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S U M M A R Y 

Many scientific investigations require that the values of a set of model parameters are esti- 
mated using recorded data. In Bayesian inference, information from both observed data and 

prior knowledge is combined to update model parameters probabilistically by calculating the 
posterior probability distribution function. Prior information is often described by a prior 
probability distribution. Situations arise in which we wish to change prior information during 

the course of a scientific project. Ho wever , estimating the solution to any single Bayesian 

inference problem is often computationally costly, as it typically requires many model sam- 
ples to be drawn, and the data set that would have been recorded if each sample was true 
must be simulated. Recalculating the Bayesian inference solution every time prior information 

changes can therefore be extremely expensive. We develop a mathematical formulation that 
allows the prior information that is embedded within a solution, to be changed using varia- 
tional methods, without recalculating the original Bayesian inference. In this method, existing 

prior information is removed from a pre viousl y obtained posterior distribution and is replaced 

b y ne w prior information. We therefore call the methodology variational prior replacement 
(VPR). We demonstrate VPR using a 2-D seismic full waveform inversion example, in which 

VPR provides similar posterior solutions to those obtained by solving independent inference 
problems using different prior distributions. The former can be completed within minutes on 

a laptop computer, whereas the latter requires days of computations using high-performance 
computing resources. We demonstrate the value of the method by comparing the posterior 
solutions obtained using three different types of prior infor mation: unifor m, smoothing and 

geological prior distributions. 

Key wor ds: Bay esian inference; Inverse theory; Probability distributions; Seismic tomogra- 
phy; Waveform inversion. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/2/1236/7755434 by U

niversity of Edinburgh user on 25 Septem
ber 2024
1  I N T RO D U C T I O N  

In a wide variety of scientific and engineering applications, re- 
searchers seek to estimate unknown (latent) parameters using ob- 
served data by solving an inverse or inference problem. By ap- 
proximating the physical system, it is usually possible to calculate 
a forward function which estimates the synthetic data that would 
hav e been observ ed if any particular set of model parameter values 
were true, and this function commonly has unique values. Ho wever , 
direct inversion of this function is difficult if not impossible, due 
to uncertainties in the finite number of measurable data, and to the 
non-linearity of the forward function (Boyd & Vandenberghe 2004 ). 
Typically in practise, solutions to such inverse problems are non- 
unique (Mosegaard & Tarantola 1995 ; Mosegaard & Sambridge 
2002 ; Tarantola 2005 ; Valentine & Sambridge 2023 ). 

Bayesian inference solves fully non-linear, non-unique inverse 
problems under a probabilistic framework by seeking to define the 
1236 
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family of all plausible solutions within model parameter space. 
The solution to Bayesian inference is described by the so-called 
posterior probability distribution function ( pdf – either a probability 
density function for continuous variables, or a set of probabilities 
for discrete variables), obtained by updating prior information about 
model parameters with new information from observed data. It 
provides a statistical description of how consistent is each solution 
with both the data and prior information, and allows uncertainties 
in the inverse problem solution to be estimated (Tarantola 2005 ; 
Arnold & Curtis 2018 ). 

Global search or sampling based methods are often used to 
solve Bayesian inference problems. Samples of parameter val- 
ues with non-zero posterior probability values are retained, some- 
times in proportion to their probabilities, to build an ensemble of 
model solutions. These solutions are used to estimate statistical 
properties of the posterior distribution that characterize the solu- 
tion uncertainty. Monte Carlo is one of the most frequently used 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 

http://orcid.org/0000-0003-0984-1490
mailto:xuebin.zhao@ed.ac.uk
https://creativecommons.org/licenses/by/4.0/


Variational prior replacement 1237 

s  

M  

P  

2  

2  

e  

2  

e  

e  

(  

u  

e  

s  

S  

&  

c  

g  

b  

a  

d  

C  

c  

p  

A  

m  

r
 

m  

o  

f  

t  

b  

p  

B  

p  

t  

i  

p
 

s  

s  

w  

t  

o  

S  

f  

(  

m  

s  

e  

f  

e  

2  

2
 

o  

fi  

fi  

n  

p  

c  

i  

S  

E  

M  

A  

&  

u  

u  

m  

s  

r  

t  

i
 

p  

B  

f  

t  

p  

m  

n  

m  

p  

v  

d  

f  

o  

i  

a  

fi  

t  

d  

a  

w  

a  

d
 

t  

p  

t  

p  

m  

f  

t  

h  

c  

d  

(  

t  

e  

t
 

r  

v  

m  

v  

d  

e  

t  

p  

t  

n  

s

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/2/1236/7755434 by U

niversity of Edinburgh user on 25 Septem
ber 2024
ampling methods, including Metropolis-Hastings Markov chain
onte Carlo (MH-McMC–Metropolis et al. 1953 ; Hastings 1970 ;

ress 1968 ; Mosegaard & Tarantola 1995 ; Sambridge & Mosegaard
002 ), trans-dimensional Monte Carlo (Green 1995 ; Malinverno
002 ; Sambridge et al. 2006 ; Bodin & Sambridge 2009 ; Galetti
t al. 2017 ), gradient-based Monte Carlo methods (Welling & Teh
011 ; Girolami & Calderhead 2011 ; Fichtner et al. 2019 ; Gebraad
t al. 2020 ; Zhao & Sen 2021 ; Biswas & Sen 2022 ; de Lima
t al. 2023a ; Berti et al. 2023 ) and informed-proposal Monte Carlo
Khoshkholgh et al. 2021 , 2022 ). Global search methods that do not
se Markov chains have been developed to solve Bayesian problems,
ither using optimization to search for the most probable solution
uch as in simulated annealing (Kirkpatrick et al. 1983 ; Sen &
toffa 2013 ; Zhao et al. 2022b ) and genetic algorithms (Stoffa
 Sen 1991 ; Sambridge & Drijkoningen 1992 ), or algorithms that

haracterize the posterior distribution such as the neighbourhood al-
orithm (Sambridge 1999a , b ), prior sampling (Meier et al. 2007a ,
 ; K äufl et al. 2016 ; Mosser et al. 2020 ; Bloem et al. 2024 ), ex-
ct sampling (Propp & Wilson 1996 ; Walker & Curtis 2014a ) and
irect estimation of posterior pdfs without sampling (Nawaz &
urtis 2016 ). Ho wever , all such sampling methods present defi-
iencies when applied to complex or high dimensional inference
roblems such as slow convergence (Atchad é & Rosenthal 2005 ;
ndrieu & Thoms 2008 ), which implies that a large number of
odel samples and their corresponding forward simulations are

equired. 
Variational inference provides an alternative to random sampling
ethods to solve Bayesian problems. Variational methods select one

ptimal approximation to the true posterior pdf from a predefined
amily of known and computationally tractable probability distribu-
ions (referred to as the variational family). This is accomplished
y minimizing the difference between the posterior and variational
dfs (Bishop 2006 ; Blei et al. 2017 ; Zhang et al. 2021 ), thus solving
ay esian prob lems using optimization rather than stochastic sam-
ling. This approach can often be computationally efficient, ease
he detection of convergence, and scale well to high dimensional
nference problems with large data sets, while still producing a valid
robability distribution. 

In geophysics, variational inference was first applied to estimate
ubsurface geological facies and petrophysical parameters using
eismic data (Nawaz & Curtis 2018 , 2019 ; Nawaz et al. 2020 ),
here a mean-field approximation (which ignores correlations be-

ween parameters) is used to simplify the mathematical formulation
f the variational problem (Bishop 2006 ; Kucukelbir et al. 2017 ).
ince then, more advanced variational methods have been developed
or different geophysical problems, such as travel time tomography
Zhang & Curtis 2020a ; Zhao et al. 2021 ; Levy et al. 2022 ), seismic
igration (Siahkoohi et al. 2021 , 2023 ), seismic amplitude inver-

ion (Zidan et al. 2022 ), earthquake hypocentre inversion (Smith
t al. 2022 ), slip distribution inversion (Sun et al. 2023 ), full wave-
orm inversion (Zhang & Curtis 2021b ; Bates et al. 2022 ; Wang
t al. 2023 ; Lomas et al. 2023 ; Izzatullah et al. 2024 ; Zhao & Curtis
024b ; Yin et al. 2024a ) and experimental design (Strutz & Curtis
024 ). 

Most studies mentioned above, whether using random sampling
r variational methods, focus on performing Bayesian inference ef-
cientl y and accuratel y gi ven a specific set of observed data and
xed prior knowledge. Over recent years, researchers made use of
eural networks and other machine learning architectures to im-
lement efficient Bayesian inference in which the posterior pdf
an be obtained rapidly for any newly observed data set (Dev-
lee et al. 1999 ; Meier et al. 2007a , b ; Shahraeeni & Curtis 2011 ;
hahraeeni et al. 2012 ; de Wit et al. 2013 ; K äufl et al. 2014 , 2016 ;
arp & Curtis 2020 ; Earp et al. 2020 ; Zhang & Curtis 2021a ;
osher et al. 2021 ; Wang et al. 2022 ; Hansen & Finlay 2022 ;
l yae v & Elsheikh 2022 ; Grana et al. 2022 ; Guan et al. 2024 ; Sun
 Williamson 2024 ). However, almost no publications consider sit-

ations where we want to change (update) the prior information
sed in a pre viousl y performed inference process, or where we have
ultiple plausible prior hypotheses to be tested for the same ob-

erved data. In such cases one might have to perform the inference
epeatedl y with dif ferent prior distributions; this would become ex-
remel y expensi ve in man y applications, e ven though the data used
n each individual case do not change. 

Walker & Curtis ( 2014b ) introduced a method called prior re-
lacement, which allows prior information to be changed rapidly in
ayesian inference without repeating the full inference procedure

or each individual prior pdf (on occasion below, we may refer to
his simply as the prior). This is achieved by dividing the obtained
osterior distribution by the current prior pdf in an attempt to re-
ove the effect of the latter, and then multiplying the result by a

ew prior pdf to inject (update) the results with new prior infor-
ation. The method was demonstrated to be effective for varying

rior information when estimating rock physics parameters (clay
olume and sandstone matrix porosity) using seismic impedance
ata. Walker & Curtis ( 2014b ) used (semi-)analytic methods to per-
orm prior replacement, which requires the calculation of integrals
f probability distributions over the entire parameter space, making
t difficult to calculate for high dimensional problems. Moreover, the
nalytic calculation is only applicable under stringent conditions:
rst, the existing posterior distribution is represented by a mix-

ure of Gaussian distributions. And second, the old and new prior
istributions should be uniform, Gaussian, or (possibly) other prob-
bility distributions whose integral over the parameter space and
hose multiplication and division by Gaussian distributions are an-

l yticall y tractable, such that the replacement of the new posterior
istribution can be calculated anal yticall y. 

