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SUMMARY

Material density remains poorly constrained in seismic imaging problems, yet knowledge of
density would provide important insight into physical material properties for the interpretation
of subsurface structures. We test the sensitivity to subsurface density contrasts of spatial and
temporal gradients of seismic ambient noise wavefields, using wave equation inversion (WEI),
a form of seismic gradiometry. Synthetic results for 3-D acoustic media suggest that it is
possible to estimate relative density structure with WEI by using a full acoustic formulation
for wave propagation and gradiometry. We show that imposing a constant density assumption
on the medium can be detrimental to subsurface seismic velocity images. By contrast, the
full acoustic formulation allows us to estimate density as an additional material parameter, as
well as to improve phase velocity estimates. In 3-D elastic media, severe approximations in
the governing wave physics are necessary in order to invert for density using only an array of
receivers on the Earth’s free surface. It is then not straightforward to isolate the comparatively
weak density signal from the influence of phase velocity using gradiometric WEI. However,
by using receivers both at the surface and in the shallow subsurface we show that it is possible

to estimate density using fully elastic volumetric WEIL.
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1 INTRODUCTION

Dynamic processes in the Earth’s shallow subsurface (top few
100 m) in which rocks, soil, atmospheric gases and meteoric water
interact, are seldom well characterized and understood (Parsekian
et al. 2015; Riebe et al. 2017). It is of interest for environmen-
tal and resource applications to better characterize these chemical
and mechanical processes using information about heterogeneity
in properties of the near-surface, so-called critical zone (Anderson
et al. 2007). In critical zone studies, bulk density is an important
physical property as an indicator for soil quality and compaction
(Suuster et al. 2011). Lateral density variations can reveal informa-
tion about changes in porosity, fracture distribution and soil weath-
ering (Flinchum ez al. 2022). Density is used to inform studies of
root growth (Brimhall er al. 1992; Dexter 2004), water movement
and retention (Huang et al. 2011; Flinchum ez al. 2018), as well as
carbon and nutrient content in soil layers (Nanko et al. 2014). It is
therefore of significant interest to be able to estimate near-surface
density.

Direct density measurements can be obtained via auger samples
or Geoprobe coring (Holbrook et al. 2014). However, obtaining in
situ measurements of bulk density at any significant depth is time-
intensive and expensive, so it may be preferable to estimate density

indirectly. So-called pedotransfer functions are used to predict bulk
density based on regression models from soil measurement archives
for the very shallow subsurface (<1 m; Suuster et al. 2011). Un-
fortunately, due to the sparsity of borehole samples from deep soil
layers, few studies are able to estimate bulk density for deeper tar-
gets (Qiao et al. 2019). Well logs can be used to gain insight on
bulk density and to infer porosity of the logged near-surface in-
terval (Fanchi 2010; Holbrook et al. 2019), but remain invasive,
localized and again expensive sources of information.

Geophysical methods complement direct observations. They al-
low larger and deeper subsurface volumes to be investigated, and
temporal changes in properties to be monitored (Parsekian ef al.
2015). Microgravity surveys are directly sensitive to density anoma-
lies and are commonly used for environmental studies of the subsur-
face, for example to localize subsurface voids (Tuckwell ez al. 2008)
or for groundwater monitoring (Piccolroaz et al. 2015). However,
this data type is strongly impacted by microseismic noise which
might overshadow small signals related to mass distributions in the
near surface (Boddice et al. 2022). Signals from density variations
in the near surface soil (top 5 m) for example have been shown to
be too weak to be detected by current gravity instrumentation, lead-
ing to lateral variations being obscured by the influence of deeper
anomalies (Boddice ef al. 2019). Furthermore, inversion procedures
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for subsurface density on the basis of gravity data alone are inher-
ently ill-posed (Blom ef al. 2017). To reduce the non-uniqueness in
such solutions, gravity measurements must be used in conjunction
with other data types such as geological prior knowledge, well-log
densities or seismic data, in order to produce realistic density maps
(Nabighian ez al. 2005).

Seismic imaging provides another non-invasive alternative to in-
vestigate the critical zone. Active methods such as seismic refraction
tomography (Befus et al. 2011; Nielson et al. 2021; Flinchum et al.
2022) and multichannel surface wave analysis (Handoyo et al. 2022;
Trichandi et al. 2022) are popular methods for imaging the near-
surface. Seismic monitoring of dynamic processes may be achieved
using omnipresent ambient seismic noise, a natural source of illu-
mination in the Earth (Curtis et al. 2006; Obermann et al. 2015;
Nakata et al. 2019), and dense arrays of seismometers may be used
to provide a repeatable data source with high spatial resolution.
Ambient noise seismology has thus allowed velocity changes over
time to be monitored in the critical zone (James ef al. 2019; Oakley
etal. 2021).

Seismic methods usually focus on the retrieval of seismic ve-
locities only, and are unable to isolate the signal corresponding
to subsurface density unambiguously. Density values are often in-
ferred via empirical relationships from the speed of P body-waves
(e.g. Gardner et al. 1974) or less commonly from S-wave speeds
(e.g. Miller & Stewart 1991), and estimating density as a seis-
mic observable still remains a challenge. Body wave traveltime
tomography exhibits an inherent insensitivity to density changes:
body wave scattering caused by a density contrast characteristically
propagates backwards rather than forwards, and so to first order
does not interact with travel time measurements of forward prop-
agating incident waves (Fichtner 2010). Surface waves, however,
can be represented as an infinite sum of reflections and conversions
between the free surface and subsurface interfaces, where the reflec-
tion coefficients depend on the density in the vicinity of the surface;
this in turn affects the phase velocities of dispersive surface waves.
Their frequency dependent arrival times are therefore sensitive to
density variations in the subsurface, but the sensitivity is oscilla-
tory with depth and can cancel destructively (Takeuchi & Saito
1972).

In the context of global seismology, where density plays an im-
portant role in explaining mantle dynamics, several studies have
been conducted to invert for density from surface wave data. No-
let et al. (1977) showed that Rayleigh wave dispersion data are
sensitive to the density structure in elastic media, as are normal
modes at longer periods (Tanimoto 1991). It is however usually
considered too challenging to estimate density in most elastic me-
dia using surface wave dispersion alone because the sensitivity is
relatively weak compared to sensitivity to seismic velocity struc-
ture (Muyzert & Snieder 2000). Due to the poor constraints on
density, it has been common practice in surface wave tomography
to prescribe a scaling relation between density and shear velocity
anomalies (Karato & Karki 2001) and to invert for velocity only.
From seismological research, however, we know that anticorrelation
of density and seismic velocity are observed: Resovsky & Tram-
pert (2003) show that the long period seismic data clearly favour
density perturbations that are poorly or negatively correlated with
velocity heterogeneity. The uniform scaling of velocity and density
in tomography arises under the assumption that density variations
are purely thermal; this is not accurate for density variations related
to compositional heterogeneities or liquid/gas inclusions (Ptonka
et al. 2016). Therefore, independent knowledge of density is im-
portant in order to discriminate between compositional and thermal

heterogeneities (Trampert et al. 2004; Mosca et al. 2012). Addi-
tional observables such as horizontal to vertical ratios (H/V) of
surface waves can provide further constraints on density (Lin et al.
2012) but still show strong trade-offs with elastic parameters and
velocity.

Variations in density generally have a smaller effect on the full,
recorded seismic waveforms than variations in seismic velocity
(Blom et al. 2017), and are subject to strong trade-offs with ve-
locity which depend on the scattering angle of the wave (Luo & Wu
2018). Nevertheless, Plonka et al. (2016) show that realistic crustal
density variations have measurable effects on seismograms. Density
effects are mainly visible as amplitude changes, but also cause the
waveform shape to be altered especially in the scattered wave train
(Yuan et al. 2015; Blom et al. 2017). Hence, seismic methods that
investigate the full seismic waveform such as full waveform tomog-
raphy (Plonka et al. 2016; Blom et al. 2017, 2020) which includes
both phases and amplitudes of body, surface and scattered waves,
show promise to glean further constraints on subsurface density.
However, in elastic multiparameter full waveform inversion (FWI),
the highest ambiguity is attached to density regardless of the model
parametrization employed (Ko6hn ez al. 2012), and it is difficult to re-
construct density from full waveform inversion even using the dense
data sets available in industrial exploration geophysics (Virieux &
Operto 2009). Choi et al. (2008) successfully estimated density
from 2-D elastic Marmousi models, but only using a low and nar-
row frequency band around 0.125 Hz. Pan et al. (2018) observed that
S-wave velocity perturbations strongly contaminate density struc-
ture which can result in highly uncertain density estimates. Jeong
et al. (2012) reports improvement in density recovery by imple-
menting a 2-stage algorithm that estimates Lamé parameters with
fixed density in a first step, and then inverts for density based on first
stage velocity information in a subsequent step. Subsurface density
of the ocean floor can be reliably estimated from real hydrophone
data on the basis of a joint visco-acoustic FWI (Prieux et al. 2013;
Operto & Miniussi 2018) and can be used as a background model
to inform and reduce free parameters in elastic FWI. However, the
performance of linearized FWI algorithms depends significantly on
the availability of a well informed starting model (Virieux & Operto
2009; Vantassel et al. 2022).

Density affects the seismic wavefield mainly through reflection or
backscattering. Hence, the strongest sensitivity of seismic waves is
to spatial density contrasts or gradients (Blom et al. 2020). Hooke’s
law relates stress to strain, and strain is created by spatial wavefield
gradients. In turn, stress can be related to density using Newton’s
second law, to form a so-called wave equation. This sparked interest
in constraining density contrasts by deploying methods that are
directly sensitive to amplitude changes in the wavefield gradients.
Dense seismic arrays lend themselves well to the calculation of
wavefield gradients using finite-difference methods.

A class of imaging techniques now termed seismic gradiometry
(Curtis & Robertsson 2002; Langston 2007a, b; De Ridder & Biondi
2015) calculate temporal and spatial gradients of incoming waves
or wavefields using dense array measurements to estimate physical
subsurface parameters. A review of the theoretical background and
applications of wave gradiometry methods can be found in Liang
et al. (2023). One such method called wave equation inversion
(WEI, Curtis & Robertsson 2002) substitutes the calculated gradi-
ents directly into the governing equation for wave propagation and
provides estimates of local material properties via standard linear
inversion techniques. By deploying a 3-D seismic array geometry
with receivers recording all three components (3-C) of the wave-
field, gradients can be estimated both horizontally at the surface
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and with respect to depth (Fig. 1a). WEI can then be performed on
the full elastic wave equation to estimate effective P- and S-wave
velocities at the free surface. In an isotropic, locally homogeneous
Earth, full elastic WEI is valid for any incoming wavefield; it thus
has the advantage of being directly applicable to ambient seismic
wavefields, but exhibits a high sensitivity to receiver positioning and
orientation (Muijs et al. 2002; Vossen et al. 2004). A second type
of gradiometric approach assumes a particular form or ansatz for
the arriving wavefield [e.g. a single plane or spherically spreading
wave (Fig. 1b)], and estimates parameters that describe the geomet-
rical spreading and horizontal slowness (Langston 2007¢c, b). The
method was applied for example as a new data processing tech-
nique for regional array seismology (Liang & Langston 2009; Liu
& Holt 2015) and used to image the lunar near-surface structure
(Sollberger et al. 2016). The method performs well for noiseless
single source data, but gradiometry results based on the plane-wave
assumption are highly sensitive to uncorrelated noise and to inter-
ference from other arriving waves (Langston 2007a). In order to use
such methods in cases of unclassified wave type arrivals or ambient
seismic noise, where two or more waves of similar amplitude and
frequency are interfering, a statistical routine to identify individual
interference-free events needs to be applied in advance (e.g. Edme &
Yuan 2016). Alternatively a ‘fingerprinting’ technique based on 6C
receiver measurements, which contain both translational and rota-
tional ground motion, allows wave types of arriving seismic phases
to be classified and individual arrivals from interfering wavefields
to be isolated using machine learning methods (Sollberger et al.
2023).

