rank ADVI could be a more suitable
choice. However, in three of these methods a transformed Gaussian distribution is used to approximate the
posterior distribution. When dealing with inverse problems with strong multimodality, these Gaussian‐based
methods are not suitable as a Gaussian distribution might provide incorrect posterior uncertainties. For
example, imagine the true posterior pdf is a mixture of two Gaussian components, using one single (transformed)
Gaussian distribution cannot achieve an accurate approximation (an example is provided in Figure 1 in X. Zhao
and Curtis (2024a)). X. Zhao et al. (2021) also showed that full rank ADVI provides biased inversion results for a
travel time tomography problem. Nevertheless, in this work we introduce PSVI specifically for Bayesian FWI

Figure 10. Posterior distributions of the (2D) CO2 volume stored in the low velocity reservoir, calculated using (a) mean field ADVI, (b) PSVI, (c) boosting variational
inference and (d) stochastic Stein variational gradient descent. Red lines denote the true CO2 volume, and black dashed lines denote the least‐biased CO2 volume
estimated using interrogation theory.
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since it is so expensive that we almost cannot afford to use other methods, especially for 3D problems. Note that
such a trade‐off between efficiency and accuracy exists in all computational based problems.

As computational resources permit, it is advisable to use other variational methods such as normalizing flows
(Rezende & Mohamed, 2015), BVI (F. Guo et al., 2016; Miller et al., 2017) or deterministic or stochastic SVGD
(Gallego & Insua, 2018; Q. Liu & Wang, 2016) for strongly multimodal problems. These methods have shown
effectiveness in solving multimodal problems, albeit at the cost of a larger number of forward simulations. The No
Free Lunch theorem (Wolpert & Macready, 1997) can be paraphrased as: no method is better than any other
method when averaged across all problems. There is therefore no possibility to find a “best” method in general.
Nevertheless, individual classes of problems may have more or less efficient algorithms, so having a variety of
methods allows for tailored decisions to be based on the nature of the problem to be addressed.

In the 2D FWI example, we use a 5 × 5 correlation kernel as displayed in Figure 1d. To investigate the impact of
the correlation kernel size on inversion results, we conduct an additional test using an 11 × 11 kernel. The mean,
standard deviation and relative error maps of the obtained posterior distribution are displayed in Figure 11a,
which reveal nearly identical features, such as the continuous layers discussed previously, when compared to
those obtained using the 5 × 5 correlation kernel (Figure 3b). Figure 11b displays the posterior covariance
matrix, which as expected presents more non‐zero off‐diagonal covariance blocks than the 5 × 5 kernel
(Figure 5b). The covariance magnitudes decay from the main diagonal block, and become relatively small from
the second off‐diagonal block. However, modeling these additional covariances requires more parameters to
construct the matrix L. In addition, from Figures 5c and 5d, the covariance matrices calculated using BVI and
sSVGD exhibit only one prominent off‐diagonal block, probably because the non‐linearity of FWI makes it
challenging to capture a broader correlation structure with embedding prior knowledge of the type of structure
sought. Therefore, we conclude that the 5 × 5 correlation kernel used above is a reasonable choice that trades off
both accuracy and efficiency.

In real applications, if other prior knowledge about the subsurface structure is available (e.g., from seismic travel
time tomography), we can design specific correlation kernels to capture target‐oriented correlation information.
Furthermore, the underlying principles of PSVI can be adapted to address temporal problems such as time‐lapse
(4D) seismic monitoring in which we might expect spatial regularity in the location of injected fluids, or in
earthquake forecasting where correlations between seismic events over time might be captured effectively.

PSVI is not merely an extension of mean field ADVI as proposed by Kucukelbir et al. (2017). In fact it can be used
to extend a variety of variational methods to enhance their accuracy and efficiency. For example, in BVI the
physically structured approach in PSVI can replace diagonal Gaussians in modeling the Gaussian component
distributions used in X. Zhao and Curtis (2024a). This substitution is likely to improve the accuracy of each

Figure 11. Inversion results obtained from physically structured variational inference using an 11 × 11 correlation kernel.
(a) Mean, standard deviation and relative error maps. (b) Covariance matrix inside the white box in Figure 1a.
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component while maintaining similar computational efficiency, potentially leading to a reduction in the required
number of components and overall computational cost for BVI.