In this paper, we develop a prior replacement methodology under
he framework of variational inference, hence the name variational
rior replacement (VPR). VPR addresses (relaxes) the issues men-
ioned above, making it applicable for high dimensional and com-
licated Bayesian inference problems. We test and demonstrate the
ethod on a full wav eform inv ersion (FWI) problem. Until the last

ew years there was no published fully non-linear Bayesian solution
o any FWI problem that approached a practical scale, due to the
uge computational cost, and associated theoretical and algorithmic
hallenges (Gebraad et al. 2020 ; Zhang & Curtis 2020b ). While to-
ate studies have extended the method to three dimensional cases
Zhang et al. 2023 ; Zhao & Curtis 2024c ), the computational issues
o make this approach mainstream remain. Advances that deliver
ven approximate results using greatly reduced computation are
herefore significant. 

The rest of this paper is organized as follows. In Section 2 , we
e vie w the Bayesian inference and prior replacement concept de-
eloped in Walker & Curtis ( 2014b ). To perform prior replacement
ore ef ficientl y, we introduce v ariational inference and deri ve the

ariational prior replacement (VPR) framework. In Section 3 , we
emonstrate the method using a seismic full waveform inversion
xample, in which we compare the results obtained using VPR with
hose found using independent Bayesian inference for each prior
df. We demonstrate the ef fecti veness of the method by testing
hree different prior distributions using the same observed data. Fi-
ally, we provide a brief discussion and draw conclusions from this
tudy. 
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2  M E T H O D O L O G Y  

2.1 Bay esian infer ence 

In Bayesian inference, inverse problems are solved under a proba- 
bilistic framework by calculating the so-called posterior probability 
distribution function (pdf) of model vector m given observed data 
d obs using Bayes’ rule: 

p ( m | d obs ) = 

p ( d obs | m ) p ( m ) 

p ( d obs ) 
(1) 

where p( m ) is the prior pdf that describes available information 
about model parameter m before inference process, and p( d obs | m ) 
is the likelihood function, which calculates the probability of ob- 
serving data d obs given any model value m . The likelihood is used 
to describe how well d obs matches synthetic data generated by a 
particular model m . Term 

p( d obs ) = 

∫ 
m 

p( d obs | m ) p( m ) dm (2) 

is a normalization constant called the evidence . It ensures that the 
right hand side of eq. ( 1 ) is a valid probability distribution. Bayesian 
inference combines information from both data and prior knowledge 
in a probabilistic manner, and the resulting posterior distribution 
describes all possible model solutions that fit the data and the prior. 

2.2 Prior replacement 

Consider a situation where w e ha ve different sets of prior informa- 
tion (e.g., different hypotheses, or differing beliefs held by different 
people) about model parameter m , defined by prior probability dis- 
tributions p 1 ( m ) , p 2 ( m ) , and so on, and we wish to e v aluate the
implications of these various priors by calculating the correspond- 
ing posterior distributions. Such an array of prior distributions might 
originate from the views of different groups of experts, or might in- 
voke different assumptions about the structures and properties that 
might pertain to the model, perhaps representing a range of different 
hypotheses to be tested and discriminated (e.g., Bloem et al. 2024 ). 
A straightforward strategy is to apply Bayes’ rule to each prior dis- 
tribution, and solve independent (prior specific) Bayesian inverse 
prob lem w hene ver prior information changes. Howe ver, such a prior 
specific approach is not practically feasible, since it is already ex- 
pensive to perform a single inference process, especially for high 
dimensional problems with large data sets such as typically occurs 
in seismic tomography and FWI problems. 

Alternati vel y, suppose w e ha ve obtained a posterior distribution 
for data d obs based on one specific type of prior information. When 
additional prior information becomes available or when different 
prior hypotheses exist and need to be discriminated, we might re- 
move the effect of the existing prior information from the current 
posterior distribution, then inject different prior information. Thus 
we would obtain the desired posterior pdf without explicitly apply- 
ing Bayes’ rule a second time. Below we denote prior and posterior 
pdfs that have been considered or calculated pre viousl y as old pdfs 
and those obtained by updating the prior distribution in this way 
as new ones; the words old and new in this context do not refer 
to situations where we update information because additional data 
have been collected, but rather to the order in which different prior 
distributions are combined with information in a fixed data set. 

Walker & Curtis ( 2014b ) mathematically formulated the above 
idea as follows: the new posterior distribution p new ( m | d obs ) given 
the new prior distribution p new ( m ) can be calculated by 

p new ( m | d obs ) = 

p( d obs | m ) p new ( m ) 

p new ( d obs ) 
(3) 

= 

p( d obs | m ) p old ( m ) 

p old ( d obs ) 

p new ( m ) 

p old ( m ) 

p old ( d obs ) 

p new ( d obs ) 

The first line is simply Bayes’ rule. In both new and old distri- 
butions, we assume that the observed data are the same. In the 
second line, p old ( d obs ) and p new ( d obs ) are two constants which 
are independent of model vector m according to eq. ( 2 ), so 
we define k = p old ( d obs ) /p new ( d obs ) for later convenience. Term 

p new ( m ) /p old ( m ) essentially takes the role of changing (replacing) 
the old prior by the new prior pdf in Bayesian inference, and states 
how we inject new prior information. Denote 

p old ( m | d obs ) = 

p( d obs | m ) p old ( m ) 

p old ( d obs ) 
(4) 

as the old posterior distribution given the old prior p old ( m ) . Then 
eq. ( 3 ) becomes 

p new ( m | d obs ) = k p old ( m | d obs ) 
p new ( m ) 

p old ( m ) 
(5) 

Equation 5 has a form that allows us to e v aluate the ne w posterior 
distribution from the old one by updating (replacing) prior informa- 
tion after Bayesian inference, assuming that we know both p old ( m ) 
and p new ( m ) , and that we can e v aluate the normalization constant k. 
Using this formulation, there is no need to perform new likelihood 
e v aluations, which is normally the most computationally e xpensiv e 
step in solving an inverse problem, no matter how many different 
prior distributions we wish to inject. Ho wever , prior replacement is 
v alid onl y under one condition: the ne w prior must have zero (or in 
practise, very small) probability where the old prior has zero prob- 
ability values to avoid a numerically unstable situation of dividing 
by zero (Walker & Curtis 2014b ). Intuiti vel y, the support of the new 

prior pdf must be a subset of that of the old one. 
Eqs. ( 4 ) and ( 5 ) define the two main operations involved in prior 

replacement. The former is the solution to a typical Bayesian prob- 
lem in which the (old) posterior pdf is e v aluated gi v en the observ ed 
data and existing prior information. The latter can be viewed as 
a quasi-Bay esian prob lem in the sense that Bay es rule applied to 
the new prior distribution is implicit within the formula, and the 
new posterior pdf is obtained by combining information from three 
probability distributions–of similar form to Bayes’ rule, but without 
the need to re-calculate the likelihood function from scratch. Cal- 
culation of these expressions can nevertheless be computationally 
e xpensiv e, so in the follo wing tw o sections we introduce efficient 
methods for each of these operations, respecti vel y. 

2.3 Variational inference 

The Bayesian posterior distribution in eq. ( 4 ) can be estimated using 
either random sampling or variational inference methods. Markov 
chain Monte Carlo (McMC) is a typical sampling method that gen- 
erates an ensemble of samples distributed according to the posterior 
distribution as the number of samples tends to infinity (Mosegaard 
& Tarantola 1995 ). Ho wever , McMC can be e xpensiv e in practise 
since the required number of samples increases exponentially with 
the dimensionality of model vector m – a concept referred to as the 
curse of dimensionality (Curtis & Lomax 2001 ). 

Variational inference is an alternative to McMC that can be more 
efficient in certain situations. In variational inference, we define a 
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amily of probability distributions Q ( m ) = { q( m ) } with fixed (pre-
efined) complexity, within which we select a member q ∗( m ) that
est approximates the unknown posterior distribution. Therefore,
ariational inference solves Bayesian problems using optimization
ather than random sampling. The optimal distribution can be found
y minimizing the discrepancy between the variational and posterior
istributions. 

The K ullback-Leibler (KL) di vergence (K ullback & Leibler
951 ) is often used to measure the distance between two distri-
utions 

L [ q( m ) || p( m | d obs )] = E q( m ) [ log q( m ) − log p( m | d obs )] (6) 

here the expectation is taken with respect to the variational dis-
ribution q( m ) . The KL divergence is non-negative and equals zero
nly when the two distributions are identical. Substituting Bayes’
ule (eq. 1 ) into eq. ( 6 ), we have 

log p( d obs ) = E q( m ) [ log p( m , d obs )] − E q( m ) [ log q( m )] + KL [ q( m )

|| p( m | d obs )] (7)

ince log p( d obs ) is a constant and independent of q( m ) , mini-
izing KL [ q( m ) || p( m | d obs )] is equi v alent to maximizing the first

wo terms on the right hand side of eq. ( 7 ). In addition, since
L [ q|| p] ≥ 0 , these two terms together act as a lower bound on

he lo garithmic e vidence, and they are usuall y defined as the evi-
ence lower bound (ELBO) of log p( d obs ) : 

LBO [ q( m )] = E q( m ) [ log p( m , d obs ) − log q( m )] (8) 

valuating ELBO [ q( m )] is easier than evaluating
L [ q( m ) || p( m | d obs )] since it does not explicitly require the

vidence term p( d obs ) to be calculated, which is often compu-
ationally intractable. The variational problem is therefore often
olved by maximizing the ELBO [ q( m )] . The optimization result is
 probability distribution q ∗( m ) with 

 

∗( m ) = argmax 
q∈ Q 

ELBO [ q( m )] (9) 

hich serves as the best approximation to p( m | d obs ) within Q ( m ) . 
In variational inference, there is a trade-off when choosing the

 ariational famil y: it needs to be suf ficientl y expressi ve to provide
n accurate approximation to the (potentially complex) posterior
istribution, yet simple enough for efficient optimization. Different
hoices of the family often result in different variational distribu-
ions, and also in different algorithms. 

.4 Variational prior replacement 

olving the second (quasi) Bay esian prob lem in eq. ( 5 ) requires
p new ( m | d obs ) to be e v aluated. On the right hand side of eq. ( 5 ), while
n most cases both old and new prior probability values can be calcu-
ated ef ficientl y, the main challenge lies in computing p old ( m | d obs )
or a new model m without invoking eq. ( 4 ) (Bayes’ rule) which
nvolves forward simulation of data corresponding to m in order to
 v aluate the likelihood. Otherwise prior replacement would reduce
o solving multiple independent Bayesian inverse problems with
ifferent prior distributions. 