In the case of an ambient seismic noise field, it is commonly
assumed that surface waves are the dominating type of wave prop-
agation. To capture the character of 2-D surface wave propagation,
it is sufficient to record the wavefield with a dense receiver array
at the Earth’s surface (Fig. 1c). This relaxes requirements on the
field acquisition geometry compared to volumetric gradiometry for
which a 3-D array is necessary (Fig. la), while still allowing a
wavefield comprising a superposition of plane waves arriving from
different angles to be considered, instead of only individual plane
waves as in Fig. 1(b). De Ridder & Biondi (2015) first approximated
surface wave WEI on the basis of the 2-D Helmholtz wave equa-
tion which describes the propagation of surface waves at frequency
dependent phase velocities (Wielandt 1993; Aki & Richards 2002).
The method showed that phase velocity maps from the vertical com-
ponent of ambient noise data at 0.7 Hz were comparable to results
obtained using interferometric cross-correlations, thus validating
the method. The method has since been extended to provide infor-
mation on both isotropic and anisotropic local medium properties
(De Ridder & Curtis 2017), and to near-real time applications (Cao
et al. 2020).

The latter applications of surface wave WEI are based on the
assumption that Rayleigh waves are the dominant wave type and
that the 2-D scalar Helmholtz wave equation describes the recorded
wavefield adequately (De Ridder & Biondi 2015; Cao et al. 2020).
This is a significant approximation for seismic waves because the
Helmholtz equation fails to describe general elastic wavefield dy-
namics. Since ambient noise recordings contain all kinds of inter-
fering elastic wave types (including a variety of surface wave types
and modes), the accuracy of subsurface material property estimates
may be compromised. Nevertheless, Shaiban et al. (2022) used a
synthetic 2-D elastic ambient noise wavefield to show that the cor-
rect local dispersion curves for a layered, laterally heterogeneous
model could be estimated from the relationship between spatial and
temporal gradients in the Helmholtz equation.

Surface wave WEI has been shown to require only a few min-
utes of ambient seismic noise recordings and rapid data processing
after acquisition to produce useful phase velocity maps for the
near-surface (at frequencies between 18 and 24 Hz), and so shows
promise for efficient field deployment and near-real time monitoring
purposes for the shallow subsurface (Cao et al. 2020). By estimating
phase velocity maps for narrow bandpass filtered wavefields over a
broad frequency range (depending on the ambient noise spectrum),
the latter authors showed that 3-D images of a layered subsurface can
be produced via inversion of local surface-wave dispersion curves
for S-wave velocity (V) structure. 2-D shear-velocity maps for sev-
eral depth levels up to 50 m were obtained in a matter of seconds
from the dispersion curve through depth inversion performed by
mixture-density neural networks. However, the quality of the 3-D
shear velocity models are not only dependent on the accuracy of the
phase velocity data but also on the impact of density in the inversion
process (Ivanov et al. 2016). Dispersion-curve inversion for V; is
often implemented using predefined values for compressional-wave
velocity (V,) and density because their sensitivities to the phase ve-
locity are much smaller than that of the S-wave velocity (Foti et al.
2018; Pan et al. 2019; Wu et al. 2020). Such a priori information on
V, is commonly obtained from other measurements, and density is
often assumed to be constant (e.g. Cao et al. 2020) or inferred from
empirical relationships with compressional wave speed (Gardner
et al. 1974). Unfortunately, vertical density variations have been
shown to affect the inverted V results, and the use of an inaccurate
density background model can lead to false structures and overes-
timations in the V; result (Ivanov et al. 2016). Expanding surface
wave WEI to estimate the density structure of the subsurface and to
quantify the effect of density gradients on the phase velocity esti-
mates could therefore improve V; models and seismic interpretation
based on gradiometric methods.

In this study we investigate whether it is possible to estimate
subsurface density on the basis of gradiometric surface wave WEI
using ambient seismic noise. Both the accuracy in wave amplitude
and shape are important considerations in gradiometric methods,
and density heterogeneities were found to have an influence on both
(Plonka er al. 2016; Blom et al. 2017). Hence, we expect to have
sensitivity to the effect of density contrasts if we use data that record
variations in wavefield amplitudes and phases.

In the Helmholtz formulation, which has been used in previous
surface wave WEI studies, the wave equation does not exhibit an
explicit sensitivity to density. In elastic media, the scalar Helmholtz
wave equation is valid for surface waves only in laterally homo-
geneous media. In a realistic scenario, the subsurface is hetero-
geneous with velocity and density varying both laterally and with
depth. In heterogeneous media, the superposition of multipathing
surface waves propagates with a velocity that depends not only on
the structural properties of the underlying medium, but also on the
distribution of amplitudes of the interfering wavefield (Friederich
et al. 2000). This implies that the Helmholtz wave equation is not a
valid description for surface wave propagation and is likely to influ-
ence the accuracy of phase velocity estimates made via 2-D scalar
WEIL In practice, if the medium is only smoothly heterogeneous,
the Helmholtz equation is usually considered to be approximately
valid for each surface wave mode separately. Seismic surface waves
are then commonly approximated by acoustic waves, by assuming
that the wavefield is purely dilatational and is dominated by pressure
wave propagation. The acoustic approximations neglects mode con-
versions and the directivity of scattering from a point heterogeneity
(Friederich et al. 2000), simplifying the mathematical model of
wave propagation considerably.
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Figure 1. Schematic of acquisition geometries and physical assumptions made for different gradiometry types in plan view and cross-section view. Receivers
are denoted by triangles and the configurations requiring the minimum number of receivers are shown to estimate gradients via classical finite difference around
the central point (green star) with receivers recording translational motion. (a) The left-hand column shows principles of volumetric wavefield gradiometry as
proposed by (Curtis & Robertsson 2002): with a 3-D receiver acquisition, second horizontal and vertical wavefield derivatives are approximated at a central
point. To calculate derivatives in x-, y- and z-direction, 3-component (3C) receivers are necessary. Arrows denote interfering waves coming from all directions
and angles; all wave types can be included in the wavefield, for example surface waves, body waves, scattered waves, etc. (b) Middle column shows gradiometry
for non-interfering waves as proposed by (Langston 2007a). Individual plane or cylindrical waves can arrive from any direction at the receiver array. Receivers
are used to estimate first horizontal derivatives of the wave field quantity; the central point does not require a recording. Receivers can be (1C) or (3C) depending
on which wave type is analysed. Rotational sensors at the free surface allow for direct measurement of first derivatives (Schmelzbach et al. 2018; Sollberger
et al. 2020). (c) Right-hand column shows principles of surface wave gradiometry as proposed by (De Ridder & Biondi 2015) where second order horizontal
wavefield derivatives are approximated. This gradiometry type assumes a wavefield composed of interfering surface plane waves in a 3-D medium, or Lamb

waves in a 2-D sheet (inset).

The scalar Helmholtz wave equation more accurately describes
waves in acoustic media than in elastic media. In fact, in the acoustic
case, the main simplification made in the derivation of the conven-
tional scalar wave equation is that density is assumed to be constant
across the local receiver array. To describe a more complex, physi-
cally more realistic medium, a variable density assumption can be
introduced, which allows the acoustic medium to be described by a
so-called full acoustic wave equation. The full acoustic wave equa-
tion was initially derived by Bergmann (1946) to define conditions
under which density gradients in the atmosphere and large bodies of
water should not be neglected in the governing wave equation for-
mulation of sound pressure. The formulation of the full acoustic
wave equation considered in that work assumes that gravity ef-
fects are negligible, and allows for density changes caused by either
temperature gradients or changes in chemical composition of the
material (Bergmann 1946).

In this paper, we first analyse wavefield sensitivities to subsurface
density contrasts via WEI of the full-acoustic wave equation where
density is treated as a variable. We expect the full acoustic formula-
tion may allow us to analyse the role of density independently from
wave speed. To test this hypothesis, we initially consider waves
propagating through an acoustic medium so that the physics of that
wave equation are consistent with the physics of the medium. We
show that it is then possible to invert for density on the basis of
full acoustic WEI and compare the effect of using the Helmholtz
and full acoustic equation on phase velocity results in 3-D acoustic
media. We then analyse whether the same procedure is applicable
to elastic media despite the concomitant severe approximations to

the complex elastic wavefield physics. In elastic media, particle ve-
locity is the natural wavefield observable rather than pressure, but
we show that measuring pressure is necessary in order to relate the
full acoustic wave equation approximation to the elastic case and to
formulate an inverse algorithm that is explicitly sensitive to density.
We then investigate whether volumetric gradiometry better lends
itself to invert for density using the physically more representative
full elastic wave equation at the free surface. By expressing the full
elastic wave equation both in terms of pressure and displacement
at the free surface we establish that a direct sensitivity to density
exists and that density can be estimated.

