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S U M M A R Y 

T ime-lapse seismic full-wa v eform inv ersion (FWI) provides estimates of dynamic changes in 

the Earth’s subsurface by performing multiple seismic surv e ys at different times. Since FWI 
problems are highly non-linear and non-unique, it is important to quantify uncertainties in 

such estimates to allow robust decision making based on the results. Markov chain Monte 
Carlo (McMC) methods have been used for this purpose, but due to their high computational 
cost, those studies often require a pre-existing accurate baseline model and estimates of 
the locations of potential velocity changes, and neglect uncertainty in the baseline velocity 

model. Such detailed and accurate prior information is not al wa ys a vailable in practice. In 

this study we use an efficient optimization method called stochastic Stein variational gradient 
descent (sSVGD) to solve time-lapse FWI problems without assuming such prior knowledge, 
and to estimate uncertainty both in the baseline velocity model and the velocity change 
over time. We test two Bayesian strategies: separate Bayesian inversions for each seismic 
surv e y, and a single joint inversion for baseline and repeat surveys, and compare the methods 
with standard linearized double difference inversion. The results demonstrate that all three 
methods can produce accurate velocity change estimates in the case of having fixed (exactly 

repeatable) acquisition geometries. Ho wever , the tw o Bayesian methods generate significantly 

more accurate results when acquisition geometries changes between surv e ys. Furthermore, 
joint inversion provides the most accurate velocity change and uncertainty estimates in all 
cases tested. We therefore conclude that Bayesian time-lapse inversion using a joint inversion 

strategy may be useful to image and monitor subsurface changes, in particular where variations 
in the results would lead to different consequent decisions. 
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1  I N T RO D U C T I O N  

A wide variety of academic and practical applications require that 
we detect property changes in the subsurface in order to understand 
dynamic processes in the Earth’s interior. Time-lapse seismic mon- 
itoring provides an important tool for this purpose. This involves 
conducting multiple seismic surv e ys acquired at the same site at 
different times (Lumley 2001 ). Changes in certain subsurface prop- 
erties are estimated by computing the difference between models 
constr ucted for sur v e ys at different times (the first surv e y being 
called the baseline surv e y and subsequent surv e ys being called 
monitoring surv e ys). In order to assess reliability of the property 
changes and interpret the results with appropriate levels of con- 
fidence, it is also necessary to quantify the uncertainty in such 
estimates. 

Seismic full-waveform inversion (FWI) is a method which uses 
full seismic recordings to characterize properties of the Earth’s 
interior (Tarantola 1984 , 1988 ; Pratt 1999 ; Tromp et al. 2005 ; 
1624 
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Plessix 2006 ), and has been applied at industrial scale (Virieux & 

Operto 2009 ; Prieux et al. 2013 ), regional scale (Tape et al. 2009 ; 
Fichtner et al. 2009 ) and global scale (French & Romanowicz 2014 ; 
Lei et al. 2020 ). Because of its high spatial resolution, the method 
has been extended to time-lapse studies to image changes in the 
subsurface. For example, a range of different schemes have been 
proposed for this purpose, such as parallel FWI (Plessix et al. 2010 ), 
sequential FWI (Asnaashari et al. 2015 ), double difference FWI 
(Watanabe et al. 2004 ; Zheng et al. 2011 ) and joint FWI (Mahar- 
ramov & Biondi 2014 ; Yang et al. 2014 ). Ho wever , all of these 
studies used linearised methods to solve their respective inverse 
problems and therefore cannot provide accurate uncertainty esti- 
mates. As a result, it becomes difficult to interpret the estimated 
property changes, and to use those estimates for subsequent appli- 
cations. 

Bayesian inference methods provide a variety of different ways 
to solv e inv erse problems and can produce accurate uncertainty 
estimates. In Bayesian inference, prior information is represented 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
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y a probability density function (pdf) called the prior pdf, which
escribes information about the parameters of interest prior to con-
ucting the inversion. Bayes’ theorem updates the prior pdf with
ew information contained in the data to construct a so-called pos-
erior pdf which describes the total state of information about the
arameters post inversion. The updating process is referred to as
ayesian inference. 
Markov chain Monte Carlo (McMC) is one method that is com-
only used to solve Bayesian inference problems. The method

enerates a set (chain) of successive samples from the posterior
robability distribution by taking a structured random-walk through
arameter space (Brooks et al. 2011 ). Those samples can thereafter
e used to calculate statistics of the posterior pdf, for example the
ean and standard deviation. The Metropolis-Hastings algorithm

s one such method (Metropolis & Ulam 1949 ; Hastings 1970 ;
reen 1995 ) and has been applied to a range of geophysical ap-
lications (Mosegaard & Tarantola 1995 ; Sambridge & Mosegaard
002 ; Bodin & Sambridge 2009 ; Galetti et al. 2015 ; Zhang et al.
018b ), including full-wav eform inv ersion (Ray et al. 2017 ; Sen &
iswas 2017 ; Guo et al. 2020 ). Ho wever , due to its random-walk
ehaviour, the method becomes inefficient in high dimensional pa-
ameter spaces (e.g. > 1000 dimensions are commonly encountered
n geophysical imaging problems). To reduce this issue, a variety of

ore advanced methods have been introduced to geophysics, such
s Hamiltonian Monte Carlo (Duane et al. 1987 ; Fichtner et al.
018 ; Gebraad et al. 2020 ), Langevin Monte Carlo (Roberts et al.
996 ; Siahkoohi et al. 2020a ), stochastic Newton McMC (Martin
t al. 2012 ; Zhao & Sen 2019 ) and parallel tempering (Hukushima
 Nemoto 1996 ; Dosso et al. 2012 ; Sambridge 2013 ). These allow

onvergence to be accelerated by assuming specific information
bout the structure of the problem to be solv ed. Nev ertheless, all of
hese methods still incur high computational costs and are therefore
ifficult to use in time-lapse full-waveform inversion. To enable
ayesian inference in time-lapse studies, Kotsi et al. ( 2020b ) ex-
loited a fast, local solver together with the discrete cosine transform
o solve time-lapse FWI problems using the Metropolis–Hastings
lgorithm, and directly imaged the velocity change by assuming a
nown baseline model. To further improve the efficiency, Hamilto-
ian Monte Carlo was used to solve the problem but with a regular
rid parametrization (Kotsi et al. 2020a ). Ho wever , these methods
equire a known and accurate baseline model and prior knowledge
bout the location of potential velocity change zones, which are
ot al wa ys a vailab le in practice and w hich therefore restricts their
ractical applications. 