We use variational inference to solve the first Bayesian problem
escribed in eq. ( 4 ), providing a known and parametrized probabil-
ty distribution (called the variational distribution according to the
revious section) q old ( m ) that approximates the old posterior pdf: 

 old ( m ) ≈ p old ( m | d obs ) = 

p( d obs | m ) p old ( m ) 

p old ( d obs ) 
(10) 
his distribution is found by solving a variational optimization prob-
em described in eq. ( 9 ). Once we obtain q old ( m ) , we can use it to
eplace p old ( m | d obs ) in eq. ( 5 ). Since q old ( m ) is only an approxima-
ion (rather than exactly equal) to p old ( m | d obs ) , we end up with an
pproximate expression for p new ( m | d obs ) : 

p new ( m | d obs ) = k p old ( m | d obs ) 
p new ( m ) 

p old ( m ) 
≈ k q old ( m ) 

p new ( m ) 

p old ( m ) 
(11) 

his means that to estimate p new ( m | d obs ) we do not need to e v alu-
te p old ( m | d obs ) and so avoid the calculation of likelihood function.
ince forward simulation is the most computationally e xpensiv e
omponent in an inverse problem, e v aluating q old ( m ) would nor-
ally be far cheaper than e v aluating p old ( m | d obs ) . Eq. ( 11 ) indicates

hat we can estimate p new ( m | d obs ) from q old ( m ) , up to a normaliza-
ion constant which can be absorbed into k. 

Note that not all variational inference methods can provide a
ariational distribution ( q old ( m ) in this case) whose probability
alue can be evaluated easily. For example, Stein variational gradi-
nt descent (SVGD–Liu & Wang 2016 ) and its stochastic version
sSVGD–Gallego & Insua 2018 ) iterati vel y update a set of samples
also called particles) such that they become distributed accord-
ng to an approximation to the posterior distribution. The output is
he optimized set of particles, which are used to estimate statisti-
al properties of the posterior distribution. Ho wever , evaluating the
robability value q old ( m ) for a particular m is not at all straightfor-
ard with these methods. 
An alternative suite of variational methods approximates the pos-

erior distribution as a known structure with giv en comple xity (for
xample a Gaussian distribution), and can thus be expressed by a
iven parametric (often analytic) representation. Variational infer-
nce finds the optimal values of hyperparameters that control the
arametric expression, thus defining a variational distribution that
est approximates the true posterior pdf. Since we obtain a paramet-
ic (closed form) expression for the variational distribution, we can
asil y e v aluate its probability v alue for an y model m . We refer to
his kind of variational method as parametric variational inference
Sj ölund 2023 ). Examples of typical parametric variational infer-
nce methods include automatic differentiation variational infer-
nce (ADVI–Kucukelbir et al. 2017 ), normalizing flows (Rezende
 Mohamed 2015 ), boosting variational inference (BVI–Guo et al.

016 ; Miller et al. 2017 ), and physically structured variational in-
erence (PSVI–Zhao & Curtis 2024b ). 

If q old ( m ) is constructed using a parametric variational infer-
nce method then its probability value can be calculated easily,
nd eq. ( 11 ) can in principle be e v aluated using any probabilistic
nference method since the probability value p new ( m | d obs ) can be
pproximated ef ficientl y. Howe ver, e ven though p new ( m | d obs ) can
e e v aluated ef ficientl y, the curse of dimensionality may ne verthe-
ess make the problem e xpensiv e, if not impossible, to solve using

onte Carlo sampling methods. We therefore introduce a second
ariational distribution q new ( m ) to approximate the new posterior
istribution p new ( m | d obs ) given the new prior information p new ( m ) .
his new variational distribution can be obtained by minimizing the
L-divergence between q new ( m ) and p new ( m | d obs ) : 

KL [ q new ( m ) || p new ( m | d obs )] = E q new ( m ) [ log q new ( m ) − log p new ( m | d obs )] , 

≈ E q new ( m ) [ log q new ( m ) − log q old ( m ) − log p new ( m ) + log p old ( m )] − log k 

(12) 

here the second line is obtained by substituting eq. ( 11 ) into
he first line. Note that p new ( m | d obs ) is the exact distribution from
q. ( 11 ), which is then approximated by using the same approxima-
ion as in eq. ( 11 ) by introducing the appro ximate Bay esian solution



1240 X. Zhao and A. Curtis 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/2/1236/7755434 by U

niversity of Edinburgh user on 25 Septem
ber 2024
q old ( m ) . The last term log k is a constant and can safely be ignored 
when minimizing KL [ q new ( m ) || p new ( m | d obs )] . This optimization 
problem can be solved in exactly the same way as conventional 
variational problem, and the result satisfies q new ( m ) ≈ p new ( m | d obs ) 
obtained by solving 

q ∗new ( m ) = argmin 
q∈ Q 

KL [ q new ( m ) || p new ( m | d obs )] (13) 

Using the framework of variational inference, the two main oper- 
ations in the original prior replacement problem described in eqs. 
( 4 ) and ( 5 ) are converted into two variational problems to esti- 
mate q old ( m ) and q new ( m ) , containing two approximate steps. We 
therefore call this new methodology variational prior replacement 
(VPR). 

Note that eq. ( 10 ) illustrates that the variational solution to the 
old Bay esian prob lem is an appro ximation, and VPR makes an ad- 
ditional approximation. Even if q old ( m ) equals p old ( m | d obs ) or if 
we somehow find an exact and analytic solution for p old ( m | d obs ) , 
we still need to introduce q new ( m ) to approximate the true 
posterior pdf p new ( m | d obs ) by minimizing the KL divergence 
KL [ q new ( m ) || p new ( m | d obs )] in eq. ( 12 ) since direct calculation of
p new ( m | d obs ) using eq. ( 11 ) requires the normalization constant k to 
be e v aluated which is intractable in high dimensional inverse prob- 
lems. While the first operation (eq. 10 ) which estimates q old ( m ) 
must be performed using a parametric variational method so that its 
probability value can be e v aluated in eqs. ( 12 ) and ( 13 ), the second 
problem can be solved using any variational method. 

The most e xpensiv e step in the VPR algorithm is to solve the 
first variational problem, because this requires the likelihood term 

(forward function) to be calculated. Provided that the support of all 
other prior pdf’s are subsets of this support, then this step needs to 
be performed only once, after which we can replace prior informa- 
tion rapidly whenever it changes. This makes the proposed method 
attractive in real problems, especially when multiple different prior 
distributions are possible for a single observed data set (Earp & 

Curtis 2020 ; Bloem et al. 2024 ). 

2.5 Physicall y Structur ed Variational Infer ence (PSVI) 

In this paper, we use physically structured variational inference 
(PSVI–Zhao & Curtis 2024b ) to solve the two variational problems 
to calculate both q old ( m ) and q new ( m ) . PSVI is an efficient paramet- 
ric variational inference method that defines a Gaussian variational 
family with a physics-based correlation structure. When the model 
parameters to be estimated have physical constrains (for example, 
seismic velocity should be a positive number and earthquake source 
location should be below the Earth’s surface), a bijective function 
(an invertible transform) is usually applied to the Gaussian random 

variables to ensure that the transformed model parameters satisfy 
their physical constrains. For example, the following logit functions 

m i = f ( θi ) = a i + 

b i − a i 
1 + exp ( −θi ) 

θi = f −1 ( m i ) = log ( m i − a i ) − log ( b i − m i ) (14) 

are often used to convert a Gaussian distributed variable θi defined 
in an unconstrained space (from minus to plus infinity) into the 
physical model parameter m i to be estimated which is bounded by 
the lower and upper bounds a i and b i , respecti vel y. The transformed 
probability distribution can be calculated through the change of 
variable formula 

log p( m ) = log p( � ) − log | det ( ∂ � 

f ( � )) | (15) 
where p( � ) is the Gaussian variational distribution in the un- 
bounded space. Term | det ( ·) | calculates the absolute value of the 
determinant of the Jacobian matrix ∂ � 

f ( � ) , which accounts for the 
volume change corresponding to this transform (Kucukelbir et al. 
2017 ). 

A Gaussian variational distribution N ( μ, � ) is defined by a mean 
vector μ and a covariance matrix � . To ensure that � al wa ys re- 
mains positive semi-definite, we re-parametrize it using a Cholesky 
factorization � = L L 

T , where L is a lower triangular matrix. A 

full covariance matrix can be constructed to include correlation 
information between pairs of model parameters. Ho wever , this in- 
curs huge memory requirements and computational costs (for an n 

dimensional problem, L requires n ( n + 1) / 2 real-valued entries). 
Alternati vel y, a mean-field (factorized) Gaussian variational ap- 
proximation may be used for high dimensional prob lems, w hich 
defines a diagonal covariance matrix, thus ignoring all correlations 
between model parameters. These two options are respecti vel y re- 
ferred to as full rank ADVI and mean-field ADVI in Kucukelbir 
et al. ( 2017 ). Unfortunately for the full wav eform inv ersion (FWI) 
problems considered in this paper, mean-field ADVI normally un- 
derestimates uncertainties of the posterior distribution whereas full 
rank ADVI is intractable due to the dimensionality of models (Zhang 
et al. 2023 ; Zhao & Curtis 2024b ). 

PSVI embodies a method with intermediate cost that lies be- 
tween mean-field ADVI and full rank ADVI, by modelling only 
the most important (dominant) correlation information in model 
vector m , guided by physical properties (prior knowledge) of imag- 
ing problems. Specifically, in spatial inverse (imaging) problems, 
model correlations are shown to be strong mainly between pairs of 
locations that are in spatial proximity to each other, and the magni- 
tude of correlations decreases rapidly as the distance between two 
locations increases (Gebraad et al. 2020 ; Zhang & Curtis 2021a ; 
Biswas & Sen 2022 ). This suggests that it might be sufficient to 
model correlations only between parameters that define properties 
which are spatially close (e.g., for FWI, parameters of cells that lie 
within a dominant wavelength of one another), and ignore correla- 
tions between those that are further apart. 