2 WAVE THEORETICAL BACKGROUND

Density plays a different role in elastic and acoustic media. To
illustrate, we compare the derivations of the respective governing
wave equations from Newton’s 2nd Law

Vo + f=pdu, 1)

where o0 = oy, is the stress tensor assuming & and / to range from
1 to 3 (for the x-, y- and z-directions), p is subsurface density, f
= [f., /;» 217 is the distribution of applied body forces, u = [u,,
uy, u;]" the observed wave field quantity of displacement or particle
velocity and V = [d,, 9,, 9.]” in three dimensional media. The wave
field quantity u is defined with respect to a reference state in which
the medium is in equilibrium under gravity. It is well known that
in isotropic elastic media and small displacements, Hooke’s law
allows stress to be expressed in terms of the strain tensor € (where
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element €, = 0,u, + 0,u, and similarly for other elements) and the
Lamé parameters A and pu which describe the medium’s elasticity.
This relationship can then be substituted into eq. (1), and similarly
for acoustic media although the equations are then simpler because
the shear modulus u = 0:

V-(Atr(e)I +2ue) + f = pd?u inelastic media (2a)

V.-(rtr(e)I) + f = pd*u

where tr() is the trace operator. By substituting expressions for
elements of € into eqs (2a) and (2b) we obtain the familiar 3-D
elastic wave equation for isotropic, locally homogeneous media and
a description of pressure wave propagation in terms of the wave
field quantity u, respectively:

in acoustic media  (2b)

A+2
@+ B2 o+ L
P p p
= 3;2 u in elastic media (3a)
A S 2 . . .
—[V(V-u)]+= =9 u in acoustic media. (3b)
p o

In this paper, we focus on the case in which we would like to use
ambient seismic noise, so we assume an absence of strong local
sources in the area of wavefield recording and henceforth omit
source term f (we discuss the introduction of suitable force terms
in Section 7). In acoustic media, the first Lamé parameter A is the
acoustic bulk modulus K,, whereas the bulk modulus in elastic
mediais K, = A + % (. In elastic media, density is expressed only
in combination with the Lamé parameters within the terms equating
to P-wave velocity vp . = /(A + 21)/p and S-wave velocity vs . =
it/ pineq. (3a), and similarly for acoustic media. This implies that
while it may be possible to estimate the velocities from waveform
data u, it will not be possible to discriminate the Lamé parameters
from the density since any velocity value can be fit by any reasonable
density given a suitable choice of A and u.

In acoustic media, we often measure pressure P rather than wave-
field displacement or particle velocity. The particle velocity field can
then be estimated from this measured pressure field (Robertsson &
Kragh 2002; Amundsen ef al. 2005). Pressure is directly related to
the divergence of the wavefield displacement u via P = K, V - u,
where K, is the bulk modulus in acoustic media. By applying a
divergence operator to both sides of the acoustic wave eq. (3b) it is
possible to express the sensitivity of measurements of pressure P to
density p explicitly:

V. <%[V(V . u)]) = V-3u 4)

= v, pV- <%VP) 2P, (5
where in eq. (5) we have used the definition of P-wave velocity
in acoustic media vp , = /K, /p. Since density appears separately
from P-wave velocity and has a different relationship to the measur-
able right-hand side of eq. (5), we expect a potentially distinguish-
able density signature in seismic waves travelling through hetero-
geneous media in which the spatial derivative of density on the left
is non-zero.

Cance & Capdeville (2015) show how elastic and acoustic wave
equations can be related in an isotropic, homogeneous domain for
an explosive isotropic source emitting only P waves. In such a case,
the curl of the wavefield is equal to zero (V x u = 0) and any
vector field such as the displacement # or the particle velocity field
v = d,u can be derived from a potential ® (Kaufman et al. 2000).

The potential ® may be chosen as in Cance & Capdeville (2015) to
be

u = % Vo, (6)

where @ is directly related to acoustic pressure via the relationship

® = —2P, and where the pressure wavefield P, in elastic media is
1

P, = —EKuV-u. (7

Substituting eq. (6) into eq. (3a) yields,

At2 1 1
Tty [v. <qu>) - afcp] -0 (8)
p 4 At2p

1 1
V.[-Vd)-— chb = const. )
P A+2n

Since eq. (8) holds everywhere and so the constant is independent
of position of the recording, and because the wavefield is absent
(has zero energy) at infinity (Kaufman et al. 2000), eq. (9) gives the
potential equation in elastic media,

3 1
c, pV-| =V
P

where ¢, is the phase velocity at frequency w. Eq. (10) describes
‘acoustic’ wave propagation in elastic media and is the elastic equiv-
alent of eq. (5) for acoustic media.

The above equations show that different seismic observables in-
teract differently with the subsurface: to isolate the effect of density
from wave speed in elastic media on the basis of the full acoustic
approximation or the elastic wave equation at the free surface, it is
necessary to measure pressure instead of particle displacement or
velocity (eqs 6-10) because pressure implicitly includes a power
of K, which changes the form of the respective equations. Classi-
cal seismometers only measure particle velocity, from which dis-
placement can be calculated by time integrating the data, whereas
elastic pressure is usually not observed on land. The expression
for pressure is proportional to the divergence of the displacement
(eq. 7) which can be determined from four geophone recordings at
the Earth’s free surface using gradiometry (Robertsson & Muyzert
1999; Shapiro et al. 2000; Robertsson & Curtis 2002). Given that
stress is equal to zero across the free surface, the vertical derivative
of the wavefield can be expressed in terms of horizontal deriva-
tives [e.g. see eq. (14) further below]. This results in the wavefield
divergence taking a modified form that can be written in terms
of the Lamé parameters and the horizontal wavefield components
only V-u = Q2u/(h+2w) Vy - uy, where Vi = [d,, ,]” and
up = [uy, u,]" (e.g. Maeda ez al. 2016). However, calculating the
divergence alone is not sufficient to isolate density in the wave equa-
tions because the bulk modulus is not accounted for as it is in the
full pressure measurement (eq. 7).

Edme et al. (2018) suggest that it is possible to measure pressure
directly at the free surface of an elastic medium with a land hy-
drophone. The land hydrophone is insensitive to the direction and
angle of incoming waves which makes it predominantly sensitive to
pressure fluctuations induced by ground-roll (more specifically, S-
to P-conversions generated by upcoming S waves) due to destruc-
tive summation of events at near vertical incidence angle. At the
free surface of the Earth, elastic pressure P, . can be written in
terms of displacement in a 2-D plane and its horizontal derivatives
as (Edme et al. 2018)

= 92, (10

P,

ers — K VH'”H ~ 0.37 KQVH'MH (11)

ers
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where the elastic bulk modulus at the free surface is K, ., =
2p v} (1 —4v%/3v3) and vp and vs are the local P- and S-wave
velocities, respectively. The elastic pressure at the free surface
can be related to acoustic pressure using vp = ~/3vs for a Pois-
son solid. The measured pressure thus corresponds to the volume
change caused by the dilatational part of surface wave propagation.

Acoustic pressure caused purely by P-wave propagation in a
non-rotational medium has a similar expression to elastic pressure
at the free surface of the Earth caused by the dilatational part of
surface wave propagation. Surface waves can only be produced
in a medium where rotation exists, and are generated by P- and
S-wave interactions upon reflections and scattering at medium het-
erogeneities. Their propagation is mostly driven by S waves which
correspond to the purely rotational part of the wavefield. Neverthe-
less, Rayleigh waves do exhibit dilatational wave propagation that
produces a measurable pressure field at the free surface. The full
acoustic approximation is only valid for elastic P waves in a homo-
geneous, isotropic medium, and is compromised in heterogeneous
or anisotropic media due to P-to-S conversions. P waves and the P
component of Rayleigh waves therefore presumably interact differ-
ently with the medium and might exhibit different sensitivities to
different subsurface parameters such as subsurface density. Cance
& Capdeville (2015) found that acoustic and elastic pressure are not
the same for rough, heterogeneous media: a good agreement can
only be achieved in homogeneous or weakly heterogeneous, smooth
media. This suggests that in a realistic subsurface problem, invert-
ing for the parameters on the basis of an acoustic approximation
might be too approximate an approach to obtain sufficiently accu-
rate information about elastic subsurface parameters by measuring
pressure. We test this in what follows.

In elastic media it is not strictly necessary to consider the acoustic
approximation in order to isolate density by substituting pressure.
If we introduce the free surface conditions

.Uy = —0yuU, (12)

:uy, = —0,u. (13)
2 52

o, =~ (9, + dyu, (14)

P.e

which express the fact that stress across the free surface must be
zero, then equation (3a) can be written in a modified form that is
valid at the free surface and in the absence of body forces (Curtis
& Robertsson 2002):

v2
0u, = 32 — (Vi) —2(1- vgz)ax(vf, Cuy) (15)
2 v2
02u, = L — (Viu,) = 2(1 = 52)0,(Vi - un) (16)
2
O, = Bty (1 - 2”§~f)v§,uz. (17)
Upe Vpe

Even though a free-surface is usually referred to as the interface
of a half-infinite elastic medium in contact with vacuum (Roberts-
son et al. 1995), free-surface conditions are a reasonable approx-
imation on Earth given that the subsurface has elastic properties
and the contact layer is air which has low density. In the case of
granular medium (such as regolith) or in heavy atmospheres, the
free-surface condition would need to be updated with more appro-
priate constraints.

By using a so-called Lax—Wendroftf derivative centering tech-
nique (Lax & Wendroff 1964; Blanch & Robertsson 1997; Curtis &
Robertsson 2002), the first order vertical derivative can be correctly

represented at the free surface by a finite difference approxima-
tion to horizontal spatial derivatives. Using a 3-D receiver array as
proposed in Fig. 1(a) it then becomes possible to approximate all
quantities necessary to estimate body wave velocities at the free sur-
face. For example, a new expression can be derived for the vertical
displacement component in eq. (17) by using the free-surface con-
dition (14) and the Lax—Wendroff corrected finite difference depth
derivative:

O u. = vp, A:(t) — v3, B.(0), (18)

where A.(7) and B.(f) are expressions containing finite difference
approximations to derivatives of the wavefield

A:(1)

é(vH “up+ [azuz]fd) - V?—]”z (19)

B.(1)

(Vo uy) — 2(Viu) (20)

and where Az is the distance between the surface and the buried re-
ceiver, and [0.u. ] is the first order finite difference depth derivative.
The derivation of these expressions is described in detail in Curtis
& Robertsson (2002), and herein, we only consider constraints de-
rived from the vertical displacement component as they were shown
to better constrain body wave velocity estimates than those derived
from horizontal components. Furthermore, inhomogeneous terms
arising from variations in subsurface parameters do not play a role
in the vertical component at the free surface, making the expres-
sions valid for any type of elastic medium without approximations
(Appendix E).

By using the relation P = P, rs/0.37 from eq. (11), acoustic
pressure can be substituted into eqs (19) and (20):

A = (g P +[0:ura) — Viu. 2
Bl(t) = &3P — 2(Viu.). (22)

Feeding the expressions for 4.(¢) and B.(¢) into eq. (18) we
obtain

2
8,2 u, + v?el: - E[azuz]fd + V}{“Z:I - 2v§,ev§1u2

L[ 43,
- el )] (23)

Displacement measurements are all on the left-hand side and pres-
sure measurements on the right-hand side of eq. (23); in order to
use this equation to constrain the velocities and density, both dis-
placement and pressure must be measured simultaneously at the
free surface. An explicit sensitivity becomes clear from eq. (23)
with density connecting the left- and right-hand sides of the equa-
tion linearly.