Variational inference solves Bayesian inference problems in a
if ferent w ay: the method seeks an optimal approximation to the
osterior pdf within a predefined (simplified) family of probability
istributions, by minimizing the difference between the approxi-
ating pdf and the posterior pdf (Bishop 2006 ; Blei et al. 2017 ). A

ypical measure used to quantify this difference is the Kullback–
eibler (KL) divergence (Kullback & Leibler 1951 ); since this
easure is minimized the method solves Bayesian inference prob-

ems using optimisation, rather than stochastic sampling as used
n McMC methods. Consequently for some classes of problems
ariational inference can be computationally more efficient and
rovide better scaling to higher dimensional problems (Blei et al.
017 ; Zhang et al. 2018a ). The method also allows us to take
dvantage of stochastic and distributed optimisation (Robbins &
onro 1951 ; K ubrusl y & Gravier 1973 ) by dividing large data sets

nto small minibatches. In addition, variational inference can of-
en be parallelized at the individual sample level, which makes the

ethod even more efficient in real time. By contrast, in McMC
ne cannot use small minibatches as they break the detailed bal-
nce property required by most McMC methods (O’Hagan &
orster 2004 ), and McMC does not allow parallelization at the
ample level as each sample in McMC depends on the previous
ample. 

A range of dif ferent v ariational inference methods have been
ntroduced to geophysics. These include mean-field variational in-
erence (Bishop 2006 ; Nawaz & Curtis 2018 , 2019 ; Nawaz et al.
020 ), automatic differential variational inference (Kucukelbir et al.
017 ; Zhang & Curtis 2020a ; Zhang & Chen 2022 ), normalizing
ow variational inference (Rezende & Mohamed 2015 ; Siahkoohi
t al. 2020b ; Zhao et al. 2021 ) and Stein variational gradient de-
cent (SVGD: Liu & Wang 2016 ; Zhang & Curtis 2020a ; Smith et al.
022 ). Because of its high accuracy in lower dimensional problems,
he SVGD method has been used to solve FWI problems (Zhang &
urtis 2020b , 2021 ). More recently, Zhang et al. ( 2023 ) introduced
 variant of the SVGD method called stochastic SV GD (sSV GD)
o solve 3-D FWI problems and demonstrated that the method can
rovide more accurate results than ADVI and the original SVGD in
uch high dimensional problems. 

Based on the results of these studies we chose to test the sSVGD
ethod for the solution of time-lapse FWI problems. In particu-

ar, we do not assume prior knowledge about an accurate base-
ine model, nor about locations of potential velocity change zones,
nd we estimate uncertainty for both the baseline velocity and the
ime-lapse velocity change. To solve time-lapse FWI problems, we
onsider two Bayesian strategies, namely separate Bayesian inver-
ion for baseline and monitor surv e ys, and joint Bayesian inversion
or both surv e ys together, and compare the results with those from
tandard double difference inversion. In addition, we perform stud-
es with both fixed and perturbed acquisition geometries between
he baseline and monitoring surv e ys to test the robustness of each

ethod to typical variations in surv e y design that may occur in
ractical applications. 

In the following section we first describe the two Bayesian in-
 ersion strate gies and double difference inversion. In Section 3, we
pply the suit of methods to a time-lapse FWI problem and com-
are the results and their computational costs. We use the results to
emonstrate that sSVGD can be used to solve Bayesian time-lapse
WI problems and produce accurate velocity change estimates as
ell as associated uncertainties. We conclude by defining particular
ontexts in which Bayesian time-lapse FWI provides an important
ool to image and monitor subsurface property changes. 

 M E T H O D S  

.1 Standard time-lapse FWI 

he standard way to perform FWI is to minimize a misfit function
etween observed data d and model predicted data u ( m ) plus a
egularization term: 

L ( m ) = 

1 

2 
| d − u ( m ) | 2 + λ| Dm | 2 (1) 

here m ∈ R 

r is the parametrized earth model, D typically repre-
ents a finite-difference derivative matrix and λ controls the mag-
itude of regularization. The most straightforward implementation
f time-lapse FWI is to perform the above minimization for each
ata set from individual surv e ys; differences between the obtained
odels are regarded as estimates of the time-lapse change. In this
ode of implementation either both inversions can be performed
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using the same starting model, or the model obtained from inver- 
sion of the baseline surv e y can be used as the starting model for the 
monitoring surv e y inv ersion. 

A more efficient method is so-called double difference FWI 
which uses differential data between the two sets of data obtained in 
the baseline and monitoring surv e ys (Watanabe et al. 2004 ; Denli 
& Huang 2009 ; Zheng et al. 2011 ). The misfit function for double 
difference FWI is: 

L ( m 2 ) = 

1 

2 
| ( d 2 − d 1 ) − ( u ( m 2 ) − u ( m 1 ) ) | 2 + λ| Dm 2 | 2 

+ μ| m 2 − m 1 | 2 , (2) 

where we used subscript 1 and 2 to denote variables of the base- 
line inversion and monitoring inv ersion, respectiv ely, λ and μ are 
parameters that control the strength of regularization of model m 2 
and of the difference between m 2 and m 1 , respectively. The above 
equation can be reformulated as: 

L ( m 2 ) = 

1 

2 
| ( d 2 − d 1 + u ( m 1 )) − u ( m 2 ) | 2 + λ| Dm 2 | 2 + μ| m 2 − m 1 | 2 

= 

1 

2 
| d ′ 2 − u ( m 2 ) | 2 + λ| Dm 2 | 2 + μ| m 2 − m 1 | 2 , (3) 

where d 

′ 
2 = d 2 + [ u ( m 1 ) − d 1 ] can be regarded as a new data set

adjusted by the residual data of the baseline inversion. This adjust- 
ment allows unexplained data (those not fit by the earth model) 
in the baseline surv e y to be disregarded in inversions of monitor- 
ing surv e y data. With this definition one can use standard FWI 
algorithms to minimize eq. ( 3 ) and obtain the optimal model m 2 . 
The time-lapse change can finally be obtained by δm = m 2 −
m 1 . 

2.2 Bay esian time-la pse full w av eform inv ersion 

Bayesian inference solves inverse problems by updating a prior pdf 
p ( m ) with new information contained in the data to construct the 
posterior pdf p ( m | d ). According to Bayes’ theorem, 

p ( m | d ) = 

p ( d | m ) p ( m ) 

p ( d ) 
, (4) 

where p ( d | m ) is the likelihood which represents the probability 
of observing data d given model m , and p ( d ) is a normalization 
factor called the evidence . A Gaussian distribution is usually used 
to represent data uncertainties in the likelihood function, so 

p( d | m ) ∝ exp 

[
−1 

2 
( d − u ( m )) T � 

−1 ( d − u ( m )) 

]
, (5) 

where � is a covariance matrix which is often assumed to be diag- 
onal in practice. 