Since off-diagonal elements of the lower triangular matrix L dom- 
inantly represent correlations between parameter pairs, we impose 
the following sparse structure on L 

L = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

l 0 , 1 
l 1 , 1 l 0 , 2 
0 l 1 , 2 l 0 , 3 
... 0 l 1 , 3 ... 

l i, 1 ... 0 ... l 0 ,n −2 

0 ... ... ... l 1 ,n −2 l 0 ,n −1 

... 0 l i,n −i ... 0 l 1 ,n −1 l 0 ,n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(16) 

For each element, the first subscript i indicates a block of off- 
diagonal elements that are i rows below the main diagonal (i.e., at 
an offset of i from the main diagonal), and the second subscript j
indicates that l i, j is the j th element of that off-diagonal block. In 
eq. ( 16 ), sparsely distributed off-diagonal elements in red are used to 
capture main correlations between parameter pairs that are assumed 
to be important (in this case, are spatially close), and their values 
are optimized during variational inference. All other off-diagonal 
elements of L are set to be zero by assuming independence of the 
corresponding model parameter pairs. Note that we only impose a 
sparse structure on L rather than setting constraints on the values of 
the non-zero off-diagonal elements in red: those values are updated 
freely during the variational optimization (Zhao & Curtis 2024b ). 
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In PSVI, we can impose any desired correlation structure on L
 y setting onl y the corresponding of f-diagonal blocks as unknown
yperparameters and optimizing them. The total number of param-
ters to define L can thus be greatly reduced compared to that in
ull rank ADVI. The covariance matrix � obtained in this way then
lso represents a sparse correlation structure with specific non-zero
ff-diagonal blocks (similar to the red elements in eq. ( 16 ) but lo-
ated below and above the main diagonal elements). Since a priori
e expect that most of the important correlations are included in
SVI, the obtained variational distribution would capture parame-

er correlations of interest. Thus, inference results are significantly
mproved compared to those from mean-field ADVI (Zhao & Curtis
024b ). 

Variational parameters μ and L are updated by maximizing the
BLO in eq. ( 8 ) or equi v alentl y minimizing the KL divergence

n eqs. ( 6 ) and ( 12 ) using gradient based optimization methods,
nd their gradients are calculated using automatic differentiation
ibraries (Abadi et al. 2016 ; Paszke et al. 2019 ). The expectation
erms are estimated by Monte Carlo integration with a relati vel y
mall number of samples drawn from the variational distribution,
ecause the optimization is performed over many iterations so that
tatistically the parameters will converge towards the correct solu-
ion (Kucukelbir et al. 2017 ). 

 A P P L I C AT I O N  T O  F U L L  WAV E F O R M  

N V E R S I O N  

eismic full waveform inversion (FWI) estimates subsurface physi-
al properties, such as seismic velocities and density, using seismic
aveform data (Tarantola 1984 ; Fichtner et al. 2009 ; Virieux &
perto 2009 ). FWI is a highly nonlinear and non-unique inverse
roblem, and thus deterministic methods often fail to find a truly rep-
esentative Earth model that generates the observed data, and to es-
imate reliable uncertainties in the inversion results. In recent years,
esearchers have started to use various Bayesian inference methods
o solve probabilistic FWI problems, including Monte Carlo sam-
ling methods (Ray et al. 2016 , 2018 ; Visser et al. 2019 ; Gebraad
t al. 2020 ; Guo et al. 2020 ; Kotsi et al. 2020 ; Zhao & Sen 2021 ;
hoshkholgh et al. 2022 ; Biswas & Sen 2022 ; Fu & Innanen 2022 ;
e Lima et al. 2023a , b ; Berti et al. 2023 ) and variational inference
Zhang & Curtis 2021b ; Bates et al. 2022 ; Wang et al. 2023 ; Lomas
t al. 2023 ; Izzatullah et al. 2024 ; Zhao & Curtis 2024b ; Yin et al.
024b ). Bayesian FWI often requires huge computational resources
ince (1) the dimensionality (number of unknown parameters) of an
WI problem is usually high (Curtis & Lomax 2001 ), and (2) the for-
ard and adjoint simulations are e xpensiv e (Wang et al. 2019 ; Zhao

t al. 2020 ). Therefore, reducing computational overhead (while still
btaining reasonably accurate inversion results) is a top priority in
ayesian FWI, especially if we have multiple prior distributions to
onsider. 

We apply variational prior replacement (VPR) to a 2D Bayesian
coustic FWI problem to explore its ef fecti veness. Fig. 1 (a) dis-
lays the true velocity model used in the following tests, which is
btained by truncating and downsampling the original Marmousi
odel (Martin et al. 2006 ) to a grid size of 110 × 250 cells, with

ach cell measuring 20 m in both horizontal and vertical directions.
op 10 rows of the grid is fixed at their true velocity values during

nversion. We place 12 sources (red stars in Fig. 1 a) on the surface
ith a spacing of 400 m, and 250 receivers (white line in Fig. 1 a)
n the seabed (200 m depth) with a horizontal interval of 20 m.
he waveform data are 4 s long with a sample interval of 2 ms,
hich are generated by solving a 2D acoustic wave equation using
 time-domain finite difference method. We further add Gaussian
andom noise with zero mean and a standard deviation value of
.1 ( ∼ 1% of the average value of the maximum amplitude of each
eismic trace) to the obtained waveform data, which is treated as the
bserved data set in this example. The source function is a Ricker
avelet with a dominant frequency of 10 Hz. 
We define a Gaussian likelihood function to represent data un-

ertainties 

p( d obs | m ) ∝ exp 

[
− ( d syn − d obs ) T � 

−1 
d ( d syn − d obs ) 

2 

]
(17) 

n this example, the covariance matrix of data noise � d is assumed
o be a diagonal matrix (uncorrelated data noise), and all diagonal
lements are set to be 0.1 to represent the level of noise added to
he synthetic waveform data. That is to sa y, w e assume the data
ovariance matrix � d is known. The same finite difference for-
ard modelling method is used to calculate synthetic data d syn , and
ata-model gradients are computed using the adjoint-state method
Plessix 2006 ). During forward and adjoint simulations, we fix ve-
ocity values in the water layer at their true values. Prior distributions
sed in this study are discussed below. 

.1 Prior information 

e consider three different types of prior information in the FWI
roblem. We first define a uniform prior distribution p 1 ( m ) for the
elocity values at each grid cell with lower and upper bounds at
ach depth displayed in Fig. 1 (b), similar to that used in Zhang &
urtis ( 2021b ). This is a non-informative (weak) and thus broad
rior distribution with no correlations between neighbouring cells.
t has the advantage that any type of velocity contrast between
eighbouring cells would be consistent with this prior pdf (all model
amples have the same prior probability density) as long as they lie
ithin the prior bounds, and hence can in principle be discriminated
nl y b y comparing their consistenc y with the observ ed wav eform
ata. 

The second prior distribution is a spatially smoothed version of
he uniform distribution, obtained by applying a second-order finite
ifference (smoothing) operator S : 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

... 

... 1 −2 1 0 0 ... 

... 0 1 −2 1 0 ... 

... 0 0 1 −2 1 ... 
... 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(18) 

o model parameter m . Define a Gaussian distribution for Sm 

p( Sm ) = k 1 exp 

[
−1 

2 
( Sm ) T � 

−1 
Sm 

( Sm ) 

]
(19) 

here k 1 is a normalization constant, and � Sm 

is a diagonal matrix
ith its diagonal elements controlling the strength of the spatial

moothness (larger values correspond to weaker spatial smooth-
ess). In this paper, the diagonal elements of � Sm 

are set to 500.
his can be interpreted as applying a Tikhonov (regularization) ma-

rix S to m (Golub et al. 1999 ; Aghamiry et al. 2018 ). Then the
moothed prior distribution p 2 ( m ) can be written as 

p 2 ( m ) = 

p( Sm ) p 1 ( m ) 

k 2 
(20) 
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Figure 1. (a) Truncated and down-sampled P wav e v elocity of the Marmousi model used in this paper. Source locations are indicated by red stars and the 
receiver line is marked by a white line. Dashed black lines display the locations of two vertical profiles used to compare the posterior marginal probability 
distributions in Figs 6 and 10 in the main text. (b) Upper and lower bounds for the uniform prior distribution at different depths. 

Figure 2. A picture of real geological structures with a scale of metres (John 
2012 ) used to calculate a local correlation matrix and define the geological 
prior distribution p 3 ( m ) . 
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where p 1 ( m ) is the uniform distribution defined above, and k 2 
is another normalization constant which can be absorbed into the 
evidence term in Bayes’ rule so we do not need to calculate its value. 

This prior distribution p 2 ( m ) embodies strong prior information 
in which model samples with smaller velocity contrasts between 
spatially neighbouring cells have higher probability values. There- 
fore, velocities in neighbouring cells should be positi vel y corre- 
lated. This information may or may not be advantageous depending 
on the true (geological) prior information about the form of the 
velocity structure being estimated. Compared to the uniform prior 
distribution, large velocity contrasts between neighbouring cells are 
almost excluded by this prior information as they have relati vel y low 

prior probability values. This effectively reduces the hypervolume 
of parameter space spanned by significantly non-zero values of the 
posterior pdf. In other words, it provides more information than 
p 1 ( m ) . More detailed comparisons of these two prior distributions 
and their effects on the posterior pdfs can be found in Earp & Curtis 
( 2020 ). 

The third prior distribution p 3 ( m ) is a Gaussian distribution with 
real geology-informed inter-parameter correlation information. The 
mean and standard deviation vectors of the Gaussian prior distribu- 
tion are set to be those of the uniform prior distribution p 1 ( m ) for 
consistency. Considering the dimensionality of this FWI problem 

(100 × 250), it is difficult to build a full prior covariance matrix to 
describe detailed geological prior information. We therefore build 
a prior covariance matrix that incorporates only a local correlation 
structure estimated from real geology. 

To achieve this, we first select a set of realistic geological im- 
ages. Fig. 2 displays one such image (John 2012 ), and while the 
images are all at much smaller scale than the Marmousi model 
was designed to represent, we assume scale invariance of geolog- 
ical correlations (only for the purposes of this test). From each of 
the pictures, we randomly sample 1000 subimages using a window 

with 20 × 20 pixels, which together represent a local correlation 
structure between parameters. Fig. 3 (a) shows the calculated full 
correlation matrix with a size of 400 × 400, each element denoting 
correlation information of one parameter pair within the 20 × 20 
window. To analyse a more detailed structure of this correlation 
matrix, Figs 3 (b) and (c) present its first 60 × 60 elements and 20 
× 20 elements, respecti vel y. Note that we reshape the 20 × 20 (2D) 
images into 1D vectors in a row-major order (i.e., for each training 
image the first 20 elements of the 1D vector comprise the first row 
of the 2D image, the second 20 elements comprise the second row, 
and so on). Therefore, off-diagonal blocks observed in Figs 3 (a) 
and (b) represent correlation information in the vertical direction; 
only one such obvious block is visible, meaning that vertical cor- 
relations exist predominantly between vertically adjacent cells and 
decay rapidly with greater inter-cell distance. On the other hand, 
of f-diagonals directl y below and above the main diagonal elements 
(display ed in F ig. 3 c) denote horizontal correlations: three or four 
strong off-diagonal elements have correlation values larger than 
0.7, implying that strong horizontal correlations exist within ap- 
proximately 4 neighbouring cells. Such horizontally smoother and 
vertically rougher correlation features are also clear in Fig. 2 . 