3 GRADIOMETRIC METHODOLOGY

Herein, we focus on the potential of gradiometric methods based
on 2-D surface arrays [similarly to De Ridder & Biondi (2015) in
Fig. 1c] and 3-D volumetric arrays [similarly to Curtis & Robertsson
(2002) in Fig. 1a] to estimate density in addition to the medium’s
wave speed. We start outlining the 2-D gradiometric methodology
(Section 3.1) for density inversion in light of egs (5) and (10). These
equations are naturally suitable for acoustic wave propagation, but
are subject to restrictive and potentially unrealistic assumptions in
elastic media. We investigate whether a practical 2-D array setup,
that limits the complexity of the wave equation that can be used for
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WEI (vertical wavefield gradients can not be measured for exam-
ple), yields sufficient information to estimate density in an acoustic
medium where the physics fits the used eqs (5) and (10), and to ex-
tend the method to elastic media. We then test whether using a 3-D
array configuration (Section 3.2) that includes an additional buried
receiver, and which makes it possible to use a physically more ap-
propriate equation for elastic wavefield data (i.e. eq. 23), improves
the density estimates in elastic media. The following subsections
are therefore ordered according to the gradiometric WEI approach
used for density estimation—using free surface and then volumetric
array recordings (Sections 3.1 and 3.2, respectively).

3.1 Free surface arrays

In previous wavefield gradiometry studies performed with data from
2-D receiver arrays on the Earth’s surface, the role of density has
been neglected. If density is assumed to be constant over space,
eq. (10) reduces to the scalar Helmholtz wave equation, the 2-D
version of which is usually used as a basis for WEI where V is used
as a 2-D operator (V = V= [d,, 9,]7) and x = [x, y]":

Co(X)* V20(x, 1) = 320(x,1). (24)

Here, 6 denotes any type of wavefield quantity (e.g. one component
of the wavefield displacement or particle velocity field, or the pres-
sure field) which varies as a function of horizontal position x and y
and time #. This equation is a major approximation of how seismic
waves actually propagate in the Earth’s subsurface: all 3-D propa-
gation of elastic body waves and of different types of surface waves,
each associated with multicomponent particle motions, are approx-
imated by a single wave type propagating in 2-D across the Earth’s
surface with a single independent component of particle motion. For
example, in isotropic media Love waves are horizontally polarized
and arrive most prominently on the transverse component, whereas
the Rayleigh waves are polarized in a vertical plane and appear
mainly on the vertical and radial components (Shearer 2019). In the
case of ambient noise, we deal with complex wavefields arriving
from multiple sources which makes it impossible to distinguish ra-
dial contributions from transverse contributions; Love and Rayleigh
waves therefore interfere in the horizontal particle velocity field yet
are treated as one wave type in the 2-D scalar wave equation. On
land therefore, 1C geophone recordings are usually used as gradio-
metric measurements, because Rayleigh waves typically dominate
the ambient seismic noise field and predominantly excite vertical
displacements. A similar argument applies to Scholte waves which
travel along the water-seabed interface. And since surface waves
predominantly travel across the Earth’s surface and have a dominant
mode number, they are commonly approximated by superpositions
of dispersive, single-mode plane waves that each satisfy the 2-D
scalar wave equation.

In order to improve the suitability of the Helmholtz approxima-
tion for surface waves, the wavefield is usually first filtered around
a fixed frequency w. WEI then proceeds by estimating all spatial
and temporal derivatives in eq. (24) given measurements of a pass-
ing wavefield made on a dense array. Thereafter the equation can be
solved for the phase velocity c,,, assuming that a single surface wave
mode exists in the data. Nevertheless, the series of approximations
above degrades the estimates of surface wave velocity.

In acoustic media however, the Helmholtz wave equation may be
a reasonable model of wave propagation because the only approx-
imation made in the governing physics is that density is assumed
to be locally constant across the array of receivers used to estimate

spatial derivatives in VP. To account for a spatial variability in sub-
surface density, we consider the full acoustic wave equation (eq. 25)
in the time domain:

(5770) = =
V.| ——VP(x,t)) =

p(x) P(x) co(x)?

The full acoustic wave equation represents the underlying physics
that relates phase velocity ¢, and density p to dilatational wavefield
observations where pressure P is used as wavefield quantity ®. In
acoustic media, eq. (25) captures the full physics whereas it is only
an approximation of wave propagation in elastic media. To perform
WEI on the basis of the full acoustic wave equation in elastic media,
we need to compute the pressure wavefield P from eq. (7) and
substitute the resulting potential ® = K,V - u into eq. (10) where
u=uyandV=Vy.

Using the foundation of the full acoustic wave equation we set
up an inversion process to estimate both velocity and density from
gradiometric measurements. We first parametrize the system in or-
der to remove non-linearity in these forward relations. We simplify
the form of eq. (25) by introducing parameters g(x) and /(x) that
vary as a function of horizontal position:

92 P(x, ). 25)

h(x) = ﬁ = p(X)clw(X)z (26)
gx) = L. @7)
The full acoustic wave equation then becomes

Vg(x)VP(x,t) = h(x)d?P(x,t). (28)

We rely on accurate knowledge of second order spatial gradients
of pressure which can not be measured directly in the field. We cal-
culate these gradients discretely using finite differences which are
based around Taylor series expansions (Curtis & Robertsson 2002).
We discretize eq. (28) on a horizontal, regularly spaced receiver
grid at the surface (Fig. 2a) using classical central finite differences
(FD) after (Geiger & Daley 2003) to approximate the derivatives.
Discretizing with the FD method does not require regular grids if
we adopt a generalized FD scheme after (Liszka & Orkisz 1980;
Huiskamp 1991; Gavete et al. 2003), however in our case receiver
spacing Ax and Ay in x- and y-directions, respectively, are con-
stant and equal, and indices i and j define receiver locations, where
i ranges from [0,M] and j ranges from [0,N]. We formulate the
discretized expression and rearrange the terms isolating the model
parameter g; ; that contains information about subsurface density
only:

1 n n
A [P[o.f] gij-11+ P o) &li-1.51
+ Pl s & + Pl 8t + Plo s g[i.j+11] (29)
n+1 7 n—1
— iy =28+ Pij
[i./] A12 ’

where Py _; and Py _; are written similarly to

Poy = Fijn— Pig (0)
o = P — B (D

and

P['i.i] = P[’Z),f] + P[VI—,O] + P[?),H + P[n+,0]' (32)
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Figure 2. (a) Discretization of wavefield derivatives using a surface receiver grid, shown in plan view on the x—y plane. Receivers are marked by triangles
(internal stations in blue, border stations in red). The grid has N rows in y-direction and M columns in x-direction. The pressure field P is recorded at each
receiver position [7,7]. The classical second order finite difference stencil of receivers is represented by the cross-shape (orange), using which the second order
derivative of the wavefield is estimated at the central point marked by the star symbol (green). (b) shows the corresponding buried receiver (grey) at 1 m below
the surface that is used for volumetric gradiometry across the finite difference cross-shaped stencil.

Eq. (29) can be written in matrix form
Ag = d (33)

where matrix A has dimensions [R x R x n,] with R being the
number of parameters over the receiver grid (R = M x N) and n, the
number of data in the time-series. A contains purely observed data
consisting of the pressure differences (eqs 30-32) and is banded
and square [R x R] for each time step n in the time-series of
the signal. Vector g = [go, 0)» &[1. 035+ &, M]"] is the parameter
vector of dimension [R x 1] to be estimated, and d is an observed
data vector of dimension [R x n,] that contains time derivatives
of the recorded pressure field P; ; multiplied by terms 4; ; (right-
hand side of eq. 29). Equally accurate calculations of derivatives
at the corners and boundaries of the array are not possible since
neighbouring receivers are not available in all directions so the full
cross-shaped finite difference stencil (Fig. 2) can not be used and is
depleted to a stencil formed by two or three adjacent stations only.
We therefore introduce a weighting matrix W that gives less weight
to information from corner and boundary points of the receiver grid
which are likely to provide less accurate constraints than the internal
receivers. For corner and border receivers we chose a weighting
factor very close to zero to minimize the impact on results while
still maintaining the invertibility of matrix A. Consequently, density
estimates are evaluated only at internal receivers.

Since the density information is contained in both parameter
vector g*' and the vector d through parameter vector h = [Ag g,
A, o5 g, N]]T ], prior information is given in the form of an initial
reference model for h which we call h™:

o 1
L (34)
pinil cw,inil

So as not to bias the inversion towards a heterogeneous solution,
we chose a homogeneous reference for density p,, . The reference
model ¢, ,,, for phase velocity is obtained from an initial wave
equation inversion using the standard scalar Helmholtz wave equa-
tion formulation (24) following the methods of De Ridder & Biondi
(2015) and Cao et al. (2020). To stabilize the inverse problem we

introduce generalized Tikhonov regularization:
[WA+Oy11 g = [d+O,8""]. (35)

Damping term ®, controls how strongly the solution is drawn to-
wards the homogeneous reference model g™ and has the same
dimensions as matrix 4. We then find the least-squares solution for
parameters g’ that contain the density information

e = [Zz;l (4, An)_l Af} (=i, ], (36)

where 4 = [WA, ©,11" andd = [d, ©,g™"]". After one iteration
solving for g*’, we obtain a first approximation to density that we
note g’. Substituting this density approximation into eq. (25), we
estimate phase velocity using gradiometric methods where we write
the discrete finite difference form of eq. (25) in terms of parameter
2’ and estimate the phase velocity via linear regression similarly to
De Ridder & Biondi (2015):

1 / n / n / n
2 AR2 [g[o.—]P[i,j—l] t 8-~ 8eafin
’ n ’ n 2
+ 8.4+ T g[+,0]P[i+1,jJ] Coli.j] (37)
n+1 n n—1
_ | By = 2Bint+ B
Ar? '

where g{_ ; and gj, _, are written similarly to

8y
8iro = A+ (38)
g
gfo, = ([5'[,;j]]] +1 39)
and
gEi,i] = gfo,_] + gf_,()] + gf+,0] + gf0‘+]- (40)

In matrix form, eq. (37) can be written

Jm =d, (41)
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where m' = [¢ .01 €5 (1.0 -+ Coparng]” i the parameter vector of
dimension [R x 1], d’ is an observed data vector of dimension [R x
n,] that contains time derivatives of the recorded pressure field and
coefficient matrix J of dimensions [R x R x n,] contains knowledge
about the pressure wavefield gradients and density gradients from
the full acoustic wave equation formulation. In the case of real data,
where amplitude differences in the wavefield due to site effects or
difference in sensors can impact the data, it might be necessary
to impose the condition that medium parameters should not vary
rapidly as a function of space (De Ridder & Biondi 2015). This can
be achieved by penalizing the second order spatial derivatives in the
form of a regularization term. For the purpose of this paper, where
we analyse synthetic data only and the problem is well constrained,
eq. (37) is solved by linear regression with a mean squared error cost
function, that is non-regularized least-squares WEI. Information
about density obtained from eq. (36) and the updated phase velocity
estimates obtained by solving eq. (37), provide an updated estimate
of h denoted Ah':

W=, 42)
m
and g is updated by g’. We proceed to perform several iterations
of solving eqs (36) and (37) until we observe convergence towards a
stable estimate of g’. In the following, we analyse this methodology

for acoustic media, then test its performance in elastic media.