Similarly as in standard time-lapse full wav eform inv ersion, one 
can perform Bayesian inversion for each data set d 1 and d 2 sepa- 
rately, and calculate the probability distribution p ( δm ) using the 
results obtained. This can be achieved by randomly generating 
or selecting pairs of samples from the two posterior distribution 
p ( m 1 | d 1 ) and p ( m 2 | d 2 ), and computing the difference between each
pair which can then be regarded as a sample of distribution p ( δm ). 
The two inversions can be performed independently, or one can 
use the posterior samples obtained in the baseline inversion as the 
starting point for the monitoring inversion. Since in most Bayesian 
inference methods in theory the results do not depend on starting 
models (Brooks et al. 2011 ), the two methods should produce the 
same results when both of them have con verged. Ho wever , by us- 
ing the second strategy the burn-in period required in McMC-like 
methods (also sSVGD) can be significantly reduced. In this study 
we regard both of the above two methods as separate Bayesian 
inversions , and adopt the second method in our examples below 

to reduce the computational cost. According to the general Bien- 
aym é’s identity, the mean and variance of δm have the following 
form: 

mean ( δm 

i ) = mean 
(
m 

i 
2 

) − mean ( m 

i 
1 ) (6a) 

var 
(
δm 

i 
) = var 

(
m 

i 
2 

) + var 
(
m 

i 
1 

) − 2 cov 
(
m 

i 
1 , m 

i 
2 

)
(6b) 

where superscript i represents the i th element of a vector. Because 
the two inversions are conducted separately and the effect of starting 
models decreases with iteration number in McMC-like methods, the 
covariance between m 1 and m 2 becomes negligible when a Markov 
chain converges. The above equation can therefore be approximately 
expressed as: 

mean ( δm 

i ) = mean ( m 

i 
2 ) − mean ( m 

i 
1 ) (7a) 

var ( δm 

i ) = var ( m 

i 
2 ) + var ( m 

i 
1 ) (7b) 

The uncertainty of δm obtained using separate Bayesian inversions 
is thus higher than that of model m 1 or m 2 itself. This seems un- 
likely to be realistic: any par ticular ear th str ucture at the time of the 
baseline surv e y estimated b y model m 1 , is likel y to af fect uncertain- 
ties in m 2 in the sense that we would expect these uncertainties to 
change if a different baseline earth structure was true and estimated 
in m 1 . If this correlation was taken into account we would expect 
the overall uncertainty on the model differences between the two 
surv e ys to decrease. Given that the magnitude of time-lapse change 
is usually much smaller than that of either model, we would expect 
that the uncertainty estimate using the above method would be less 
valuable in practice. 

Instead of performing the two inversions separately, one can in- 
vert the two data sets simultaneously to obtain the joint distribution 
of model m 1 and m 2 , that is 

p( m 1 , m 2 | d 1 , d 2 ) = 

p( d 1 , d 2 | m 1 , m 2 ) p( m 1 ) p( m 2 ) 

p( d 1 , d 2 ) 
(8) 

This equation is still consistent with m 1 and m 2 being independent 
since in that case p ( d 1 , d 2 | m 1 , m 2 ) can be written as p ( d 1 , d 2 | m 1 ,
m 2 ) = p ( d 1 | m 1 ) p ( d 2 | m 2 ). Ho wever , given that m 2 = m 1 + δm for a
change in the Earth structure δm , we can instead invert for the joint 
distribution of m 1 and δm : 

p( m 1 , δm | d 1 , d 2 ) = 

p( d 1 , d 2 | m 1 , δm ) p( m 1 ) p( δm ) 

p( d 1 , d 2 ) 
(9) 

where p ( δm ) is the prior distribution of δm . In this way, one can 
impose prior information on δm by taking into account the fact 
that time-lapse changes are often small in practice, which there- 
fore correlates estimates of m 1 and m 2 and potentially produces 
more accurate model change and uncertainty estimates. We refer 
to this method as joint Bayesian inversion . If we assume that the 
baseline model m 1 is known, the above equation reduces to a form 

where we solve for the posterior distribution of δm only (Kotsi 
et al. 2020b ). We note that a similar idea of joint inversion has 
been used in a linearized inversion framework with a regularization 
term directly imposed on model differences (Maharramov & Biondi 
2014 ). F rom a Bay esian perspectiv e, re gularization can be re garded 
as prior information, so that method is conceptually a linearised 
form of the joint Bayesian inversion strategy. Ho wever , linearized 
inversion methods cannot provide accurate uncertainty estimates 
in non-linear problems, and inappropriate regularization may con- 
ceal useful information available in the data as demonstrated by 
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aharramov & Biondi ( 2014 ). In this study we therefore investi-
ate characteristics of the joint Bayesian inversion strategy. 

.3 Stochastic Stein variational gradient descent (sSVGD) 

o solve Bayesian inverse problems in eq. ( 4 ) or ( 9 ), we use a
pecific method called stochastic Stein variational gradient descent
sSVGD) which combines Monte Carlo and variational inference
ethods (Gallego & Insua 2018 ). The method simulates a Markov

rocess using a stochastic differential equation (SDE): 

z = f( z )dt + 

√ 

2 D ( z ) dW ( t) , (10) 

here z ∈ R 

m , f ( z ) is called the drift , W ( t ) is a Wiener process and
 ( z ) is a positive semidefinite diffusion matrix. If we denote the
osterior distribution of interest from either eq. ( 4 ) or ( 9 ) as p ( z ),
a et al. ( 2015 ) proposed a specific form of eq. ( 10 ) which gives

n SDE that converges to distribution p ( z ): 

( z ) = [ D ( z ) + Q ( z )] ∇ log p( z ) + �( z ) , 

(11) 

here Q ( z ) is a skew-symmetric curl matrix, �( z ) =
 m 

j= 1 
∂ 

∂z j 
( D i j ( z ) + Q i j ( z )) , and ∇log p ( z ) represents derivatives of

og p ( z ) with respect to all variables in z . By choosing different ma-
rices D and Q , different methods can be obtained (Ma et al. 2015 ).
or example, if we choose D = I and Q = 0 we obtained the stochas-
ic gradient Langevin dynamics algorithm (Welling & Teh 2011 ). If
e construct an augmented space z = ( z , x ) by concatenating z and

 moment term x , and set D = 0 and Q = 

[
0 −I 
I 0 

]
, we obtain the

tochastic Hamiltonian Monte Carlo method (Chen et al. 2014 ). 
The above process can be simulated numerically by discretizing

q. ( 10 ) with eq. ( 11 ) over time variable t using the Euler–Maruyama
iscretization: 

 t+ 1 = z t + εt [ ( D 

( z t ) + Q ( z t ) ) ∇ log p( z t ) + �( z t ) ] + N ( 0 , 2 εt D ( z t )) 

(12) 

here εt is a small step, and N ( 0 , 2 εt D ( z t )) is a Gaussian distri-
ution with mean 0 and covariance matrix 2 εt D ( z t ). Since p ( z t )
epresents the posterior distribution in eq. ( 4 ), it depends implicitly
n observed data d . The gradient ∇log p ( z t ) can be calculated using
ither the full data set or uniformly randomly selected minibatch
ata sets in each step in t , and in either case the process converges to
he posterior distribution p ( z ) when εt → 0 and t → ∞ . In practice
ecause of the limitation of computational resources, we cannot use
n infinitesimal εt . As a result, the εt should be chosen to be small
nough to ensure accuracy of the simulation and large enough so
hat the process is computationally tractable. One practical option
s to use a large step size at the beginning and exponentially decay
he size so that a small step size is used after the burn-in peirod to
chieve a high accuracy. 

sSVGD uses a set of models called particles since sSVGD moves
hem through parameter space. Define the set of particles as { m i :
 = 1,..., n } where m i ∈ R 

r , and construct an augmented space
 = ( m 1 , m 2 , ..., m n ) ∈ R 

nr by concatenating the n particles. Using
q. ( 12 ) we construct a sampler that runs n multiple interacting
hains: 

 t+ 1 = z t + εt [( D ( z t ) + Q ( z t )) ∇ log p( z t ) + �( z t )] + N ( 0 , 2 εt D ( z t )) , 

(13) 
here D , Q ∈ R 

nr×nr and ∇ log p, � ∈ R 

nr . Define a matrix K : 

 = 

1 

n 

⎡ 

⎢ ⎣ 

k( m 1 , m 1 ) I r×r . . . k( m 1 , m n ) I r×r 

. . . 
. . . 