We use this correlation matrix to construct a full correlation ma- 
trix R that describes correlations in model vector m (with a dimen- 
sionality of 100 × 250 in this example) by considering correlations 
between pairs of parameters that are located only inside a 20 × 20 
window. We set all other elements to zero for reasons discussed in 
Section 2.5 and in Zhao & Curtis ( 2024b ). The covariance matrix 
of this Gaussian prior distribution � p 3 can then be calculated by 

� p 3 = D std R D std (21) 

where D std is a diagonal matrix with diagonal elements being the 
standard deviations of p 3 ( m ) , and R is the correlation matrix ob- 
tained above. Finally, the Gaussian prior distribution p 3 ( m ) can be 

art/ggae334_f1.eps
art/ggae334_f2.eps
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Figure 3. (a) Prior correlation matrix calculated from a set of 20 × 20 sized training images sampled from pictures of real geology such as Fig. 2 . (b) and (c) 
show magnifications of the first 60 × 60 and 20 × 20 elements in (a), respecti vel y. Due to parametrization of the training images, distinct off-diagonal blocks 
below and above the main diagonal block in (a) and (b) represent vertical correlations, and of f-diagonals directl y below and above the main diagonal elements 
in (c) denote horizontal correlations. 
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efined as 

p 3 ( m ) = k 3 exp 

[
−1 

2 

(
m − μp 3 

)T 
� 

−1 
p 3 

(
m − μp 3 

)]
(22) 

here μp 3 is the mean vector of this Gaussian distribution. Simi-
arly to eq. ( 20 ), k 3 is a normalization constant whose value is not
equired in VPR. Below, p 3 ( m ) is referred to as the geological prior
istribution since it captures spatial correlation information from
eal geological structures. 

Fig. 4 displays one random sample drawn from each of the three
rior distributions. Since no spatial correlation is considered in the
niform prior distribution, we observe large velocity contrasts be-
ween neighbouring cells in Fig. 4 (a). The smoothed and geological
rior distributions impose spatially correlated information, thus the
rior samples presented in Figs 4 (b) and (c) are spatially smoother.
n addition, local velocity structures in Fig. 4 (c) show rectangular
atterns with larger sizes in the horizontal direction and smaller
izes in the vertical direction due to horizontal smoothness and
ertical roughness as represented in the geological prior pdf and
llustrated in Figs 2 and 3 . This pattern is not observed in Fig. 4 (b)
ince in p 2 ( m ) we impose the same magnitude of smoothness in
oth horizontal and vertical directions (this was not a requirement,
ut in eq. ( 19 ) we used equal horizontal and vertical smooth-
ng to contrast with the geological prior pdf). Fig. 4 thus proves
hat the three prior distributions encapsulate significantly different
rior information that w e ma y wish to inject into FWI inversion
esults. 

.2 Verifying variational prior replacement 

n the first test, we verify that VPR produces correct results by com-
aring them to those obtained using a conventional approach where
n independent Bayesian inversion is performed for each prior dis-
ribution (referred to herein as prior specific inversion ). For this test,
e consider the uniform prior distribution p 1 ( m ) and the smoothed
rior p 2 ( m ) . For the prior specific case, PSVI is used to solve these
wo FWI problems with their respective priors. We update varia-
ional parameters (mean vector μ and lower triangular matrix L

entioned in Section 2.5 ) for 5,000 iterations. During each itera-
ion, 2 random samples are used to approximate the ELBO [ q( m )]
eq. 8 ) using Monte Carlo integration; such a low number of samples
as been shown to be reasonable in a stochastic sense in previous
tudies, because of the large number of iterations (Kucukelbir et al.
017 ). For VPR, the uniform distribution p 1 ( m ) is treated as the
ld prior distribution, which is then removed from the old poste-
ior distribution (the posterior pdf calculated using p 1 ( m ) by prior
pecific inversion) and replaced by the smoothed (new) prior distri-
ution p 2 ( m ) . This is achie ved b y solving the variational problem
escribed in eq. ( 13 ), through minimization of the KL divergence
xpressed in eq. ( 12 ). Similarly to the prior specific case, PSVI is
sed to solve this prob lem, w here variational parameters are updated
or 5,000 iterations with 10 samples per iteration used to estimate
he expectation term in eq. ( 12 ). Note that it might be impossible to
eplace a smoothed (old) prior by a Uniform (new) prior distribu-
ion using VPR since in this case the support of the old prior may
nly be a subset of that of the new prior distribution (or it might
e ef fecti vel y so due to sampling and numerical approximations).
his might make p new ( m ) /p old ( m ) numerically unstable because

or some parameters m the value p old ( m ) could be small, poorly
etermined or even zero. 

Figs 5 (a) and (b) display prior specific inversion (PSI) and VPR
esults obtained using the smoothed prior distribution. In each col-
mn, a random posterior sample, the mean velocity map, standard
eviation and the relative error of the posterior distribution are pre-
ented from top to bottom row. The relative error defined to be the
ifference between the mean and true velocity models (Fig. 1 a) di-
ided by the standard deviation at each point, reflecting the relative
eviation between the true and inverted mean models. The most im-
ortant feature is that the first-order posterior statistics displayed in
igs 5 (a) and (b) are almost identical; Fig. 5 (b) was produced from

he results obtained using the uniform prior (displayed in Fig. 9 a).
his supports the statement that VPR is able to replace the old prior

nformation and inject (update) the new prior information into the
nversion results, without solving a Bayesian inverse problem again
rom scratch. 

We do observe some discrepancies between these two sets of
esults. For e xample, a v ertically oriented low velocity structure is
resent in Fig. 5 (a) inside dashed black and red bo xes, w hich is
ot present in Fig. 5 (b). Although this feature is not observed in
he true velocity model in Fig. 1 (a), there is no strong evidence to
iscriminate which result is better. 

For other local regions such as those below and to the right of
he boxes in Fig. 5 , the mean velocity model from VPR (Fig. 5 b)
ppears to be closer to the old posterior distribution using the uni-
orm prior pdf (displayed in Fig. 9 a) than it does to the PSI result
sing the smoothed prior (Fig. 5 a). This might be because this

art/ggae334_f3.eps
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Figure 4. (a) – (c) One random prior sample drawn from the (a) uniform, (b) smoothed and (c) geological prior distributions defined in the main text, 
respecti vel y. 
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implementation of PSI (which is an optimization problem) con- 
verged to a local minimum, or that it has not fully converged (full 
convergence might require a larger number of forward evaluations 
which is very expensi ve). Alternati vel y, it is also possible that the 
VPR procedure (also an optimization process) has not fully con- 
verged and thus might indicate an incomplete prior replacement in 
this test. On the other hand, for some other statistics such as the 
characteristic of spatial variations in each posterior sample, stan- 
dard deviations, or posterior marginal pdfs displayed in Fig. 6 , VPR 

results are clearly closer to the PSI results using the smoothed prior 
than to those using the uniform prior, supporting the statement that 
VPR produces reasonable statistical accuracy. We also note that it 
is reasonable that there remain some discrepancies, caused by the 
fact that in VPR we introduce a variational distribution q new ( m ) 
to approximate the new posterior distribution p new ( m | d obs ) as ex- 
pressed in eq. ( 13 ), rather than calculating the actual p new ( m | d obs ) 
as in Walker & Curtis ( 2014b ). 

Fig. 6 compares the posterior marginal pdfs of the above two 
results along two vertical velocity profiles at horizontal locations 
of 1 km (top row) and 2.6 km (bottom row). Their locations are 
displayed by dashed black lines in Fig. 1 (a). Red and black lines 
represent the true and mean velocity v alues, respecti vel y. Despite 
some small discrepancies here and there in Figs 6 (a) and (b), they 
provide similar posterior marginal pdfs. Interestingly, as displayed 
in the top row, the two methods (PSI and VPR) find very simi- 
lar yet incorrect posterior solutions given the same data and prior 
information (especially below 1.3 km depth where true velocity 
values are excluded by the high probability region of the posterior 
pdfs). This is because that the PSVI algorithm ma y ha v e conv erged 
around an incorrect solution in this region caused by cycle skipping, 
which often occurs in FWI problems. We also compare correlation 
information of the two posterior pdfs in Fig. 7 , which displays the 
posterior correlation matrices for velocity values in a 2D window 

with a size of 10 × 10 cells inside the black box in Fig. 1 (a). The 
top ro w sho ws the full correlation matrices (with a size of 100 ×
100), and the bottom row shows the first 30 × 30 elements. Highly 
consistent posterior correlation values are obtained, which again 
proves the ef fecti veness of VPR. 

To further test the performance of VPR, in Figs 8 (a) and (b) 
we compare one observed shot gather with data simulated by one 
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Figure 5. (a) Prior specific inversion (PSI) and (b) variational prior replacement (VPR) results obtained using the smoothed prior distribution p 2 ( m ) . The 
latter is obtained by removing the uniform prior information p 1 ( m ) from the old posterior pdf (displayed in Fig. 9 a), and imposing the smoothed prior p 2 ( m ) 
using VPR. From top to bottom row, they are: a random posterior sample, mean velocity map, standard deviation and relative error of the obtained posterior 
distribution, respecti vel y. The relati ve error is the absolute error between the mean and true models di vided b y the corresponding standard deviation at each 
point. Red and black dashed boxes highlight differences between (a) and (b). 
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andomly chosen posterior sample obtained from PSI and VPR
esults, respecti vel y. In both figures, the simulated data are highly
onsistent with the observed (noisy) data, which demonstrates that
PR can provide models that produce accurate waveform data that
t the observed data to within data uncertainties. 
In Appendix A , we present a second example to test the accu-

acy of VPR using a Gaussian prior distribution for p 1 ( m ) , which
gain shows that VPR and PSI provide highly consistent inver-
ion results and posterior statistics. In conclusion, since variational
rior replacement and prior specific inversion provide almost identi-
al posterior random samples, first-order statistics (posterior mean,
tandard deviation and marginal pdfs) and second-order statistics
correlation matrices), we assert that the proposed method is effec-
ive and accurate for varying prior information in Bayesian inference
ithout performing repeated independent inversions. 
b