3.2 Volumetric arrays

To estimate density with volumetric gradiometry in an elastic
medium, a 2-step procedure is implemented. First, we discretize
eq. (18) with finite differences on the volumetric array (Fig. 2b) and
estimate body wave velocities with linear inversion techniques based
on the free surface methodology described in Curtis & Robertsson
(2002). We use a standard non-regularized, least-squares minimiza-
tion technique to estimate v’ and vp'. Secondly, we discretize left-
and right-hand sides of eq. (23) with classical finite differences and
substitute the estimated body wave velocities vs’ and vy’ obtained
from WEI:

2
[a,z u, + vf,/[ = 0wl + v,z,uz] - 2v§/V2uzi|
z

[i./.0]
LHS
(43)
1 1 4o/
= —(2—-— —=)P
i Az vy
Plij.01 P [i./.0]
N AT,
RHS
where,
nl n -1
LHSy 0 = Wi jor = 24 o T Wi iuf,[ 0]/|:u:[i./.—1] 714;[‘./;0]:|
1, ]! - i
At? Az o Az (44)
u”. . +u o —du o U +u .
5 2 2[i.j—1.0] 2[i—1.j,0] 2[i.j.0] 2[i+1.7,0] 2[i, j+1,0]
+ (UP[K./‘U]/ - 2”5[1,1,0]/) - A A;; . -
402, o
RHSj 0 = ~ (2 - 1@:[,",’;:]/ ) Pijo) (45)

which enables density to be estimated via linear regression at each
receiver position [7,7,0] at the surface:

LHSu 00 = —— RHS}; j.0- (46)

Pli,j,0]

4 SYNTHETIC TESTS

By using wavefield gradiometry we aim to image the shallow sub-
surface in as much detail as possible. With the following synthetic
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study we wish to examine the role of density in enhancing or ob-
scuring our resolution of lateral heterogeneities.

We use the 3-D wavefield modelling software Salvus (Afanasiev
et al. 2019) to produce accurate synthetic acoustic and elastic
wavefield recordings in 3-D heterogeneous media. The wavefield is
recorded at the surface over a 40 x 40 receiver grid in the middle of
the domain. As a rule of thumb in gradiometry, the wavefield should
be sampled at spatial points spaced a maximum of around 12 per cent
of the minimum wavelength apart, in order to obtain an accuracy
of 10 per cent in first order spatial derivatives (Langston 2007a).
Analogous error calculations for second order derivatives suggest
that for a same level of accuracy receivers must be spaced at a max-
imum of 24 per cent of the minimum wavelength (Appendix A); in
other words for the same receiver spacing, second order derivatives
are less prone to large finite difference errors than first order deriva-
tives. With a spacing of 2 m and a minimum medium velocity of
1550 ms™!, this allows frequencies up to 180 Hz to be used with
reasonable accuracy. All wavefields are recorded for a time interval
of 3 s at a temporal sampling rate of 0.3 ms. A buried receiver is
placed 1 m below every receiver on the surface array for volumetric
gradiometry.

Relevant depth slices and plan view maps of the true acous-
tic P-wave velocity and density model are shown in Fig. 3. The
velocity heterogeneity of the top layer follows a sine function
in the x-direction at a wavelength of approximately 113 m. The
density structure has a wavelength of 88 m and is rotated by 90°
with respect to the velocity structure in order that we can clearly
identify successful estimates of each parameter without concerns
that we are actually estimating only their correlation. The rota-
tion of the orientation of density heterogeneities relative to those
in velocity should also reveal whether the estimated density struc-
ture contains artefacts caused by velocity heterogeneity and vice
versa. Layer 1 is 50 m thick and velocities span the range 1550
to 2300 ms™!, densities span 1200-2000 kg m—3, while the deeper
layer has a homogeneous velocity of 2700 ms™' and density of
2240 kgm™>. The receiver array spans an area of 78 x 78 m?
and captures at least half a wavelength of the heterogeneity in
both velocity and density structures (Figs 3b and d). Elastic mod-
els are constructed analogously to Fig. 3 with an additional S-
wave velocity model related to P-wave velocity by a Poisson ratio
of 0.25.

To test the performance of WEI for simulated ambient noise,
five isotropic sources are placed on a circle around the receiver
array at a radius of 290 m from the midpoint. They fire Ricker
wavelet signatures with different central frequencies ranging from
4.5 to 16 Hz at random time intervals but with the same amplitude
to examine whether WEI is robust against waves of overlapping
frequency. The sources fire close to the surface at 10 m depth to
ensure that the dominant wave energy travels along the surface,
allowing the assumption that the pressure gradient in z-direction
is small compared to horizontal directions. The increasing velocity
with depth in the model ensures that the waves are dispersive as in
the true Earth’s subsurface.

In addition to the proof-of-concept synthetic model where density
structure is orthogonal to the velocity structure, which is discussed
in the main body of the paper, we examine models that resemble nat-
ural borders between geological units more closely in Appendix D.
Two true density models whose structure oscillates in parallel with
the velocity structure of Figs 3(a) and (b) are analysed for the acous-
tic data case. In Fig. D1(a) the density gradients follow the same
sine curve as the velocity structure and are directly aligned with the
velocity gradients (Fig. D1b), whereas the density and velocity in
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Figure 3. (a) Acoustic velocity model cross-section in xz-plane. Source locations relative to the receiver array are indicated by stars. Receiver groups marked
by red triangles highlight the location of one line of 40 receivers at the surface and their corresponding buried receiver positioned at 1 m depth below. The
total array spans an area of 78 x 78 m? spaced at 2 m intervals across the range [261, 339] m in both x- and y-directions. For gradiometry relying exclusively
on the surface array, derivatives are calculated over a decimated receiver grid spaced at 4 m, whereas all surface receivers at 2 m intervals are used to perform
volumetric gradiometry. All plan views showing model parameters are represented on the decimated grid at 4 m receiver spacing. (b) 2-D xy-plan view map
of the section of the true velocity model spanned by the internal receivers of the surface array. Depth boundary from layer 1 to layer 2 does not correspond to
a step function change but a linear increase within the model cell that transitions between properties from the shallower layer to the deeper layer. (c) Density
model depth cross-section in yz-plane. (d) 2-D xy-plan view map of the section of the true density model spanned by the internal receivers of the surface array.
For the pressure signals in Figs 4(a) and (b), a constant density model of 1600 kg m~—2 is used instead for the top layer (Appendix B, Fig. B1). Elastic runs are
performed with the same velocity and density structure and an additional shear-wave velocity field. Acoustic and elastic forward models have slightly different

meshing criteria due to their respective minimum model velocities.

Figs D2(a) and (b) both also vary in the x-direction but are spatially
shifted with respect to each other.

5 DENSITY FINGERPRINT
5.1 Free surface arrays

Sensitivity to relative density gradients in the full acoustic wave
equation

The full acoustic wave eq. (25) can be written in the form of the
Helmbholtz wave equation and a source term containing relative den-
sity gradients Vp(x)/p(x) acting on pressure gradients V P(x, t):

V2P(x,t) — 32P(x, 1) = L9 . VP(x,1). (47)

ox)

cu(X)*

Relative density gradients influence pressure gradients whenever
a spatial density gradient V p(x), that is, a laterally heterogeneous
density structure, exists. Otherwise the term on the right-hand side
of eq. (47) becomes zero.

To illustrate the role that relative density gradients play in in-
fluencing wavefields we compare the second-order spatial pressure
gradient terms in Fig. 4 for a model in which density varies (Fig. 3)
to one in which density is fixed at the average value of the former
model (Appendix B, Fig. B1). The spatial pressure gradients are
expressed as

V2P(x, 1) (48)

for the Helmholtz eq. (24) and

p(x) V- (LVP(x, t)) (49)
p(x)

for the full acoustic eq. (25). For simplicity of notation, we drop the
indication of space and time dependencies of density p and pres-
sure P hereafter. In variable density media, terms (48) and (49) have
quite different discretized finite-difference coefficients as shown in
Table 1. In the Helmholtz case, classical discretization coefficients
for second order derivatives are used, whereas ratios of density
from neighbouring receiver stations dominate the discretization co-
efficients in the full acoustic case (eqs 37—40). If the pressure field
passes through a homogeneous medium, the coefficients in the full
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Figure 4. Effect of density gradients in 3-D acoustic (a and c) and elastic media (b and d). Panels (a) and (b) show the discretized Helmholtz (dotted grey)
and full acoustic (dashed black line) normalized spatial gradients at receiver [13,13] for a constant acoustic and elastic density model (Appendix B, Fig. B1)
respectively. The difference between Helmholtz and full acoustic gradients (solid red line) shows that constant density has no influence on the measured
wavefield. Panels (b) and (d) show the same information for a heterogeneous density model (Figs 3¢ and d) in acoustic and elastic media, respectively. The
difference between Helmholtz and full acoustic gradients contains the signal generated by the density gradient in y-direction. The influence of the density
gradient can clearly be distinguished (solid red line). In this example, the wavefield is filtered between 7 and 9 Hz.

Table 1. If divided by receiver spacing Ax?

, the presented values correspond to finite

difference discretization coefficients on a regular grid (Fig. 2) for second order spatial
pressure gradients in Helmholtz (24) and full acoustic (25) equations, respectively.
Helmholtz coefficients correspond to the classical central finite difference discretiza-
tion values. Full acoustic coefficients are dependent on density ratios g’ (eqs 38-40)

of neighbouring receivers.

v-1 [i—1] [iy] [i+1] li+1]
Helmbholtz 1 1 -4 1 1
: 1 1 1 1 1
Full acoustic 2 g{o’i] 7 gf—.O] 3 & i gEJmO] l gEOHr]

acoustic case reduce to the Helmholtz coefficients since ratios of
adjacent density values are equal to 1: the phase velocity estimates
are thus identical in this case regardless of which equation is used
for WEIL. Whenever the densities between neighbouring receiver
stations vary, the full acoustic coefficients contain density ratios
not equal to 1 and an effect on the phase velocity estimate is ex-
pected depending on whether the Helmholtz or the full acoustic
wave equation is used as a basis for WEL.

This behaviour of the spatial gradients becomes obvious in both
acoustic (Figs 4a and c) and elastic (Figs 4b and d) media. In the
homogeneous model, Helmholtz and full spatial gradients are the
same, resulting in no difference between them (Figs 4a and b). In
the model with variable density we observe a clear change in wave
amplitude and a phase shift between the two spatial gradient ex-
pressions which is prominent between recording times 1 and 2 s
in the acoustic case (Fig. 4c). Density gradients therefore create a
clearly distinguishable fingerprint in measureable wavefield quan-
tities (Figs 4c and d), where the fingerprint I' is defined as the
difference between normalized spatial gradients:

v (or)] - =
T=|pv.-(-vP|| - [V?P] = -£.vP.
P o

(50)

In the synthetic model, density varies exclusively in the y-direction,
so 9,0 = 0 and T reduces to the form:

1
= —d,p39,P. (5D
1%

The difference between Helmholtz and full acoustic spatial gradi-
ents is less pronounced in elastic media, even though underlying
density gradient values are the same in both acoustic and elastic
models. Nevertheless, neglecting variability in the density structure
in either acoustic or elastic media results in gradients that are not
representative of the propagation medium. This causes the phase
velocity to be either over- or underestimated by WEI when using
the Helmholtz equation in a variable density medium.