. . . 
k( m n , m 1 ) I r×r . . . k( m n , m n ) I r×r 

⎤ 

⎥ ⎦ 

, (14) 

here k ( m i , m j ) is a kernel function and I r × r is an identity matrix.
ote that K is positive definite according to the definition of kernel

unctions (Gallego & Insua 2018 ). By setting D = K and Q = 0 ,
q. ( 13 ) becomes: 

 t+ 1 = z t + εt [ K∇ log p( z t ) + ∇ · K] + N ( 0 , 2 εt K) (15) 

his defines a Markov process that converges to the posterior dis-
ribution p( z ) = 

∏ n 
i= 1 p( m i | d ) asymptotically for any number of

articles n . Note that if we eliminate the noise term N ( 0 , 2 εt K)
n eq. ( 15 ), the method becomes Stein variational gradient descent
SVGD). The sSVGD algorithm is therefore a stochastic gradient

cMC method that uses SVGD gradients (Gallego & Insua 2018 ).
Eq. ( 15 ) requires that we generate samples from the distribution

N ( 0 , 2 εt K) , which can be computationall y expensi ve because the
atrix K is potentially large. To perform this more efficiently we

efine a block diagonal matrix D K 

 K 

= 

1 

n 

⎡ 

⎢ ⎣ 

K 

. . . 
K 

⎤ 

⎥ ⎦ 

, (16) 

here K is a n × n matrix with K i j = k( m i , m j ) . Note that the
atrix D K 

can be constructed from K using D K 

= PKP 

T where P
s a permutation matrix 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
1 

. . . 
1 

1 
1 

. . . 
1 

. . . 
. . . 

. . . 
. . . 

1 
1 

. . . 
1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(17) 

he action of P on a vector z rearranges the order of the vector
lements from the basis where particles are concatenated sequen-
ially to the basis where the first coordinates of all the particle are
isted, then the second, etc. With this definition, a sample η can be
enerated more ef ficientl y from N ( 0 , 2 εt K) using 

∼ N ( 0 , 2 εt K) 

∼
√ 

2 εt P 

T P N ( 0 , K) 

∼
√ 

2 εt P 

T N ( 0 , D K 

) 

∼
√ 

2 εt P 

T L D K N ( 0 , I ) , (18) 

here L D K is the lower triangular Cholesky decomposition of matrix
 K 

, which can be calculated easily as only the lower triangular
holesky decomposition of matrix K is required by eq. ( 16 ). In
ractice the number of particles n is usually sufficiently modest
hat the decomposition of K is computationally negligible. We can
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thus use eq. ( 15 ) to generate samples of the posterior distribution. 
In geophysics sSVGD has already been used to solve 3-D FWI 
problems (Zhang et al. 2023 ); in this study we test the method in 
the context of solving time-lapse imaging problems by sampling the 
distributions in eqs ( 4 ) and ( 9 ). 

To illustrate the sSVGD algorithm, we use the method to generate 
samples from a bi v ariate Gaussian distribution (blue area in Fig. 1 ), 
and compare the results with those obtained using SV GD . For both 
methods we use 20 particles which are initially generated from a 
standard bi v ariate normal distribution N ( 0 , I ) (red dots in Fig. 1 a). In
SVGD these particles are updated for 1000 iterations using eq. ( 15 ) 
without the Gaussian noise term, and Fig. 1 (b) shows the final 
particles. For sSVGD we perform the method for the same number 
of iterations using eq. ( 15 ) and retain all particles generated in the 
process, which results in a total of 20 000 samples (red dots in 
Fig. 1 c). No burn-in period is used for this example, the stepsize εt 

is set to 0.01 for both methods, and a radial basis function kernel 
is used to construct the matrix K . The main practical difference 
between the results is that sSVGD generates many more samples 
of the distribution than SV GD , since the particle values from every 
iteration (potentially after some burn-in period) constitute valid 
samples. 

3  R E S U LT S  

3.1 Experimental setup 

To understand the robustness and behaviour of each method, we set 
up a synthetic time-lapse experiment using a part of the Marmousi 
model to represent the true baseline model (Fig. 2 a, Martin et al. 
2006 ). To represent the true time-lapse model we reduce the velocity 
of a small square area in the baseline model by 2 per cent (Figs 2 a and 
c). We choose a square area since this discriminates geometrically 
correct imaging results from errors, since some of the latter are 
sho wn belo w to follo w geological strata and hence to look realistic. 
Both baseline and time-lapse models are parameterized using a 
regular 200 × 120 grid with a spacing of 20 m. Ten sources are 
located at 20 m water depth (red stars in Fig. 2 ), and 200 equally 
spaced receivers are located on the seabed at 360 m water depth 
across the horizontal extent of the model. Since it is not possible 
to repeat exactly the same acquisition geometries in time-lapse 
seismic surv e ys, and attempts to do so usually incur significant cost 
(Beasley et al. 1999 ; Yang et al. 2015 ; Calvert 2005 ), we study 
performance of the different methods when the source locations are 
repeated and when they are perturbed by 100 m in the monitoring 
surv e y (yellow stars in Fig. 2 ). In both cases we assume that the 
locations of the source positions used in each surv e y are known. All 
waveform data are simulated using a time-domain finite difference 
method with a Ricker wavelet of 10 Hz central frequency, and we 
added 1 per cent uncorrelated Gaussian noise to the data. For all 
inversions the gradients of the misfit (likelihood) function with 
respect to wave velocity in each cell are calculated using the adjoint 
method (Tarantola 1988 ; Tromp et al. 2005 ; Fichtner et al. 2006 ; 
Plessix 2006 ). 

For the prior information on absolute seismic velocity we use 
a Uniform distribution over an interval of 2 km s −1 at each depth 
(Fig. 2 b). To ensure that the rock velocity is higher than the velocity 
in water we impose an additional lower bound of 1.5 km s −1 . Given 
that time-lapse changes in seismic velocity are usually much smaller 
than the velocity itself, we use a Uniform distribution between −0.2 
and 0.2 km s −1 (Fig. 2 d) for the prior information p ( δm ) in eq. ( 9 ).
Note that no prior information is imposed directly on the model 
difference δm in the separate Bayesian inversion strategy. 