.3 FWI using different priors 

n this section we analyse the effect of the three different priors
efined pre viousl y and compare the corresponding inversion results.
e use PSVI to perform a single variational Bayesian FWI using

he uniform distribution p 1 ( m ) . p 1 ( m ) is then replaced by both the
moothed prior p 2 ( m ) and the geological prior p 3 ( m ) using VPR.
ote that in VPR the old prior distribution should be broader than the
ew prior to avoid numerical instability issues such as occur when
ttempting to divide by zero (Walker & Curtis 2014b ). Ho wever ,
he Gaussian geological prior distribution is defined in the space
f real numbers, which spans a broader parameter space than the
niform distribution. Therefore, we truncate p 3 ( m ) within the lower
nd upper bounds of the uniform prior distribution, and renormalize

p 3 ( m ) by another normalization constant (which does not need to
e e v aluated, similar to those in eqs. 20 and 22 ). 
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Figure 6. Posterior marginal distributions coloured from dark blue (zero probability) to yellow (maximum value of marginal pdf’s in each plot), along two 
v ertical v elocity profiles at horizontal locations of 1 km (top row) and 2.6 km (bottom row) whose locations are marked by black dashed lines in Fig. 1 (a). (a) 
and (b) Posterior marginal pdfs from prior specific inversion (PSI) and variational prior replacement (VPR), obtained using the smoothed prior distribution. 
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Figs 9 (a)–(c) display the obtained inversion results. Each fig- 
ure includes a random posterior sample, the mean velocity, standard 
deviation and the relative error maps of the posterior pdf from top to 
bottom row. Note that Figs 5 (b) and 9 (b) represent the same results 
obtained using VPR. In a previous study (Zhao & Curtis 2024b ), 
we compared the inversion results obtained without using prior re- 
placement displayed in Fig. 9 (a) with two entirely independent vari- 
ational methods using exactly the same uniform prior distribution 
and observed data and obtained highly consistent results, proving 
that we obtain approximately correct posterior uncertainty statistics 
for this specific prior. In this study we focus on the inversion results 
obtained using different priors. 
The posterior random sample in Fig. 9 (a) shows significant ve- 
locity ‘speckle’ - strong, short wavelength contrasts - since no cor- 
relation is introduced by the uniform prior distribution. The rel- 
ati vel y non-informati ve prior information results in significantly 
higher uncertainties at greater depths, increasing up to around 
800 m/s. The two posterior samples in Figs 9 (b) and (c) are 
smoother since extra (smooth) prior information is injected into 
the two inversion results which precludes sharp velocity varia- 
tions between neighbouring cells. The smoothed prior pdf im- 
poses spatial smoothness explicitly, and the geological prior pdf 
injects similar information implicitly, as illustrated by the posi- 
tive correlations displayed in Fig. 3 . Therefore, the true velocity 
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Figure 7. Posterior correlation matrices from (a) PSI and (b) VPR results for velocity values in a 10 × 10 window inside the black box in Fig. 1 (a). Top row 

shows the full 100 × 100 sized posterior correlation matrices and bottom row shows the first 30 × 30 elements for better comparison. 
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tructures are better resolved since they are indeed laterally fairly
mooth. 

The three mean velocity maps are quite smooth and similar to
ach other, generally resembling the true velocity map. The methods
ail to recover some thin layers in the deeper part of the model due to
he limited frequency band of the waveform data (10 Hz dominant
requency). Also, the mean can sometimes have a very low, even
ero, probability density, especially in the case of the uniform prior
istribution where such a smoothed mean model might be precluded
y the data: this is because purely observed waveform data would
nject ne gativ e correlations between neighbouring cells as displayed
elow in Fig. 11 (a) and in Gebraad et al. ( 2020 ); Zhang et al. ( 2023 );
hao & Curtis ( 2024b ). Therefore, smoothed velocity structures

such as the mean model) which imply positive correlations between
djacent cells, might have low probability values. 

Standard deviation values displayed in Figs 9 (b) and (c) are
maller than those in Fig. 9 (a) (note that different colorbars are
sed in the former figures). This makes sense because by impos-
ng prior information that velocity structures should be relati vel y
mooth, w e ha v e remov ed the possibility of including large v elocity
ontrasts between laterally proximal cells. In fact, the introduction
f prior information, if it correctly reflects the true state of nature,
hould lead to models that better reflect the true state of nature
verall (other than in pathalogical cases). In our case, the geological
rior information introduced is derived from pictures that repre-
ent real geology and is therefore reasonabl y reflecti ve of the true
odel, so in this case at least, the introduction of prior information

hould improve the result. Nevertheless, in some cases the uncer-
ainty reduction displayed in Figs 9 (b) and (c) might not be a good
utcome. Normally there is less information at greater depths from
aveform data recorded at the surface. The decreased uncertainties

t depth occur because information from data and prior knowledge
re combined. This only leads to more accurate models if the prior
nformation is also accurate. In the case of our smoothed prior,
moothing is applied equally in vertical and horizontal directions
hich does not correctly reflect the structure of the true model. In

hat case we therefore would not expect that results are more ac-
urate after applying this prior information (but they may be, for
xample if the relative errors in vertical smoothing are more than
ompensated by increased accuracy in horizontal smoothing). In
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Figure 8. The “butterfly plot” of data comparison for one common shot gather. (a) The data predicted by a random posterior sample from PSI (left hand side of 
red line) and the observ ed wav eform data (right hand side of red line). (b) The data predicted by a posterior sample from VPR (left) and the observed waveform 

data (right). In both figures, the simulated data are highly consistent with the observed (noisy) data. 

Figure 9. (a) Prior specific inversion (PSI) results obtained using the uniform prior distribution p 1 ( m ) . (b) and (c) Variational prior replacement (VPR) results 
obtained by replacing the uniform prior distribution p 1 ( m ) by the smoothed prior p 2 ( m ) and the geological prior p 3 ( m ) , respecti vel y. In each column, a random 

posterior sample, mean velocity, standard deviation and relative error maps are displayed from top to bottom row, respectively. 
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addition, the posterior uncertainties in Fig. 9 (c) are higher than those 
in Fig. 9 (b), possibly due to the different magnitude of smoothness 
applied to these two results (one controlled by the predefined pa- 
rameter � Sm 

in eq. ( 19 ) and the other by correlations calculated 
from the training images such as Fig. 2 ). 
In addition to the magnitude of the standard deviation values, 
strong prior information also suppresses overall changes in the un- 
cer tainty str uctures: obvious spatial (ver tical) variations are ob- 
served in the standard deviation map in Fig. 9 (a). For example, 
uncertainties increase at depth since data sensitivity decreases at 
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Figure 10. Posterior marginal distributions along two vertical velocity profiles at locations of 1 km (top row) and 2.6 km (bottom row) marked by two black 
dashed lines in Fig. 1 (a). Columns (a) – (c) correspond to the same inversion results as those displayed in Figs 9 (a)–(c). 
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epth and lower uncertainties are observed around some high ve-
ocity la yers. How ever, those features are less significant in Fig. 9 (c)
nd almost invisible in Fig. 9 (b). This is because the geological prior
nformation imposes weaker vertical smoothness, as illustrated in
igs 3 and 4 (c), whereas the smoothed prior distribution imposes

he same magnitude of smoothness in both vertical and horizontal
irections. As a result, we observe larger relative errors in Figs 9 (b)
nd (c), especially at layer boundaries where higher uncertainties
hould be expected (Galetti et al. 2015 ). 

Fig. 10 displays the posterior marginal pdfs of the three inver-
ion results at the same two locations as in Fig. 6 . Similarly to the
tandard deviation maps, the marginal pdfs in Figs 10 (b) and (c) are
arrower than those in Fig. 10 (a) due to the additional prior infor-
ation injected. Fig. 10 (c) presents larger vertical variations than
ig. 10 (b). As marked by the three white arrows in the first row, the
old) posterior pdf using the uniform prior distribution fails to find
he true solution, thus neither do the two VPR results. This is rea-
onable considering the variational prior replacement methodology:
he method can only replace prior information imposed pre viousl y
nto the inversion results, but it cannot correct (improve) the old es-
imate of the posterior distribution in cases where the old estimate
s poor. Nevertheless, in places where the old posterior distribution
ncludes the true model solution, VPR injects new prior information
roperly as displayed in the bottom row. 

To analyse posterior correlation information in both horizontal
nd vertical directions, we calculate the correlation matrices for
elocity values selected from 10 horizontally contiguous and 10
ertically contiguous grid cells (marked by top and left boundaries
f the b lack bo x in Fig. 1 a). The corresponding results are displayed
n the top and bottom rows of Fig. 11 . Similarly to Figs 9 and 10 ,
ach column (Figs 11 a–c) represents the calculated correlation ma-
rix from one specific prior pdf. Since no correlation information is

art/ggae334_f10.eps


1250 X. Zhao and A. Curtis 

Figure 11. Posterior correlations for velocity values in 10 horizontally (top row) and vertically (bottom row) contiguous cells along the top and left of the 
b lack bo x in F ig. 1 (a), resulting in correlation matrices with sizes of 10 × 10. From left to right, (a) – (c) correspond to the same inversion results as those 
displayed in Figs 9 and 10 . 
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introduced by the uniform prior distribution, the posterior correla- 
tions displayed in Fig. 11 (a) are purely determined by observed data. 
Ne gativ e correlations are observed between neighbouring cells and 
positive correlations are vaguely presented between every second 
neighbouring cells. Since FWI is a highly underdetermined inverse 
problem (the ef fecti ve number of independent data points is sig- 
nificantly smaller than the number of unknown model parameters), 
velocity values oscillate between adjacent cells to achieve a better 
data fit, especially for grid cells within one wavelength. Similar pos- 
terior correlation patterns using a uniform prior distribution were 
observed in previous studies (Gebraad et al. 2020 ; Zhang et al. 
2023 ; Zhao & Curtis 2024b ). This would also happen in linearized 
(deterministic) FWI if no regularization term (prior information) 
was added. 

As discussed pre viousl y, the smoothed prior distribution imposes 
the same magnitude of smoothness in both directions to prevent 
sharp velocity changes (i.e., positive correlations between adjacent 
cells). The posterior correlations presented in Fig. 11 (b) are thus a 
result of the combination of correlation information from both the 
prior pdf (positive correlations) and observed data (negative corre- 
lations). Positive correlation values between neighbouring cells in 
Fig. 11 (b) indicate that correlation information from the smoothed 
prior is stronger than that from the waveform data. The geological 
prior pdf injects different levels of smoothness in horizontal and 
vertical directions, as illustrated in Fig. 3 . In the horizontal direc- 
tion, the magnitude of the smoothness injected by the prior pdf is 
presumably stronger than the magnitude of anti-correlation injected 
by the data, resulting in positive correlations between adjacent cells 
(top row in Fig. 11 c). On the other hand, we observe almost zero 
correlations between vertically neighbouring cells (bottom row in 
Fig. 11 c), implying that the vertical correlation information injected 
from the prior and data have similar strength, thus being cancelled 
out completely. 