5.2 Volumetric arrays

Sensitivity to density in the free surface, full elastic wave equation

The linear equation derived from the vertical component of the
Lax—Wendroff corrected full elastic wave equation puts constraints
on density directly. Eq. (46) shows that density linearly relates the
temporal and spatial derivatives of displacement to the pressure
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term. In Fig. 5 it becomes clear that the left- and right-hand sides of
eq. (46) are related by a scaling factor. By fitting a regression line
with the slope of the inverse of true density in the heterogeneous
forward model, a coefficient of determination R> equal to 1 is ob-
tained suggesting that the scaling factor between left- and right-hand
sides corresponds to the density of the medium. Fig. 5(b) shows that
residuals are essentially zero between left-hand and right-hand sides
of eq. (46) if the true density is substituted. The same is observed
in homogeneous media.

6 INVERSION RESULTS

We now present results from the iterative inversion process for
density and phase velocity using simulated ambient noise. In Sec-
tion 6.1.1 we investigate the performance of density estimation in
acoustic media at a central frequency of 8 Hz where the wavefield
data is filtered with a narrow bandpass in the range 7-9 Hz. We
then show how that density information improves the accuracy of
phase velocity estimates based on WEI of the full acoustic wave
equation, and how random noise impacts the robustness of these
estimates. We then investigate the quality of density inversion over
a broader frequency range from 4 to 14 Hz and the impact that
full WEI has on estimates of phase velocity dispersion curves. In
Section 6.1.2, we discuss the density estimated in elastic media
using acoustic equations for WEI and the same iterative inversion
workflow. Misfit functions are then presented to illustrate trade-offs
between density and phase velocity in both acoustic and elastic me-
dia (Section 6.1.3). Thereafter, we show density results in elastic
media obtained by gradiometric linear regression using the full elas-
tic wave equation at the free surface (Section 6.2). An overview of
the structure of this results section summarizing the data types, ar-
ray configurations and governing equation assumed in the inversion
methods is given in Table 2.

6.1 Free surface arrays
6.1.1 Acoustic data

Density estimation

Fig. 6(a) shows the density inversion results as a mean over all cross
sections in x (Fig. 6a, left-hand panel) and y-direction (Fig. 6a,
right-hand panel). Corresponding lateral relative y- and x-gradients
in density are depicted in Fig. 6(b) in the left- and right-hand column,
respectively. Without damping, there is no constraint on the absolute
value of the density. Hence, the inversion process is quite sensitive
to different initial damping parameters ®,. As a rule of thumb,
setting the initial damping parameter at 10 per cent of the mean
amplitude of all recorded pressure signals stabilized our inversions.
The mean value over the true density model is fed to the inversion
as the initial homogeneous reference model pjp;.

We clearly see the effect of the damping term in the first iteration
where the inverted density estimate is skewed towards the initial
reference model. After the initial iteration we decrease the damping
parameter by a factor of 10 and keep it constant for a total of 100
iterations. Lowering the damping parameter gives less weight to the
reference model. Tests showed that the inversion process is only
sensitive to the initial damping parameter: decreasing the damping
parameter further after the initial stabilization phase did not have
an effect on the final result, but it allowed the inversion to converge
more quickly towards a minimum misfit solution. After only 10

iterations of alternately updating velocity and density, the density
estimates approximate the true solution fairly well and remain stable
over subsequent iterations. The initial spiky character observed in
the x-direction might arise because we did not impose any smooth-
ness constraints on the inversion. The logarithm of the data misfit
vector &, of dimension [Rx 1]

Sy m' —d,)’

ny

8 = (52)
for the predicted model at each iteration is shown in Fig. 6(c) and is
used to determine whether the iteration delivers satisfactory results.
After the initial iteration the logarithm of the full acoustic misfit
of —7.0 is comparable to the Helmholtz misfit level at a value of
—6.1. From there, the data misfit monotonically decreases with each
iteration. In the first 10 iterations, the logarithmic misfit decreases
rapidly from —7.0 to —13.2 at iteration 10. After 12 iterations the
logarithm of the misfit remains almost constant around a value of
—13.5 and only improves marginally to —13.9 until the inversion is
stopped at iteration 100.

The steep drop in misfit at iteration 10 correlates well with the
improvement in the relative parameter error on the relative density
gradient in the y-direction. The relative error of parameter p at each
location 7,/ is defined as the difference between the absolute values
of true and estimated values |p|™ and |p|*i™* divided by the true
values

Ipliy — Ipli ™
| true
2y

|Error|;; = 100 ; (53)

where in this instance, parameter p stands for the relative x- or y-
density gradients d,p/p and 9, /p, respectively, but can stand for
any other estimated quantity. In the case where the true value in
eq. (53) is equal to 0, the denominator is replaced by 1.

The density gradient result with minimum parameter error in
x-direction is achieved at iteration step 21. The slight increase in
parameter error in density thereafter is likely to originate from the
velocity updates dominating the misfit evolution. Velocity has a
much stronger effect than the density since it appears squared in
the full acoustic wave equation. We showed in Fig. 4 that in a
medium with homogeneous density the spatial gradient expressions
from the Helmholtz and the full acoustic equation are identical
and so phase velocity estimates remain unaffected by homoge-
neous densities across the array. Since density is constant in the
x-direction, the true phase velocity is only dependent on density
structure in the y-direction. Given the poor constraints on den-
sity in the x-direction the mean estimate on the density gradient
in x-direction deviates, if only slightly (£0.15 per cent), from the
true value of zero (Fig. 6b). This introduces artefacts in the phase
velocity estimates which in turn impairs density estimates through-
out the iterative process. Nevertheless, in our experiments the data
misfit minimum does tend to indicate when parameter estimates
are most accurate. Cross-talk between density and velocity appears
to be weak because the density structure of the true model could
be reconstructed with reasonable accuracy without major artefacts
(Fig. 6).

Relative density gradient results for models with parallel spatial
gradients (i.e. density structure varying in the same directions as the
velocity structure) are shown in Appendix D (Figs Dlc and D2c)
and could also be reconstructed without a significant increase in
cross-talk compared to the models with density and velocity spatial
gradients orthogonal to each other. Misfits are higher by two to
three orders of magnitude but still suggest a good agreement with
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Figure 5. Role of density at the free surface of 3-D elastic media [heterogeneous forward model (Fig. 3)] shown at the example receiver at location [13,13].
The wavefield is filtered around a central frequency of 8 Hz with a bandpass of 2 Hz. Panel (a) shows the waveform of the discretized left-hand side (left-hand
panel) and right-hand side (right-hand panel) of eq. (46) when true velocity model parameters are used. The middle panel in (a) shows a scatter plot of left- and
right-hand data with a regression line of a slope corresponding to the inverse of true density at receiver [13,13]. R? is the coefficient of determination defining
the goodness of fit of the regression line and the data. Panel (b) shows the residuals (LHS-1/p RHS) between left- and right-hand side of eq. (46) if the true
model density is used.

Table 2. Overview of the WEI approaches that are used in the Inversion Results section. For the
inversion method based on free surface arrays (Fig. 2a) and volumetric arrays (Fig. 2b), used to
produce the results, the reader can refer to Sections 3.1 and 3.2, respectively. For free surface arrays,
the governing equation used to estimate density is the full acoustic wave eq. (25): density inversion
with surface arrays using full acoustic WEI is tested on synthetic data from both acoustic and elastic
media. For volumetric arrays, density is obtained using a modified version of the full elastic wave
equation at the free surface (eq. 43) in which both vertical particle velocity and pressure appear.

Array type Synthetic medium

Equation used for WEI

Free surface
(Section 6.1)

Acoustic (Section 6.1.1)
Elastic (Section 6.1.2)

Full acoustic (from Section 3.1, eq. 25)

Volumetric
(Section 6.2)

Elastic (Section 6.2.1)

Modified full elastic free surface
(from Section 3.2, eq. 43)

the data (Figs D1d and D2d); also the evolution of the mean error
on the relative density gradients is comparable to the model with
orthogonal density and velocity structures.

As discussed in Section 5, the inversion is predominantly sen-
sitive to relative changes in density V p/p, where Vp corresponds
to the gradient of density at a central point p = p; ; over the finite
difference stencil (cf. Fig. 2), and is less sensitive to the absolute
values Vp (Fig. 7). Fig. 7 shows that the minimum misfit estimate
of the local density gradient in the y-direction is typically within
410 per cent of the true value for relative density changes larger
than 0.5 per cent over the width of the spatial finite difference sten-
cil. The accuracy of estimates decreases for weak relative changes
below 0.5 per cent. Estimates of absolute values may be biased de-
pending on which initial density reference model is fed to the first
iteration of the inversion. Results in Fig. 6(a) could successfully
reconstruct absolute density values due to an appropriate choice of
starting model pi,;. If the initial guess of bulk density varies more
significantly from the true values, the absolute estimates are under-

or overestimated according to the input starting model (Fig. 7a,
left-hand panel) because the inversion fits the relative changes in
density ratios (Fig. 7a, right-hand panel) as becomes obvious from
eq. (47). By reconstructing relative density changes, the results are
unbiased by the choice of initial density model p;,; (Fig. 7a, right-
hand panel). The results of relative density gradients for each local
receiver position over the entire grid are shown in Fig. 8 as 2-D plan
view maps.

Effect of density gradient on phase velocity estimates

We now show the extent to which the estimated density structure
influences the accuracy of phase velocity maps. Fig. 9(a) shows the
phase velocity map estimated using the same data as above, but
with the Helmholtz wave equation, so without taking density into
account in the formulation of wave propagation. Fig. 9(b) shows
phase velocity estimates based on the full acoustic wave equation at
iteration 100 where the data misfit is minimal.