3.2 Exactl y r e peated acquisition g eometry 

We first perform time-lapse studies with the acquisition geometry 
repeated identically in the baseline and monitor surv e ys. The stan- 
dard double difference FWI method requires a good baseline model 
to obtain accurate velocity changes (Asnaashari et al. 2015 ). To 
attempt to achieve this we adopt a multiscale FWI strategy (Bunks 
et al. 1995 ) in the baseline inversion: we first invert for a long wave- 
length model using low frequency data simulated using a Ricker 
wavelet of 4 Hz central frequency. The initial model in this low fre- 
quenc y inv ersion is set to be laterally-constant with velocity equal 
to the average velocity of the prior distribution in Fig. 2 (b), and the 
range of models in Fig. 2 (b) is also imposed as a set of constraints 
on velocities at each depth. The resulting long wavelength model 
serves as the starting model for the inversion using higher frequency 
data (10 Hz wavelet). For both inversions we use the LBFGS method 
(Liu & Nocedal 1989 ) to minimize misfit functions as in eq. ( 1 ), in 
which the control parameter of the regularization term is selected by 
trial and error. Fig. 3 (a) shows the obtained baseline model which 
provides an accurate estimate of the true model. Note that because 
of the low data sensitivity around the bottom and edges of the model 
caused by acquisition geometry limitations, velocity structures in 
these areas exhibit larger errors. 

We then use this baseline model to conduct double difference 
FWI by minimizing the misfit function in eq. ( 3 ). The obtained 
time-lapse changes are shown in Fig. 3 (b). The results demonstrate 
that the double difference method can obtain reasonably accurate 
estimates of the true velocity changes, as found in previous studies 
(Watanabe et al. 2004 ; Denli & Huang 2009 ; Zheng et al. 2011 ; 
Asnaashari et al. 2015 ; Yang et al. 2015 ). Ho wever , the method 
cannot provide accurate uncertainty estimates for those velocity 
changes since it only accounts for linearized physics relating model 
parameters and data (Smith 2013 ; Zhang et al. 2018b ). 

To quantify uncertainties in velocity changes we perform time- 
lapse studies using the above two Bayesian methods. For the separate 
Bayesian inversion we adopt the strategy which uses the particles of 
the baseline inversion as the starting point for the monitoring surv e y 
inversion as this ‘warm start’ procedure has been demonstrated 
to be more ef fecti ve than two independent inversions in linearised 
methods (Zheng et al. 2011 ; Asnaashari et al. 2015 ), and was shown 
to be similarly effective when data of increasingly high frequency 
were added to an FWI solution found by SVGD (Zhang & Curtis 
2021 ). The prior distributions are set to be the same for both baseline 
and monitoring inversions, equal to the Uniform distribution in 
Fig. 2 (b). In the baseline inversion we randomly generate 20 samples 
from the prior distribution as the initial particles, which are then 
updated using eq. ( 15 ) for 4000 iterations after an additional burn- 
in period of 2000. The step size is set to be 0.2 at the beginning and 
exponentially decayed to 0.01 at the burn-in period which is then 
fixed for the rest of iterations. For the kernel function in eq. ( 14 ) we 
use a commonly used radial basis function, 

k( m 1 , m 2 ) = exp 

[
−‖ m 1 − m 2 ‖ 2 

2 h 

2 

]
, (19) 

where h is a scale factor that controls the intensity of interaction 
between two particles based on their distance apart. As suggested 
b y pre vious studies (Liu & Wang 2016 ; Zhang & Curtis 2020a ), 
we choose h to be ˜ d / 

√ 

2 log n where ˜ d is the median of pairwise 
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Figure 1. An example which uses SV GD and sSV GD to sample a bi v ariate Gaussian distribution (blue shades). Red dots show (a) the initial 20 particles, and 
the samples obtained using (b) SVGD and (c) sSVGD after 1000 iterations. 

Figure 2. (a) The true velocity model at the time of the baseline surv e y, and the acquisition geometry used in this study. Red stars denote the source locations 
in the baseline surv e y while yellow stars show the perturbed locations in the monitoring surv e y. 200 receiv ers are equally spaced at the seabed at 360 m depth 
(not shown). (b) The prior distribution of velocity: a Uniform distribution with an interval of 2 km s −1 , other than above 1.2 km depth where an extra lower 
bound of 1.5 km s −1 is also imposed to ensure rock velocity is higher than the velocity in water. (c) The true time-lapse velocity change in the monitoring 
surv e y. (d) The prior distribution of velocity change which is set to be a Uniform distribution over an interval of ±0.2 km s −1 . 
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istances between all particles and n is the number of particles.
o reduce the memory and storage cost we only retain every tenth
ample after a burn-in period of 2000 iterations, which results in
 total of 8000 samples. Those samples are then used to calculate
tatistics (mean and standard deviation) of the posterior distribution.

Figs 4 (a) and (b) show the mean and standard deviation mod-
ls obtained in the baseline inversion. Although the inversion is
erformed using the high frequency data directly, the mean model
till provides an accurate estimate of the true model, similarly to
he linearised inversion which uses the extra low frequency data
et described above. Again similarly to the linearised inversion, the
tructure in the bottom and edges differ from the true model because
f low sensitivity. Note that the mean model shows pixel-scale ran-
omness which reflects the uncertainty of neighbouring pixels since
here is nothing in the problem setup that prefers smooth models,
nd neither does seismic waveform data. For example, a model that

art/ggae129_f1.eps
art/ggae129_f2.eps
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Figure 3. (a) Baseline velocity model obtained using standard linearised FWI. (b) Time-lapse velocity change obtained using the double difference method 
with identical source locations in the baseline and monitoring surv e y. 

Figure 4. (a) The mean and (b) standard deviation of velocity obtained using sSVGD in the baseline survey. (c) The mean and (d) standard deviation of velocity 
change obtained using separate Bayesian inversions with identical source locations in the baseline and monitoring surv e y. The dashed black lines show well 
log locations referred to in the main text. Abbreviation stdev stands for standard deviation. 
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contains significant power in short spatial scale structures can gen- 
erate identical low frequency data to those generated by a smoother 
model (Lyu et al. 2021 ). When inverting such data the parame- 
ter uncertainty should therefore contain models with small scale 
structure. As a result, McMC methods usually generate samples 
with pixel-scale randomness if no prior information of smoothness 
is imposed (Gebraad et al. 2020 ; Zhang & Curtis 2020b ; Zhang 
et al. 2023 ). The model obtained using the linearised method is 
much smoother because smoothness was imposed as additional 
re gularization. Ov erall the standard deviation map shows similar 
geometries to the mean, which has also been found in previous 
studies (Zhang & Curtis 2021 ; Gebraad et al. 2020 ; Zhang & Curtis 
2020b ). In addition, the results show higher uncertainties at large 
depths ( > 1.2 km) because of reduced data sensitivity, which is also 
consistent with results obtained using the SVGD method (Zhang & 

Curtis 2021 ). 
For the monitoring inversion we restart the sampling in the above 

sSVGD from the final 20 particles using the new data set d 2 , and 
continue for another 2000 iterations. No burn-in period is specified 
for this inversion as the starting models are supposed to be close 
to the true model. In addition we only retain every fifth sample of 
particle values so that the total number of samples used is the same 
as that in the baseline inversion. To obtain samples of the time-lapse 
change, we randomly select pairs of samples from the two sets of 
model samples obtained in the baseline and monitoring inversion, 
and calculate the time-lapse change using δm = m 2 − m 1 . The 
statistics of the posterior distribution of time-lapse change can then 
be computed. 