3.4 Computational cost 

In Table 1 we summarize the detailed computational cost for the four 
different inversion tests performed in the previous two sections. The 
first tw o ro ws in Table 1 present the computational cost for the prior 
specific inversion (PSI) method using the uniform and smoothed 
prior distributions. In each test, we update the variational parameters 
for 5,000 iterations with 2 samples per iteration, resulting in a total 
number of 10,000 forward and adjoint (FWI) simulations. This 
process is performed using 36 CPU cores with a wall clock time 
of approximately 2 days. The other two results are obtained using 
variational prior replacement (VPR) with smoothed and geological 
prior distributions, based on the inversion results from the uniform 

prior pdf. To solve these two VPR problems, we use 5,000 iterations 
and 10 samples per iteration to minimize the KL divergence in 
eq. ( 12 ). This does not require any FWI simulations to calculate 
the likelihood (data misfit) value for any sample. We need only to 
e v aluate the probability value of the old posterior pdf represented 
by q old ( m ) . To achieve this, in VPR we construct q old ( m ) using a
parametric variational inference method (in this case we use PSVI 
introduced in Section 2.5 ). Note that the computational cost for 
e v aluating the probability value q old ( m ) is almost zero compared 
to the forward and gradient simulations in FWI. Therefore, the 
two VPR results can be obtained within 5 minutes using 1 CPU 

core, which can be performed ef ficientl y e ven on a laptop. The 
costs for both PSI and VPR depend on subjective assessments of 
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Table 1. A comparison of computational cost of the different tests performed in this study. PSI and VPR stand for prior 
specific inversion and variational prior replacement , respecti vel y. 

Prior pdf Method Number Samples Number of CPU cores Elapsed time 
of iterations per iteration FWI simulations 

Uniform PSI 5000 2 10,000 36 2 days 
Smoothed PSI 5000 2 10,000 36 2 days 
Smoothed VPR 5000 10 0 1 5 minutes 
Geological VPR 5000 10 0 1 5 minutes 
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he point of convergence, so the absolute computational time listed
n Table 1 might not be entirely accurate. Nevertheless, it is still
bvious that VPR is significantly cheaper than PSI since no further
WI simulation is involved once w e ha ve obtained the old posterior
istribution. In Section 3.2 , we showed that PSI and VPR provide
lmost identical results. This makes the proposed method attractive
hen multiple different priors are available or need to be tested
sing the same observed data, as presented in this paper. 

 D I S C U S S I O N  

e demonstrated that variational prior replacement (VPR) can
hange prior information ef ficientl y post Bayesian inference. The
pdated posterior distribution is found by solving a variational prob-
em, in which a variational distribution q new ( m ) is introduced and
ptimized iterati vel y to approximate p new ( m | d obs ) , as expressed in
q. ( 13 ). Therefore, we do not expect VPR and prior specific in-
ersion (PSI) to provide exactly the same results, especially if PSI
tself is performed using variational inference as in this study which
lso results in an approximation. This is part of the reason why
e observe some small discrepancies between the results obtained
sing VPR and PSI displayed in Figs 5 – 7 . 

A similar effect was observed in the original prior replacement pa-
er (Walker & Curtis 2014b ) which used mixture density networks
MND–Bishop 1994 ) to estimate the old posterior pdf, and used
semi-)analytic methods to calculate the new posterior pdf using
q. ( 5 ). In that case, the obtained pdf was still not the actual pos-
erior distribution p new ( m | d obs ) given observed data and new prior
nformation, since the old posterior distribution p old ( m | d obs ) used
n eq. ( 5 ) remained an approximation represented by the MND. This
xplains why the results obtained using prior replacement and di-
ect Monte Carlo sampling (i.e., prior specific inversion) displayed
n Figures 2 and 3 in Walker & Curtis ( 2014b ) are not identical.
evertheless, most of the posterior statistics in this current paper

re nearly identical between PSI and VPR, implying that VPR is
f fecti ve at updating prior information. 

In addition, (semi-)analytic calculation of eq. ( 5 ) requires the
 v aluation of the normalization constant k by integrating p new ( m ) ,

p old ( m ) and p old ( m | d obs ) over the entire parameter space analyt-
cally, which might be intractable for high dimensional inference
roblems, and indeed only under certain circumstances can this be
one (Walker & Curtis 2014b ). In the proposed VPR framework, we
ntroduce a second variational distribution q new ( m ) , which is found
y minimizing the KL-divergence in eq. ( 12 ); the specific value of
then need not be estimated explicitly, so VPR can be implemented

n a more straightforward manner. On the other hand, this implies
hat VPR is itself an approximate method which uses q new ( m ) to
pproximate p new ( m | d obs ) . 

One essential requirement for prior replacement developed here
nd in Walker & Curtis ( 2014b ) is that the probability value for the
ld posterior pdf must be able to be e v aluated cheapl y (otherwise,
here is no reason to use VPR instead of prior specific inversion).
n this study, we use physically structured variational inference
or this purpose (Zhao & Curtis 2024b ), which constructs a trans-
ormed Gaussian distribution with a specific correlation structure
o approximate the old posterior distribution p old ( m | d obs ) so that
he probability value q old ( m ) can be calculated ef ficientl y. Other
ell-established parametric variational inference methods, such as
ormalizing flows (Rezende & Mohamed 2015 ; Dinh et al. 2015 ;
ob yze v et al. 2020 ; Papamakarios et al. 2021 ; Zhao et al. 2022a ;
iahkoohi et al. 2020 ; Levy et al. 2022 ), automatic differentia-

ion variational inference (Kucukelbir et al. 2017 ; Zhang & Curtis
020a ; Bates et al. 2022 ; Sun et al. 2023 ) and boosting variational
nference (Guo et al. 2016 ; Miller et al. 2017 ; Locatello et al. 2018 ;
hao & Curtis 2024a ), can also be used to construct q old ( m ) . The
hoice of method should be based on the specific problem at hand,
ince the No Free Lunch theorem states that no method is better than
ny other when averaged across all problems (Wolpert & Macready
997 ). 

Note that the prior replacement step (the second step described
y eqs. 5 and 11 ) does not necessarily need to be solved using para-
etric variational methods or even variational inference. Various
onte Carlo sampling methods can also be used for this purpose

s long as the dimensionality of the inverse problem is not too high
Curtis & Lomax 2001 ). 

Walker & Curtis ( 2014b ) used mixture density networks (MDN)
o approximate the old posterior distribution, and it has been shown
o be difficult to capture posterior correlations between different
arameters using this method (Zhang & Curtis 2021a ; Bloem et al.
024 ). Nevertheless, as shown in numerous studies (Devilee et al.
999 ; Meier et al. 2007a , b ; Shahraeeni & Curtis 2011 ; Shahraeeni
t al. 2012 ; K äufl et al. 2014 , 2016 ; Earp & Curtis 2020 ; Earp
t al. 2020 ; Cao et al. 2020 ; Lubo-Robles et al. 2021 ; Hansen
 Finlay 2022 ; Bloem et al. 2024 ), an advantage of using MDN

s that they can determine the posterior pdf corresponding to any
ata set extremel y rapidl y once the networks have been trained. In
ther words, varying observed data in Bayesian inference can be
ccomplished using MDN with almost no additional cost. Prior to
he work of Walker & Curtis ( 2014b ) and this current work, if we
ished to change prior information we would have to re-train the
DN which typically requires millions of training samples and the

alculation of their forward function values. A possible extension
f the current work might combine VPR and MDN, in which MDN
s used to calculate the old posterior distribution (using a set of
rior samples obtained from the old prior pdf) and VPR is used to
 v aluate an y potential ne w posterior distribution w hen prior infor -
ation changes. Under this framework, both prior information and

bserved data can be replaced ef ficientl y with one single training
f an MDN (using the old prior). This opens the possibility that
dvanced real-time monitoring of subsurface changes and the cor-
esponding uncertainties can be implemented ef ficientl y for some
roblems. 
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Papamakarios & Murray ( 2016 ) introduced a similar approach 
compared to VPR for likelihood-free inference using MDN. Tra- 
ditionally one would use a large number (millions) of prior sam- 
ples and their forward function values to train an MDN. If we are 
only interested in a posterior pdf for one specific data set, such 
a strategy is inefficient since most of the prior samples and their 
forw ard e v aluations would result in near-zero probabilities in that 
specific posterior pdf. Therefore, Papamakarios & Murray ( 2016 ) 
defined a proposal prior distribution ˜ p ( m ) , from which samples 
are drawn to train an MDN. The proposal prior distribution is up- 
dated iterati vel y to generate samples that are highl y informati ve 
while training an MDN for a specific observation (for example, if 
˜ p ( m ) could be set equal to the true posterior pdf then all samples 
would be useful). After the training process, the proposal prior is 
replaced by the original prior pdf to obtain the true posterior pdf–as 
described in eqs. ( 5 ) and ( 13 ). Ho wever , in that case the corre- 
sponding posterior pdf needs to be normalized (Walker & Curtis 
2014b ), and for cases in which the proposal prior is narrower than 
the original prior distribution replacing it would lead to a numerical 
issue of di viding b y zero; both issues are likely to be especially 
pre v alent in high dimensional problems and are mitigated in our 
methodology. 

Based on a Markov chain Monte Carlo (McMC) framework, 
Mosegaard & Tarantola ( 1995 ) introduced an approach to draw 

samples from one probability distribution when one only has sam- 
ples from another distribution. They achieved this by resampling 
using a simple Metropolis accept-reject criterion based on the ra- 
tio of two probability values p new ( m ) /p old ( m ) , potentially avoiding 
further likelihood function e v aluations. In this sense, that method 
can be interpreted as a Monte Carlo version of prior replacement 
that provides a sampling-based solution, compared to the VPR ap- 
proach which is based on variational inference. Both approaches 
of Mosegaard & Tarantola ( 1995 ) and in this paper have a similar 
pre-requisite: that the support of the old prior distribution p old ( m ) 
should include that of the new prior so that numerical instability 
issues are avoided when performing the division p new ( m ) /p old ( m ) . 