20z Iidy || uo 1senb Aq G29%29//,600eb6/16/£601"01/10p/8l01E-80UBADE/I[6/W 00 dno-oIWapedR//:sdRy Woly peapeojumod


art/ggae097_f5.eps

1472 M. Faber and A. Curtis

(a)
2000 1640
1620
1800
2k 1600
=
‘n 1600 /
b 1580/ * °
D .
1400 1560
1540
1200
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
y receiver N° x receiver N?
(b)
—=—- True model Iteration N° 2 +— lteration N° 7 —e— lteration N° 50
- Initial reference Iteration N° 3 +— Iteration N° 10 = Iteration N°® 80
| —=— lteration N° 1 +— lteration N°5  —=— Iteration N°20 —©&- Minimum misfit - N° 100
2.0 0.20
15 015 .
1.0 0.10

0.05

b AT T T S T e g e 0.00

Relative density gradient [%]
o
o

-0.5 —-0.05
-1.0 -0.10
!
=15 -0.15
2054 6 8 10 12 14 16 18 029 4 ¢ 8 10 12 14 16 18
y receiver N° X receiver N°

(c)
7 Misfit Helmholtz —— Minimum Misfit - It N°100
é 5.0 +  Misfit Full Acoustic
Eﬁ e

o +
29 00|
© F

-15.0
20 40 60 80 100
100 1

s —— Minimum at Iteration N°12 . Erroron a,p/p
= Minimum at Iteration N°21 Error on a,0/p
o
gl 5o
i
c
]
@ O T e SELEbEE
2 5 S et ;

20 40 60 80 100
Number of Iterations

Figure 6. Inversion result for a wavefield filtered to include frequencies in the range of 7-9 Hz. Only the results for the internal receivers 2—19 are displayed, as
boundary stations need to be disregarded for finite difference estimates. (a) Mean value of inverted density results over all cross-sections in x-plane (left-hand
panel) and y-plane (right-hand panel) showing the evolution of inverted density results at selected stages during 100 iterations. True model is depicted as dashed
dark blue line and initial model as dotted black line. The minimum misfit result at iteration 100 is highlighted by red circles. (b) Relative density gradients
Vp/p of (a) in y- and x-direction, respectively. (c) Logarithm of the mean data misfit evolution for the full acoustic wave equation (black crosses) over all
internal receivers (upper row) and corresponding mean parameter error on x- and y-relative density gradients over all internal receivers (lower row) spanning
over 100 iterations. Their respective minimum value positions are marked by vertical lines in red for minimum misfit at iteration 100, dark orange and light
orange at iteration 12 and 21 for minimum parameter error on relative density y- and x-gradients. As a reference, the misfit achieved with linear regression
based on the Helmholtz equation is shown by the dotted grey line. The minimum mean parameter error is evaluated only after the initial iteration.
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Figure 7. Impact of initial density reference model pinit on inversion results of (a) absolute density y-gradients 9,0 (left-hand panel) and relative density
y-gradients 9,,p/p (right-hand panel). Their respective errors (eq. 53) are depicted in (b). Results from an optimal pj,; starting model (red circles) correspond
to the estimates in Fig. 6(a) where pipj is the mean bulk density of the true model (dashed dark blue line). Results for a less well informed initial reference
model with higher mean bulk density (green circles) and lower mean bulk density (light blue circles) are shown for comparison.
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Figure 8. Plan view of (left-hand panel) true model and (middle panel) inversion results for absolute values of relative density gradients in y-direction 9, 0/p
at iteration 100. The corresponding parameter error (eq. 53) is shown in the right-hand panel.

By visually comparing these maps to the true velocity structure and eq. (25) for full acoustic equation]. Fig. 10(a) shows that
(Fig. 3b) it is obvious that the Helmholtz approach fails to reproduce the full acoustic spatial gradients reveal a clearer linear relation-
the relative structure of the subsurface velocity pattern. By contrast, ship than the Helmholtz model as indicated by a coefficient of
the results obtained by WEI of the full acoustic wave equation yield determination R? closer to 1. The difference in best fit slope es-
an improved estimate of the velocity structure that is much closer timates shows that phase velocity is considerably underestimated
to the true model in terms of relative structural features. This ob- for the Helmholtz model at receiver [13,13] due to the fact that
servation is reflected in the much lower misfit values obtained for the relative density structure is neglected in the computation of
the full acoustic model compared to the Helmholtz model (Fig. 9c¢). the spatial gradients. This disparity in the accuracy of phase ve-
It is notable how the misfit evolution over the y-axis is dominated locity estimates becomes evident also in the comparison of left-
by the slope of the density heterogeneity in the true structure (red hand and right-hand side signals of the full acoustic and Helmholtz
dashed line). The Helmholtz misfit values approach the full acoustic equation (Fig. 10b) and their respective residuals (Fig. 10c). They
misfit values at a density gradient close to zero [see green highlight illustrate that the full acoustic expression matches the pure data
at y-receiver 6 in Fig. 9(c)], whereas, for steep changes in density vector well, whereas the Helmholtz expression exhibits larger resid-
at y-receiver 13 in the model, the Helmholtz equation performs uals than the full acoustic case for both receiver stations. In-
relatively poorly. corporating density in the spatial gradient terms of WEI is thus

Fig. 10 illustrates the effect of density gradients on phase ve- shown to be important in order to estimate phase velocities accu-
locity estimates at two specific receiver stations in the array. Phase rately.
velocity squared is given by the slope of the linear relationship If we compare the misfit residuals for receiver [13,13] (Fig. 10c,

between spatial and temporal gradients [eq. (24) for Helmholtz left-hand panel) and [13,6] (Fig. 10c, right-hand panel), we can see
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Figure 9. Phase velocity map estimated using (a) linear regression based on Helmholtz wave equation and (b) full acoustic wave equation inversion. Red and
green squares mark receiver stations of interest [13,13] and [13,6]. (c) Data misfit post inversion averaged over all x-cross sections (red dotted line in (a) given
at example of fixed receiver position x = 13) for both phase velocity maps (a) and (b). Black and grey crosses show the logarithm of misfit §4 in eq. (52) for
the Helmholtz equation (grey) and the full acoustic wave equation (black). The red dashed curve shows the absolute value of the y-gradient of the true density
heterogeneity Ap. Green and red highlighting at receiver station 6 and 13 represent the respective positions in the 2-D plan view map.

that the full acoustic residuals are of the same order of magnitude
at both stations whereas the Helmholtz residuals are two orders of
magnitude larger for receiver [13,13]. Receiver [13,13] is located
in an area where density is highly variable between the surrounding
stations (26 kg m~3 from Fig. 9c) which explains why the Helmholtz
wave equation is subject to much larger residuals than the full
acoustic equation. Receiver [13,6] is in an area with only weak
variations in density among neighbouring receivers (4 kgm~ from
Fig. 9¢), so the left-hand sides of both Helmholtz and full acoustic
equations agree well with the observed data vector. The accuracy
of velocity estimates thus depends on the true density gradient
across surrounding receivers when using the Helmholtz equation for
WEL

Changing data frequencies

The effect of the density gradient on phase velocity is persistent over
a wider frequency range than was analysed above. In Figs 11(a) and
(b), the dashed blue lines depict the true P-wave velocity in y-
and x-direction, respectively, for the shallow layer 1 and the deeper
layer 2 of the synthetic model (Fig. 3). Due to wave dispersion,
the estimated phase velocities should lie in between those two ex-
pected absolute thresholds depending on the analysed frequency.
The Helmholtz estimates for phase velocity (Fig. 11a) are consis-
tently underestimated for receivers where density gradients are high
(see Fig. 12 as reference), due to the use in WEI of discretization

coefficients that neglect the influence of density (Table 1), whereas
they approximate full acoustic (Fig. 11b) phase velocity estimates
at low density gradient values. However, the influence of the den-
sity gradients on the Helmholtz phase velocity estimates seems to
become smaller with increasing frequency.

Accuracy of density gradient estimates seems to decrease with
increasing frequency (Fig. 12): at a frequency of 6 Hz, the true
gradient model in layer 1 is well approximated, whereas the result
at frequency 14 Hz shows a clear discrepancy between true and
estimated density gradients. A trend between errors on density gra-
dients and strength of the density fingerprint (Fig. 12, right-hand
panel) becomes notable: parameter errors on estimated density gra-
dients via WEI increase with decreasing strength of the density
signal. This suggests that higher frequencies are less sensitive to
density.

For the model tested, no frequency dependence of the relative
density gradient estimate is observed. This is likely due to the fact
that the lower layer of the investigated model is homogeneous and
consequently does not have an associated density fingerprint. From
Fig. 7 we know that the bulk density estimate is influenced by
the damping parameter of the inversion process. Testing the fre-
quency dependence on the absolute density is possible if we hold
the initial reference model in the inversion process constant over
the narrow band-passed frequency bands. Fig. C1 in Appendix C
shows that there is no clear increase of the absolute density esti-
mate with decreasing frequency and thus the higher bulk density
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Figure 10. (a) Linear relationship between temporal gradients BtzP and pV - (% VP) from (49) for the full acoustic wave equation and V2P from eq. (48) for

the Helmholtz wave equation at the two receiver locations shown in Fig. 9(a). The coefficient of determination R?> denotes the goodness of fit of the data by
the linear regression model, and phase velocity estimates using each equation are shown along with the reference velocity obtained for a homogeneous density
forward model. (b) Discrete time-series of the observed data vector (d = BtzP, solid blue) and the left-hand sides of both Helmholtz (ci H V2 P, black dotted)
and full acoustic (ci, Fa PV - (% VP), grey dashed) wave equations, respectively, when using the estimated parameter values for phase velocity and density.
(c) Respective residuals (difference between right-hand and left-hand side) of both Helmholtz and full acoustic wave equations.
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Figure 11. Results for the estimated phase velocities for 2 Hz wide bandpasses around central frequencies 4, 6, 8, 10, 12 and 14 Hz from Helmholtz
linear regression (a) and full acoustic WEI (b). Estimated phase velocities are shown as a mean over all x (left-hand panel) and y (middle panel) cross-
sections, respectively. For the estimation of full acoustic phase velocities, density information as shown in Fig. 12 is used. The mean value over all the frequency
results is shown for both full acoustic and Helmholtz velocities in a black solid line. (c) shows the error evolution over frequency for the 2nd order accurate
approximation of the spatial gradients with a spacing of 4 m used in this example (see Appendix A).

of the homogeneous lower layer does not seem to influence the
estimates.

Fig. 13(d) shows how phase velocity perturbation increases with
decreasing frequency and is roughly correlated with the signal
strength of density. Full acoustic WEI can account for these density
induced effects in phase velocity over a broad range of central filter
frequencies, producing more accurate dispersion curves (Figs 13a—
¢). The full acoustic estimates display higher coefficients of deter-
mination (Fig. 13b) and lower misfits (Fig. 13¢) than the Helmholtz
results over all frequencies. As a reference we estimate a dispersion
curve for the velocity model in Fig. 3 with a constant density of
1600 kgm— in layer 1 (Appendix B, Fig. B1) and compare it to
dispersion curves obtained with full acoustic and Helmholtz WEI
(Fig. 13a) for the variable density model (Fig. 3). The dispersion
curve calculated on the basis of full acoustic WEI is able to re-
produce the general trend of the reference dispersion curve. We
do not expect a perfect match as the imposed density structure in
the laterally heterogeneous case does influence the paths taken by
wave energy. The Helmholtz dispersion curve does not reproduce
the key feature of a classical dispersion curve where phase velocity
increases with decreasing frequency. This shows that it is detrimen-
tal for depth model reconstruction to assume a constant density over

space in a medium with laterally heterogeneous density, especially
at lower frequencies.