Figs 4 (c) and (d) show the mean and standard deviation maps 
of time-lapse changes. As in the double difference inversion, the 
mean map clearly shows the outline of true velocity change. How- 
ever, there are additional small scale structures (a few pixels in 
size) in the results, which may reflect the uncertainty in velocity 
differences, or may exist because of the stochastic nature of the 
algorithm. To further understand this, we conduct two independent 
inversions for the baseline survey using identical starting particles 
and the same number of iterations and step size, but a different 
pseudo-random number seed, and calculate the difference between 
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he obtained mean models (Fig. 5 a). In addition, we also compute the
ifference between two mean models calculated using the first 5000
amples and the last 5000 samples from a single inversion (Fig. 5 b).
ig. 5 (a) shows that the difference obtained from two independent

nv ersions hav e similar magnitudes of small scale structure as those
n Fig. 4 . By contrast, although the mean difference obtained from
 single inversion (Fig. 5 b) shows similar small scale structures,
he magnitudes of those structures are much smaller. This compari-
on therefore demonstrates that those small scale structures in Fig. 4
robably reflect the stochastic nature of the algorithm. Note that this
tochastic nature may exist because the algorithm has not fully con-
 erged giv en that this is a high dimensional problem ( r = 24 000),
r may be caused by the discretization error in eq. ( 12 ). Either way,
hose structures do not significantly impact on the overall interpre-
ation of the results from a geological point of view since the image
peckle can largely be ignored. The standard deviation map shows
lmost the same structure as that obtained in the baseline inversion
xcept that the magnitude is much higher. This is because the two
nversions are conducted separately, and the variance of the time-
apse change is the summation of the variances of velocity obtained
n each inversion (eq. 7b ). As a result, the standard deviation model
s not particularly useful in practice as the magnitude of uncertainty
s far higher than that of the time-lapse change itself. 

In the joint Bayesian inversion we use the same prior distribution
or velocity (Fig. 2 b) and add additional prior information about
he velocity change (Fig. 2 c). Similarly to above, we generate 20
articles from the prior distribution and update them using eq. ( 15 )
or 4000 iterations with an additional burn-in period of 4000. Only
very tenth sample is retained which results in a total of 8000
amples. Other settings of the sSVGD method are kept the same
s in the separate inv ersion strate gy abov e. Finally, statistics of
he posterior distribution p ( m 1 , δm | d 1 , d 2 ) are computed using the
amples obtained. 

Fig. 6 shows the results obtained in the joint inversion. The mean
nd standard deviation of velocity obtained for the baseline period
Figs 6 a and b) show almost the same structures as those obtained
n the separate Bayesian inversions (Figs 4 a and b). For example,
he mean also represents a good estimate of the true model and the
tandard deviation shows similar geometrical features to those on
he mean map. Thus, although the number of parameters is doubled
n the joint inversion compared to the separate inversion strategy,
he method still provides good estimates of the baseline model. 

Similarly to the results obtained above, the mean model of ve-
ocity change provides a reasonable estimate of the true velocity
hange (Fig. 6 c). There are also small scale structures in the mean
odel as in the separate Bay esian inversion, w hich probab ly have

imilar origins. Ho wever , the magnitudes of those structures are
uch smaller than those from the separate Bayesian inversions.
ote that there are also some ne gativ e v elocity changes at the edges

round the depth of 0.6 km and some geological structures close to
he bottom around depth of 2.0 km that are associated with similar
tructures in the velocity model. This is probably because the data
ets cause velocity and velocity change to be correlated with each
ther, and consequently uncertainty in velocity can introduce uncer-
ainties to the velocity change. The standard deviation model indi-
ates that the uncertainty estimates from joint inversion are almost
n order of magnitude smaller than those obtained using separate
nversions because of the additional prior information imposed on
he velocity change. Similarly to the standard deviation of veloc-
ty, the uncertainty of velocity change is smaller in shallow parts
 < 1.0 km) and larger in deeper parts ( > 1.0 km) of the model. Note
hat because of coupling between velocity and velocity change, the
agnitude of uncertainty in the deeper part is actually similar to
hat of the prior distribution (0.12 km s −1 ). This indicates that the
ncertainty in the baseline model can have a high impact on the un-
ertainty in velocity changes. Nevertheless, compared to the results
btained using separate inversions, the joint inv ersion strate gy pro-
uces more accurate velocity changes and more reliable uncertainty
stimates. 

.3 Perturbed acquisition geometry 

e now study the performance of the suite of methods in the case
n which source positions are perturbed in the monitoring surv e y
yellow stars in Fig. 2 a). Although it is possible to use time-lapse
inning or data interpolation to emulate repeatable data acquisition
Asnaashari et al. 2015 ), in this study none of these procedures is
erformed because of the sparseness of the source positions which
ake these procedures inaccurate, and also because our purpose is

o study the reliability of different inversion methods under differ-
nt geometries. In the double difference inversion we use the same
aseline model as above and follow the same procedure to minimize
he misfit function in eq. ( 3 ), accounting for the different source lo-
ations in baseline and monitoring surv e ys (i.e. assuming that these
re known). The obtained time-lapse change is shown in Fig. 7 .
lthough the shape of the true velocity change can be observed in

he results, there are many additional structures which have similar
agnitudes to the true velocity change but do not represent any

eal changes. Since these structures follow geological strata, they
an certainly bias dynamic interpretations of the observed changes.
e therefore conclude that double difference FWI generates signifi-

antly biased results in the case of perturbed acquisition geometries,
ven if the perturbed source locations are known, a result that has
lso been found in previous studies (Asnaashari et al. 2015 ; Yang
t al. 2015 ). 

For the separate Bayesian inv ersion strate gy we follow the same
rocedure as described in the corresponding section abov e, e xcept
hat different source locations and data are used in the monitoring
nversion. The results are shown in Fig. 8 . Overall the mean veloc-
ty change (Fig. 8 c) shows similar features to that obtained in the
ase of fixed acquisition geometries. For example, the true velocity
hange can be observed clearly in the mean map and there are also
any small scale random structures across area. Again the magni-

ude of standard deviation of velocity change is higher than that of
elocity in the baseline inversion because of independence of the
w o in v ersions. A nov el feature of these results is the set of dipping,
lightl y negati ve anomalies at depths < 1 km, which are therefore
ttributed to the perturbation in source locations. 