Similarly to BVI, PSVI produces an analytic posterior expression. Therefore, saving and loading inversion re-
sults, generating new posterior samples, and sharing the posterior distribution with others post inversion is simple
(Scheiter et al., 2022). In addition, such an analytic expression can be used to vary prior information in Bayesian
inference without requiring any further forward function evaluations using a variational prior replacement
methodology (X. Zhao & Curtis, 2024b). The proposed method can also be extended to other general Gaussian‐
based methods such as Gaussian processes (Blatter et al., 2021; Ray, 2021; Ray & Myer, 2019; Valentine &
Sambridge, 2020a, 2020b) and mixture density networks (Bishop, 1994; Bloem et al., 2023; Devilee et al., 1999;
Earp & Curtis, 2020; Hansen & Finlay, 2022; Meier et al., 2007; Shahraeeni & Curtis, 2011; Shahraeeni
et al., 2012), to capture desired correlation structures. Interestingly, special neural network structures are designed
for the same purpose, such as the coupling layer (Dinh et al., 2015, 2017; Durkan et al., 2019; Y. Sun & Wil-
liamson, 2024; X. Zhang & Curtis, 2021b; X. Zhao et al., 2021) and the autoregressive layer (De Cao et al., 2019;
Huang et al., 2018; Kingma et al., 2016; Levy et al., 2022; Papamakarios et al., 2017). However, they often come
with a higher number of parameters to be optimized, making PSVI an attractive and practical choice.

Considering that solving the forward function in 2D FWI is not hugely expensive, we use a relatively smaller step
size and more iterations during variational inversion to ensure that the optimization process has converged stably.
Figure 2 illustrates that the negative ELBOs stop decreasing after 2,500–3,000 iterations, indicating that the full
5,000 iterations used here might be redundant. For higher dimensional problems such as 3D FWI, we can
potentially use larger step sizes with fewer iterations, thereby optimizing the balance between computational
resources and convergence speed.

Similarly to PSVI, Zunino and Mosegaard (2019) introduced an efficient method to solve large linear (or weakly
non‐linear, so linearizable) inverse problems, in which an approximate covariance matrix is constructed to reduce
memory requirement and computational cost for calculating a full covariance matrix. Specifically, Zunino and
Mosegaard (2019) used Kronecker products to decompose the covariance matrix, assuming that the forward
problem is linear (linearizable) and that the posterior covariance matrix is separable (e.g., along different spatial
directions). While conceptually this shares similarities with PSVI, direct combination of PSVI and the Kronecker
product decomposition (Zunino & Mosegaard, 2019) in the context of FWI problems is not straightforward since
(a) the forward problem (i.e., solving a wave equation) is a strongly non‐linear operator, and (b) neither the
forward operator nor the posterior covariance matrix are easily separable by Kronecker products. A combination
of these two ideas might be possible in other applications, for example, in large scale 3D surface wave dispersion
inversions, in which modeling a full covariance matrix is impractical and the forward operator is weakly non‐
linear and separable in horizontal and depth directions.

The two interrogation examples presented here underscore the significance of estimating accurate uncertainties,
even if that demands a substantial increase in computational input. Biased uncertainty information (such as that
provided by mean field ADVI) leads to incorrect answers about Earth properties. Therefore, while obtaining an
accurate mean velocity model in Bayesian inversion, or just the best‐fit model in deterministic inversion, may
appear useful, they are far from sufficient for an unbiased and quantitative interpretation of the true Earth. The
pursuit of not only precision in mean velocity models but also robust and reliable uncertainty estimates is
important for a comprehensive understanding of subsurface structures.

In the first interrogation example, we estimated the size of a subsurface reservoir, where we use relative velocity
values and classify them as either low or high based on a velocity threshold value (X. Zhao et al., 2022). In the
second example, we take the absolute velocity values and convert them into CO2 saturation estimates using a non‐
linear rock physics relationship. If the inversion is performed with higher frequency data, the inverted velocity
values would be better constrained and become more accurate. Consequently, the posterior distribution of the
estimated CO2 volume can be improved. In this synthetic example we calculate the true CO2 volume using
exactly the same rock physics model as that used for interrogation, and obtain accurate interrogation results,
proving the effectiveness of interrogation theory for answering real‐world scientific questions and assessing the
corresponding uncertainties. In real problems, more complicated and realistic situations should be considered to
make the interrogation results practically reasonable and more accurate, such as interaction between rock and
fluid, existence of multiple types of fluids, attenuation and anisotropy of subsurface media, potential chemical
reaction between different fluids with rock, etc. All these factors will help us make a more accurate transform
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from seismic velocity values to fluid properties, thereby improving interrogation accuracy. It is therefore
promising that in future, 3D Bayesian FWI together with more advanced reservoir simulation and rock physics
inversion techniques, can facilitate more sophisticated and realistic interrogation applications in subsurface CCS,
or other subsurface projects. This comprehensive approach, enriched with full uncertainty assessments, could
significantly contribute to our understanding and improve decision‐making in the context of such endeavors.