In our numerical examples, geological prior information is repre- 
sented by a Gaussian distribution with a local correlation structure 
estimated from images of real geology. A direct generalization is to 
use a mixture of Gaussian distributions to model the geological prior 
distribution. In addition, normalizing flows (Dinh et al. 2015 , 2017 ; 
Papamakarios et al. 2017 ; Kingma & Dhariwal 2018 ) are often 
used as a deep generative model in the machine learning commu- 
nity, which construct a complex probability distribution by passing 
a simple and anal yticall y known probability distribution (such as a 
uniform or a standard normal distribution) through a series of in- 
vertible and differentiable transforms. After training a normalizing 
flows model, the prior probability value of any model sample can 
be e v aluated and used in the VPR framework. Future work might 
explore the use of these methods to build a more sophisticated 
prior distribution. On the other hand, geological prior information 
might be simulated through geological processing models (Tetzlaff 
et al. 1989 ; Paola 2000 ; Burgess et al. 2001 ; Hill et al. 2009 ; Tet- 
zlaff 2023 ), which can then be parametrized by advanced neural 
network models and used during Bayesian inference (Laloy et al. 
2018 ; Mosser et al. 2020 ; Levy et al. 2022 ; Scheiter et al. 2022 ; 
Hillier et al. 2023 ; Liu et al. 2024 ; Bloem et al. 2024 ; Bloem & 

Curtis 2024 ). These approaches could lead to more accurate and re- 
alistic representations of geological structures and their associated 
uncertainties. 

The main purpose of VPR is to update (replace) prior informa- 
tion ef ficientl y in Bayesian inference. As demonstrated herein, new 
inversion results can be obtained with no further forward simula- 
tion. On the other hand, this also indicates that we cannot obtain 
new information about data misfit values purely from VPR results 
- indeed, that is the point of the method. In future, VPR might be 
used to compare different prior hypotheses (e.g., including different 
magnitudes of smoothness for a smoothed prior distribution): say 
w e ha ve obtained approximate posterior pdfs for a set of differ- 
ent prior assumptions by applying VPR. For the different inversion 
results, we could perform a small number of additional forward 
simulations using posterior samples drawn from VPR results, based 
on which the different prior hypotheses can be compared, and one 
or two close-to-optimal options could be selected (one example is 
presented in Zhao & Curtis 2024c ). Although this procedure does 
require additional forward simulations, it still provides a far more 
efficient approach to test different prior options compared to carry- 
ing out a sequence of independent inversions as is typically done 
using linearized inversion. In addition, for cases when VPR be- 
comes less accurate (e.g., when the dimensionality and complexity 
of the inverse problem increase such as in 3D FWI problems), one 
might use a relati vel y lower cost forward function with different 
data types to refine (fine tune) the outcomes obtained from VPR, by 
inv oking Bay es’ r ule again (Zhao & Cur tis 2024c ). 

5  C O N C LU S I O N S  

We develop a variational prior replacement (VPR) methodology de- 
signed to ef ficientl y update prior information in Bayesian inference 
solutions. This approach involves replacing the existing prior infor- 
mation in a posterior distribution obtained from a previous inference 
process with a new prior distribution. The new posterior distribution 
is then found using variational inference. VPR eliminates the need 
to re-solve Bayesian inverse problems from scratch each time prior 
information changes. The results from a 2D full waveform inversion 
example support the ef fecti veness of VPR for varying prior infor- 
mation, in which VPR provides consistent statistics of the posterior 
probability distribution compared to those obtained using the con- 
ventional prior specific inversion scheme. This similarity holds for 
individual posterior samples, first- and second-order statistics, as 
well as simulated waveform data. The key advantage of VPR lies in 
its computational ef ficiency: achie ving the same results in a matter 
of minutes compared to two days required by the conventional ap- 
proach. Additionally, we show that VPR can be used to investigate 
the impact of different prior distributions on Bayesian inference 
results. This methodology has significant potential for applications 
in more computationally demanding inverse problems, such as 3D 

Bayesian FWI, especially when multiple priors are available or need 
to be tested and discriminated for the same data set. 
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Bayesian time-lapse full waveform inversion using Hamiltonian Monte
Carlo, Geophys. Prospect., online ahead of print, doi: 10.1111/1365-
2478.13604. 

e Wit , R.W. , Valentine, A.P. & Trampert, J., 2013. Bayesian inference of
Earth’s radial seismic structure from body-wave traveltimes using neural
networks, Geophys. J. Int., 195 (1), 408–422. 

evilee , R. , Curtis, A. & Roy-Chowdhury, K., 1999. An efficient, proba-
bilistic neural network approach to solving inverse problems: inverting
surface wave velocities for Eurasian crustal thickness, J. geophys. Res.,
104 (B12), 28 841–28 857. 

inh , L. , Krueger, D. & Bengio, Y., 2015. NICE: Non-linear independent
components estimation, preprint ( arXiv.1410.8516 ). 

inh , L. , Sohl-Dickstein, J. & Bengio, S., 2017. Density estimation using
real NVP, preprint ( arXiv.1605.08803 ). 

arp , S. & Curtis, A., 2020. Probabilistic neural network-based 2D travel-
time tomography, Neur. Comput. Appl., 32 (22), 17 077–17 095. 
arp , S. , Curtis, A., Zhang, X. & Hansteen, F., 2020. Probabilistic neural
network tomography across Grane field (North Sea) from surface wave
dispersion data, Geophys. J. Int., 223 (3), 1741–1757. 

ichtner , A. , Kennett, B.L., Igel, H. & Bunge, H.-P., 2009. Full seismic wave-
for m tomog raphy for upper-mantle str ucture in the Australasian region
using adjoint methods, Geophys. J. Int., 179 (3), 1703–1725. 

ichtner , A. , Zunino, A. & Gebraad, L., 2019. Hamiltonian Monte Carlo
solution of tomographic inverse prob lems, Geoph ys. J. Int., 216 (2), 1344–
1363. 

u , X. & Innanen, K.A., 2022. A time-domain multisource Bayesian Markov
chain Monte Carlo formulation of time-lapse seismic waveform inversion,
Geophysics, 87 (4), R349–R361. 

aletti , E. , Curtis, A., Baptie, B., Jenkins, D. & Nicolson, H., 2017. Transdi-
mensional Lov e-wav e tomography of the British Isles and shear-v elocity
structure of the East Irish Sea Basin from ambient-noise interferometry,
Geophys. J. Int., 208 (1), 36–58. 

aletti , E. , Curtis, A., Meles, G.A. & Baptie, B., 2015. Uncertainty loops
in travel-time tomography from nonlinear wave physics, Phys. Rev. Lett.,
114 (14), doi:10.1103/PhysRevLett.114.148501. 

allego , V. & Insua, D.R., 2018. Stochastic gradient MCMC with repulsive
forces, Vol. 1050, 30, preprint ( arXiv.1812.00071 ). 

ebraad , L. , Boehm, C. & Fichtner, A., 2020. Bayesian elastic full-waveform
inversion using Hamiltonian Monte Carlo, J. geophys. Res., 125 (3),
e2019JB018428. 

irolami , M. & Calderhead, B., 2011. Riemann manifold Langevin and
Hamiltonian Monte Carlo methods, J. R. Stat. Soc., B: Stat. Methodol.,
73 (2), 123–214. 

olub , G.H. , Hansen, P.C. & O’Leary, D.P., 1999. Tikhonov regularization
and total least squares, SIAM J. Matrix Anal. Appl., 21 (1), 185–194. 

rana , D. , Azevedo, L., De Figueiredo, L., Connolly, P. & Mukerji, T.,
2022. Probabilistic inversion of seismic data for reservoir petrophysical
characterization: Re vie w and examples, Geophysics, 87 (5), M199–M216.

reen , P.J. , 1995. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination, Biometrika, 82 (4), 711–732. 

uan , X. , Wang, X., Wu, H., Yang, Z & Yu, P., 2024. Efficient Bayesian
inference using physics-informed invertible neural networks for inverse
problems, Mac h. learn.: sci. tec hnol., 5 (3), 035026, doi: 10.1088/2632-
2153/ad5f74. 

uo , F. , Wang, X., Fan, K., Broderick, T. & Dunson, D.B., 2016. Boosting
variational inference, Adv. Neur. Inf. Proc. Syst., preprint ( arXiv:1611.0
5559 ). 

uo , P. , V isser , G. & Sa ygin, E., 2020. Ba yesian trans-dimensional full
wav eform inv ersion: synthetic and field data application, Geophys. J. Int.,
222 (1), 610–627. 

ansen , T.M. & Finlay, C.C., 2022. Use of machine learning to esti-
mate statistics of the posterior distribution in probabilistic inverse prob-
lems - an application to airborne EM data, J. geophys. Res., 127 (11),
e2022JB024703. 

astings , W.K. , 1970. Monte Carlo sampling methods using Markov chains
and their applications, Biometrika, 57 (1), 97–109. 

ill , J. , Tetzlaff, D., Curtis, A. & Wood, R., 2009. Modeling shallow marine
carbonate depositional systems, Comput. Geosci., 35 (9), 1862–1874. 

illier , M. , Wellmann, F., de Kemp, E.A., Brodaric, B., Schetselaar, E.
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 N O R M A L  I N I T I A L  P R I O R  

I S T R I B U T I O N  

n this appendix, we present a second example to test the perfor-
ance of the proposed variational prior replacement (VPR) method-

logy. We define a diagonal Gaussian distribution as the old prior
df, with mean and standard deviation are calculated from the uni-
orm prior distribution used in the main text. Fig. A1 (a) shows the
nversion results obtained using this normal prior distribution. From
op to bottom, each panel represents a random posterior sample, the
ean velocity, standard deviation and the relative error maps of

he posterior distribution, where the relative error is calculated as
he difference between the mean and true velocity models divided
y the standard deviation at each point. Given this inversion result,
e perform VPR by replacing a smoothed version of the normal
istribution (which is defined using exactly the same way as that
xpressed in eq. ( 20 )) by the original normal prior distribution, and
isplay the corresponding results in Fig. A1 (c). Similarly to the
ain text, in Fig. A1 (b) we display prior specific inversion (PSI)

esults obtained using this same smoothed prior distribution. Since
igs A1 (b) and (c) present highly consistent results, we conclude

hat VPR is accurate and ef fecti ve in this example. 
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Figure A1. (a) Prior specific inversion (PSI) results obtained using a diagonal Gaussian prior distribution defined in this Appendix. (b) PSI results obtained 
using a smoothed version of the normal prior distribution. (c) Variational prior replacement (VPR) results obtained by replacing the normal prior distribution 
by the smoothed prior. In each column, a random posterior sample, mean velocity, standard deviation and relative error maps are displayed from top to bottom 

row, respecti vel y. 

C © The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/2/1236/7755434 by U

niversity of Edinburgh user on 25 Septem
ber 2024

art/ggae334_fa1.eps
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHODOLOGY
	3 APPLICATION TO FULL WAVEFORM INVERSION
	4 DISCUSSION
	5 CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: VERIFYING VPR USING A NORMAL INITIAL PRIOR DISTRIBUTION