For joint Bayesian inversion we conduct the inversion in the same
ay as above to invert for the baseline model and velocity change

imultaneously. Overall the results show almost the same mean
nd standard deviation maps to those obtained in the case of fixed
cquisition geometry for both the baseline velocity and velocity
hange (Fig. 9 ). 

The above results show that the Bayesian methods are more sta-
le with respect to variations in the acquisition geometry than the
raditional double-difference algorithm. Fur ther more, compared to
he results obtained using separate Bayesian inversions, the results
btained using joint in version sho w more accurate velocity changes
nd more reliable uncertainties because of the additional prior in-
ormation imposed. 

To further understand the results, in Fig. 10 we show marginal
istributions of velocity change obtained using the two Bayesian



1632 X. Zhang and A. Curtis 

Figure 5. The difference between mean models obtained (a) from two independent inversions and (b) from the first 5000 samples and the last 5000 samples 
after the burn-in period in a single inversion. 

Figure 6. The mean and standard deviation of velocity (top panels) and velocity change (bottom panels) obtained using the joint Bayesian inversion strategy. 
Key as in Fig. 4 . 

Figure 7. (a) The baseline velocity model obtained using the standard linearized method. (b) The time-lapse velocity change obtained using the double 
difference method with perturbed source locations in the monitoring surv e y (yellow stars in Fig. 2 a). 
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methods in the different cases along two vertical profiles whose 
locations are denoted by black dashed lines in Figs 4 , 6 , 8 and 9 . 
Similarly to above, the results obtained using separate Bayesian 
in versions sho w significantly broader distributions than those ob- 
tained using joint inversion because of the assumed independence 
between baseline and monitoring inversions in the former inversion 
strategy. For all results, the shallow part ( < 1.0 km) has lower uncer- 
tainty than deeper parts. Although the standard deviation models 
obtained using the joint inversion do not sho w lo wer uncertainty 
within the zone of velocity changes (Figs 6 d and 9 d), the marginal 
distributions clearly reflect lower velocity within the area (Figs 10 b 
and d) which suggests that the velocity change is well constrained by 
the data and the prior information. By contrast, it is difficult to no- 
tice lower velocity from the distributions obtained using the separate 
inv ersion strate gy because of their high uncertainty. Note that the 
marginal distributions obtained using the joint inversion show high 
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Figure 8. The mean and standard deviation of velocity (top panels) and velocity change (bottom panels) obtained using the separate Bayesian inversion strategy 
with perturbed source locations. Key as in Fig. 4 . 

Figure 9. The mean and standard deviation of velocity (top panels) and velocity change (bottom panels) obtained using the joint Bayesian inversion strategy 
with perturbed source locations. Key as in Fig. 4 . 
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robability density values at the boundaries of the prior distribution.
his may be because the velocity change would have higher uncer-

ainties if weaker prior information was imposed (i.e. the change
s not well constrained by the data itself). As a result, when tight
niform prior distributions are imposed, the mass of marginal dis-

ributions that would otherwise lie outside of the support of the
niform distribution, concentrates close to its boundaries. It may

lso be possible that this is caused by biases of the algorithm itself,
or example, the finite step we used in eq. ( 15 ); in practice the step
ength is al wa ys restricted by available computation po wer , and we
ave used the smallest size that was feasible. 

.4 Computational cost 

e summarize the number of simulations required by each method
n Table 1 . This provides a good metric of the overall computa-
ional cost because the forward and adjoint simulations are the

art/ggae129_f8.eps
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Figure 10. The marginal distributions of velocity change at two well locations (black dashed line in Figs 4 , 6 , 8 and 9 ) obtained using (a, c) separate Bayesian 
inversions and (b, d) joint Bayesian inversion in the case of fixed (top panels) and perturbed (bottom panels) acquisition geometry. The distributions are 
estimated using the kernel density estimate method from posterior samples (Parzen 1962 ). Contours are plotted at the same level of probability mass in the 
different panels. Red lines denote the true velocity change. 

Table 1. A comparison of computational cost for the suite of inversion 
methods. 

Method Number of simulations 

Double difference inversion baseline: 163 
monitoring: 50 

Separate Bayesian inversion baseline: 6000 
monitoring: 2000 

Joint Bayesian inversion 16 000 
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most time-consuming components for each method. Note that be- 
cause the inversions for fixed and perturbed acquisition geometries 
are conducted in the same way which results in the same num- 
ber of simulations, we do not discriminate between the two cases 
in the table. Apparently the traditional double difference inversion 
is the most efficient method, but it cannot produce accurate un- 
certainty estimates, and it provides biased estimates when the ac- 
quisition geometry changes between surv e ys. The two Bayesian 
methods require significantly more computation than the double 
difference method. In addition, because in the joint inversion we 
simulate the baseline and monitoring data together at each iter- 
ation, the required number of simulations (16 000) is twice that 
required in the separate Bayesian inversion (8000) even though the 
tw o in versions are conducted using the same number of iterations. 
Ho wever , the separate Bayesian inv ersion strate gy does not pro- 
vide useful uncertainty estimates for the velocity change due to the 
assumed independence of baseline and monitoring inversions. By 
contrast, the results obtained using joint inversion provide more ac- 
curate and useful uncertainty estimates because the method can take 
advantage of additional prior information on the velocity change 
itself. In addition, compared to the double difference inversion, 
both Bayesian methods provide stable and accurate mean velocity 
change estimates in the case of either fixed or perturbed acquisition 
geometries. 

Note that the above comparison depends on subjective assess- 
ments of convergence for each method, so the absolute computa- 
tional time required by each method may not be entirely accurate. 
Nevertheless the comparison at least provides a reasonable insight 
into the efficiency of each method. To give an overall idea of the 
time required by the two Bayesian methods, the above inversions 
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equired 65 hr and 111 hr in wall time for the separate and joint in-
 ersions, respectiv ely, both of which are parallelized using 40 AMD
PYC CPU cores. 

 D I S C U S S I O N  

e demonstrated that Bayesian methods (separate Bayesian inver-
ions of baseline and monitoring surv e ys, and a joint Bayesian inver-
ion) can be used to detect velocity changes and quantify uncertainty
or time-lapse inversions, and that they provide more accurate re-
ults than the traditional double difference method in the case where
cquisition geometries were changed between the two surv e ys, ev en
hen the locations of sources and receivers were known exactly in

ach surv e y. This is because in double difference inv ersion the un-
 xplained ev ents of the baseline surv e y data are not compensated by
he residual term r ( m 1 ) = u ( m 1 ) − d 1 in the new data d 

′ 
2 due to the

hange of source locations. As a result, those unexplained events
an still affect the final time-lapse results. If the baseline model
s perfect, that is, there are no une xplained ev ents in the baseline
urv e y data, the time-lapse change can be detected clearly even
ith perturbed acquisition geometries (Asnaashari et al. 2015 ). By

ontrast, Bayesian methods characterize the full Bayesian posterior
istributions of seismic velocity in the baseline and monitoring sur-
 e ys, or the full posterior distribution of velocity change between
he two surv e ys. In either case, the obtained distribution contains
nformation of time-lapse changes, regardless of whether there are
erturbations in the acquisition geometries. 