6. Conclusion
In this work, we propose PSVI to perform 2D Bayesian FWI, in which a physical structure is imposed on the
uncertainties in variational distributions based on prior information about imaging problem solutions. In our
application, correlations between specific pairs of spatial locations are parametrized and inferred during inver-
sion. Thus, we are able to capture the main correlations with a desired structure in a computationally efficient
manner. We apply the proposed method together with three other variational methods: mean field automatic
differentiation variational inference (ADVI), BVI and sSVGD, to a synthetic FWI example. This demonstrates
that PSVI yields accurate first‐order statistical information, including the mean and standard deviation maps as
well as the marginal distributions, which are all consistent with those obtained using BVI and sSVGD. It also
provides other second‐order statistical information, specifically the posterior covariances. In addition, the ob-
tained full uncertainty information is verified through the application of the inversion results to two post‐inversion
interrogation problems: one estimating a subsurface reservoir size and another estimating CO2 volume in a CCS
project. In our examples, PSVI exhibits nearly the same computational efficiency as mean field ADVI while
enhancing the inversion accuracy significantly. This opens the possibility that 3D probabilistic FWI with full
uncertainty estimation can be performed both efficiently and accurately.

Appendix A: Comparison Between ADVI and PSVI
In this Appendix, we compare the performance of mean field ADVI, PSVI and full rank ADVI, by considering
another FWI test with a lower dimensionality. Figure A1 shows the true velocity model used in this test (obtained
by downsampling and truncating the velocity model in Figure 1a used in the main text) with a grid size of 45 × 90
in horizontal and vertical directions. Similarly, source and receiver locations are marked by red stars and a white
line. The remaining parameters used in this test are exactly the same as those used in the main text. To further
reduce the dimensionality of the problem such that full rank ADVI is affordable (i.e., modeling a full covariance
matrix is possible in terms of memory requirement and computational cost), we consider only a subset of the full
imaging region inside the dashed red box in Figure A1, within which velocity values are inverted. This region

Figure A1. True velocity model used to compare mean field Automatic Differentiation Variational Inference (ADVI),
physically structured variational inference and full rank ADVI in Appendix A. Source locations are indicated by red stars and
the receiver line is marked by a white line. Red dashed box indicates the study region within which velocity values are
inverted. White box displays regions within which the posterior covariance matrices obtained from different methods are
compared in Figure A3.
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contains 25 × 50 grid cells in both directions. All other velocity values are set to be their true values during
inversion.

Figure A2 displays the mean, standard deviation and the relative error maps of the posterior pdf's obtained using
(a) mean field ADVI, (b) PSVI, and (c) full rank ADVI, respectively. The three mean velocity maps generally
resemble each other and the true velocity model. As expected, mean field ADVI underestimates posterior un-
certainties due to ignoring all correlations between model parameters, and thus the lowest standard deviations and
the largest relative errors are present; results from PSVI and full rank ADVI show higher standard deviations and
smaller relative errors, since we consider either dominant or all correlations of the posterior distribution. We
observe that higher standard deviation values are present at the bottom of the imaging region in Figure A2c
compared to those in Figure A2b, which shows that there is some information loss between PSVI and full rank
ADVI. Another main factor for this is that running full rank ADVI with this dimensionality might be numerically
unstable: recall from Equation 14 that, optimizing a full matrix L is equivalent to training a neural network with
one fully connected layer and n neurons (n being the dimensionality of the problem and n = 1250 in this
example). This is difficult to train and the results would possibly be overfit.

In Figure A3, we compare the posterior covariance matrices inside the white box in Figure A1, obtained from the
three inversion results. No posterior correlation is observed from mean field ADVI, whereas main and full
correlations are estimated using PSVI and full rank ADVI respectively, and are approximately consistent with
each other to within the limitations of the PSVI parametrization. Additional off‐diagonal correlations are
observed in full rank ADVI indicating that a larger set of correlations could perhaps be included in the PSVI
parametrization. Nevertheless, Figures A2 and A3 demonstrate that PSVI captures dominant correlations that are
important to describe accurate posterior uncertainties and ignores those that are less important, to reduce
computational cost.

Figure A2. Mean (top row), standard deviation (middle row) and relative error (bottom row) of the posterior distribution obtained using (a) mean field ADVI,
(b) physically structured variational inference and (c) full rank Automatic Differentiation Variational Inference, respectively. The relative error is the absolute error
between the mean and true models divided by the corresponding standard deviation.
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Data Availability Statement
Software used to perform variational inference can be found at Pyro website (Bingham et al., 2018) and in X.
Zhang and Curtis (2023). Software used to perform Automatic Differentiation can be found at PyTorch website
(Paszke et al., 2019).
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