Bayesian methods are therefore particularly valuab le w hen high
epeatability of acquisition geometry is difficult to achieve or emu-
ate by interpolation, for example, when source or receiver geome-
ries are sparse. When using dense acquisition systems, time-lapse
inning and data interpolation are usually applied to improve ac-
uisition repeatability in standard double difference inversions, and
he same can be applied in the Bayesian methods. In addition, the
tandard double difference inversion method demands an accurate
aseline model, which may require more effort to build than in the
ayesian methods. For example, in the above study we inverted an
 xtra low frequenc y data set in order to build an accurate baseline
odel, which may not always be available in practice. 
In this study we used a Uniform prior distribution on seismic

elocities with a relati vel y large support (2 km s −1 ), which leads
o high uncertainty for velocity and consequently high uncertainty
or velocity change. In practice where more knowledge about the
ubsurface is available, one can use a more informative prior dis-
ribution for the velocity. This will produce more accurate models
nd lower uncertainty for both velocity and velocity change. Note
hat when conducting separate Bayesian inversions the obtained un-
ertainty for velocity change is al wa ys larger than that obtained
or velocity because of the implicit assumption of independence of
aseline and monitoring inversions. In the joint inversion the ve-
ocity and velocity change are explicitly coupled, so strong prior
nformation on velocity can also improve the accuracy of velocity
hange estimates. And of course, if an accurate baseline model is
vailable and can be fixed during the inversion, one can also use
he differential data between monitoring and baseline surv e ys and
nvert for the velocity change directly in the Bayesian inversion as
n the standard double difference inversion (Kotsi et al. 2020b ).
n addition, one can add some prior regularization as in linearised
nv ersions, for e xample, by imposing prior information on the dif-
erence between neighbouring cells. Gaussian process may also be
sed to inject prior information into the inference scheme (Ray &
yer 2019 ), or one can use neural networks to encode geological
nformation as prior distributions (Laloy et al. 2017 ; Mosser et al.
020 ). 

We estimated the velocity change for the entire model area. This
equires full model simulations during the inversion which can be
omputationall y inef ficient. If knowledge about locations of po-
ential velocity change zones are available, one can also perform
arget oriented time-lapse inversions by assuming that the rest of
he model is known. Then a local solver can be used to increase ef-
ciency (Asnaashari et al. 2015 ; Kotsi et al. 2020b ). Alternati vel y,

f it is not possible to perform target oriented inversion in prac-
ice, one can also use other faster, approximate forward modelling

ethods to improve efficiency, for example, neural network based
odelling methods (Sirignano & Spiliopoulos 2018 ; Moseley et al.

021 ). 
Although Bayesian inversion can produce more accurate results

han the standard double difference inversion and can quantify un-
ertainty, it is also significantly more computational e xpensiv e. To
mprov e efficienc y of the methods, one might e xploit high order
 radient infor mation, for example using a Hessian kernel func-
ion (Wang et al. 2019 ) or the stochastic Stein variational Newton
ethod (Le viye v et al. 2022 ). In addition, one can also use stochastic

nversion b y di viding the whole data set into minibatches to reduce
he computation cost as demonstrated by Zhang et al. ( 2023 ). 

The results obtained here may contain biases. For example, the
mall random structures in the velocity change model obtained us-
ng separate Bayesian inversions and those structures in the deeper
art of the model obtained using joint inversion may constitute gen-
ine biases due to lack of convergence of the algorithm. To further
mprov e accurac y of the results, one may run the sSVGD algorithm
onger. In addition, the discretization used in equation (eq. 12 ) may
ause errors and biases in results; a Metropolis–Hastings correc-
ion step can be added at each iteration (Metropolis & Ulam 1949 ;
astings 1970 ). 
Although in this study we only applied Bayesian methods to 2-D

ime-lapse change problems, the method should also be applicable
o 3-D cases since the sSVGD algorithm has already been used to
olve 3-D Bayesian FWI problems (Zhang et al. 2023 ). Ho wever ,
ecause of the extremely high dimensional parameter space, it may
ot be easy for sSVGD to converge suf ficientl y, and consequentl y
he time-lapse change may be difficult to obtain. In such cases
tronger prior information on velocity might be required in order
o detect velocity changes since this will reduce the computational
omple xity of conv erging to the solution. Alternativ ely one may
ry to reduce the dimensionality of the problem itself. For example,
ther parametrizations which use fewer parameters to represent the
odel may be used such as Voronoi tessellation (Bodin & Sam-

ridge 2009 ; Zhang et al. 2018b ), Delaunay and Clough–Tocher
arametrization (Curtis & Snieder 1997 ), wavelet parameterization
Hawkins & Sambridge 2015 ), discrete cosine transform (Kotsi
t al. 2020a ; Urozayev et al. 2022 ) and neural network parameter-
zation (Laloy et al. 2017 ; Mosser et al. 2020 ; Bloem et al. 2022 ).
ther methods which project high dimensional spaces into lower
imension space may also be used to improve efficiency of the
ethods, for example, slice SVGD (Gong et al. 2020 ) or projected
VGD (Chen & Ghattas 2020 ). 

 C O N C LU S I O N  

n this study, we explored two Bayesian inversion strategies: sepa-
ate Bayesian inversions for baseline and monitoring surv e ys, and
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a joint Bayesian inversion of both survey data sets to solve time- 
lapse FWI problems. We compared the results to those obtained 
using standard double difference inversion. The results show that all 
methods can provide accurate velocity change estimate in the case 
of fixed acquisition geometries, but in the case of perturbed acqui- 
sition geometries the two Bayesian methods produce significantly 
more accurate results than double difference inversion. In addition, 
Bayesian methods provide uncertainty estimates that account for the 
full non-linearity of the model-data relationships, and any form of 
prior probability and data uncertainty distributions, which cannot be 
obtained using double difference in version. Ho wever , when using 
the separate Bayesian inversion strategy the assumed independence 
between baseline and monitoring inversions causes the magnitude 
of the uncertainty estimate for velocity change to be higher than that 
for velocity itself, which makes the results less useful in practice. 
By contrast, the uncertainty estimates for velocity change from a 
single, joint Bayesian inversion are almost an order of magnitude 
smaller than those obtained from separate inversions because of 
additional prior information that can be imposed on the velocity 
change. This demonstrates that the joint inversion provides more 
accurate uncertainty estimates as the magnitude of velocity change 
is usually much smaller than that of velocity. We therefore conclude 
that Bayesian time-lapse FWI, especially joint Bayesian inversion, 
can be used to detect velocity change and to quantify associated 
uncertainties in time-lapse inversion and monitoring. We also note 
that the method can be used to target the region of interest in results 
obtained using convectional double difference inversion. 
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