Random noise

Given that in real use case scenarios WEI depends on field record-
ings, it is important to consider the robustness of density estimation
to errors in the recorded signal. The density signal is relatively weak
compared to that of phase velocity, hence it may be obscured by in-
strumentation noise in the field. We add random noise, expressed
as a percentage of the mean trace amplitude over the whole grid,
to the simulated observed signals in order to determine a thresh-
old of noise beneath which the method still delivers meaningful
results. For each receiver, the added noise follows an uncorrelated
normal distribution with a spread of 0.1-5 per cent of the mean
trace amplitude.

Correlation factors for density decrease with increasing noise
levels. At noise levels 0.1-1 per cent of the mean trace amplitude,
the pressure with added noise remains relatively similar to the true
pressure (Fig. 14a). The density distributions are thus centred around
the optimal correlation line where true and estimated density match
perfectly (Fig. 14b). At a random noise level of 5 per cent the
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density is shown as a mean over all x (left-hand panel) and y (middle panel) cross-sections, respectively. The right-hand panel shows the mean error (eq. 53)
on relative y-gradients of density averaged over the whole array per analysed frequency. The mean density fingerprint for normalized spatial pressure gradients
(eq. 50) is calculated for each frequency as 1/n; 2,’: * | IT,| and then averaged over the array.
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Figure 13. Mean phase velocity dispersion curve (a) over the whole array obtained via full acoustic WEI (black crosses) and Helmholtz WEI (grey crosses),
respectively. Phase velocity results are obtained for a reference model (blue dotted line with cross marker) produced by the same setup as described in Fig. 3
but with constant density in layer 1 (Appendix B, Fig. B1). Corresponding coefficients of determination (b) and misfits (c) are shown to evaluate the data fit.
(d) The perturbation of phase velocity % (red dashed line with square markers) is defined by the difference between phase velocity in the heterogeneous (grey
crosses) and homogeneous baseline model (blue crosses) obtained via linear regression on the basis of the Helmholtz wave equation. The mean fingerprint I'
of the density signal is defined as in Fig. 12 and shown by black triangles.
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Figure 14. (a) Correlation plots between true pressure signal and pressure signal at 8 Hz with added random noise at 0.1, 0.5, 1 and 5 per cent of the mean
amplitude of the modelled pressure signal over the whole grid. The black dotted line represents optimal correlation (correlation coefficient of 1). Wavefield
arrivals at # > 2 s are used to visualize the effect of the added random noise on lower amplitude signals. Correlation plots of model material parameters at the
various noise levels; the correlations between true and estimated (b) density and (c) phase velocity are shown. True phase velocity is taken at 0.9 of the S-wave
speed in the surface layer, hence the frequency dependence is not taken into account as it is difficult to determine the expected phase velocity in a laterally

heterogeneous medium.

density distribution does not approximate the optimal correlation
line well which suggests that the relative density structure cannot be
estimated accurately. The correlation of phase velocity is dominated
by the quality of the density information and vice versa: correlation
coefficient values follow the same deteriorating trend when the
noise level becomes higher (Fig. 14c). The estimates for both phase
velocity and density remain stable up to a noise level of 1 per cent,
but even at a noise level of 5 per cent the main structural trends are
still recognized.

6.1.2 Elastic data

The iterative full acoustic inversion procedure is now performed us-
ing data generated in an elastic medium for the calculated wavefield
potential ® (from eq. 7) for a central frequency of 8 Hz. The damp-
ing applied had to be 10 times stronger than in the acoustic case,
with the damping factor at the initial stabilizing iteration equal to
the mean amplitude of all recorded pressure signals. All subsequent
iterations are carried out with 10 per cent of the initial damping. The
results obtained for density (Fig. 15a) and relative density gradients
(Fig. 15b) suggest that the structural trends of the true model in the y-
direction can be estimated approximately, but contain substantially
more artefacts than in the acoustic case (Fig. 6). The sinusoidal
trend of the lateral heterogeneity in y-direction is recognizable but

its shape is not correct. These distortions are naturally also mapped
into estimates of relative spatial density variations. The poorly con-
strained results in the x-direction demonstrate relative density gra-
dients deviating from zero, especially between receiver 3—6 which
does not agree with the constant true model.

By examining the parameter error in x- and y-directions individ-
ually it becomes apparent that the parameter error in the x-direction
monotonically increases with iterations, whereas the parameter er-
ror on the relative gradient in y-direction at first steadily decreases
until iteration 60 after which it also follows an increasing trend.
Consequently, artefacts are mapped into the density result during
the inversion process. False structural density features are thus es-
timated by the inversion which suggests a strong cross-talk with
other material parameters. A trade-off with velocity could cause
the trend in velocity gradients in the x-direction, thereby distorting
density. By mapping a false trend originating from the velocity error
into the x-direction density gradient, gradients in y-direction might
compensate by over or underestimating the density variation. The
inversion being strongly influenced by the velocity response sug-
gests that density has less weight in the elastic medium compared
to the acoustic case. This becomes apparent in the misfit function
map that explores the phase velocity and density space, display-
ing trade-offs between parameters in the acoustic and elastic case
(Fig. 16).
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Figure 15. Inversion result for an elastic wavefield filtered to include a narrow frequency range around 8 Hz. Only the results for the internal receivers 3—18
are displayed, as boundary stations need to be disregarded for finite difference estimates and computing pressure entails an additional differentiation step
in approximating the divergence of the displacement. Mean value of inverted (a) density and (b) relative density gradient results over all cross-sections in
x-plane (left-hand panel) and y-plane (right-hand panel) showing the evolution of the inversion at selected stages during 200 iterations for a density model with
sinusoidal heterogeneity as shown in Fig. 3. True model is depicted as dashed dark blue line and initial model as dotted black line. The minimum misfit result
coincides with the last iteration 200 and is highlighted by red circles. (c) Logarithm of the mean data misfit over all internal receivers (upper row) for the full
acoustic wave equation (black crosses) over 200 iterations. As a reference, the misfit achieved with linear regression based on the Helmholtz equation is shown
by the dotted grey line. Mean parameter error on x- and y-relative gradients is shown in the lower row over all internal receivers. The respective minimum value
positions are marked by vertical lines in red for minimum misfit at iteration 200, dark orange and light orange at iteration 60 and 2 for minimum parameter
error on relative density gradients in y-direction and x-direction. The minimum mean parameter error is evaluated after the initial stabilizing iteration.
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Figure 16. Misfit functions for (a) acoustic and (b) elastic media at receiver
location [13,13] for a central frequency of 8 Hz. The misfit function are
representative of the data used to produce Figs 6 and 15, respectively. The
|Error| (eq. 53) shows the deviation of the relative density gradient value at
the global minimum misfit in the grid search (red star) from the true value
(white dashed line). Misfit is calculated as defined in eq. (52) and displayed
for a single receiver. Crosses of increasing size show how total relative
density gradient results of the iterative inversion process converges towards
the global misfit of the grid search (small: iteration 5, medium: iteration
25, large: iteration 100). The true phase velocity ¢,, (thin white dotted line)
denotes the phase velocity obtained from full acoustic WEI when the true
density structure is known.

6.1.3 Comparison between acoustic and elastic sensitivities

To visualize the sensitivities of the inversion towards the investi-
gated parameters, we perform a grid search where we analyse a
grid of potential solutions for phase velocity and relative density
gradients, and their misfit to the true model (eq. 52) at a fixed cen-
tral receiver location [xg, o] (Fig. 16). The density at the central
location is fixed at the true value, but both neighbouring cells in
the y-direction are freely variable in order to investigate the misfit
evolution for various relative density gradient values. The density
at [yp + 1] and [yo — 1] vary by £25 per cent around the true den-
sity value at [x, yo] and produce relative gradient values between

+6.25 per cent. The phase velocity at the central point is variable
around the phase velocity at [xo, yo] obtained by full acoustic WEI
and spans a range of £25 per cent.

We compare the misfit function for acoustic and elastic wavefield
data at the central frequency of 8 Hz. At the example receiver
[13,13], the global misfit minimum is about 3 orders of magnitudes
lower in the acoustic case than in the elastic one. This suggests that
more uncertainty is attached to the inversion process in the elastic
medium given that wavefield traces have been normalized prior to
the evaluation.

The misfit function distribution in the acoustic medium shows
that density gradients are better constrained than phase velocities
(Fig. 16a): for logarithm misfit values within two orders of mag-
nitude from the minimum misfit [yellow area, log(8,) < —11.4],
the phase velocity can vary up to 4 per cent whereas the relative
density gradient is better constrained with no fluctuation at all over
the applied binning. The absolute minimum misfit coincides ex-
actly with the true value of the relative density gradient (|Error| =
0 per cent) and the minimum misfit phase velocity agrees well with
the value of 2592 ms™! obtained via full acoustic WEI using the
true density structure. All iterations from the inversion process plot
very closely to the global misfit due to the strong constraints on both
parameters.

In elastic media, Fig. 16(b) shows that a comparatively larger
number of relative density gradient and phase velocity values can
explain the data on the basis of the full acoustic equation. For all so-
lution pairs with misfit values within two orders of magnitude from
the minimum misfit [yellow to orange area on Fig. 16(b), log(5,)
< —8.1], density gradients vary between 12.8 per cent over the
density gradient parameter space, whereas phase velocity fluctuates
between 40.8 per cent over the phase velocity parameter space. The
comparatively higher uncertainty than in the acoustic case might
be attributed to the weaker density signal strength (Fig. 4) and
approximations in physics. An error of 12 per cent between the
true relative gradient and the value at the global minimum misfit
suggests that the elastic data can not be fully explained by an un-
derlying full acoustic wave equation. This implies that the inversion
is prone to converge towards a slightly incorrect relative density
gradient value. Iteration 5 of the inversion process gives an estimate
on relative density gradient with a misfit value that is far away from
the global misfit minimum (about two orders of magnitude) and
provides a poor estimate on phase velocity and relative density gra-
dient. Due to the comparatively poor constraints on both parameters,
subsequent iterations are subject to parameter cross-talk and arte-
facts are mapped into the solution, corrupting primarily the relative
gradient in the x-direction. Nevertheless, the inversion manages to
converge towards a value in the vicinity of the true relative density
gradient. To test the gradiometric estimate on phase velocity at the
investigated receiver location, we use the surf-96 code (Herrman
2013) to calculate an expected value for mean Rayleigh wave ve-
locity between 7 and 9 Hz from the generated dispersion curve.
The phase velocity value of 1260 ms~! corresponding to the lowest
misfit marked by the red star in Fig. 16(b) is only 6 per cent smaller
than the expected value of 1340 ms~' generated by a 2 layer model
matching the 1-D depth structure at the receiver location in our true
model.

In summary, both acoustic and elastic media show sensitiv-
ity to relative density gradients. However, relative density gradi-
ents might not cause a large enough perturbation in the elastic
wavefield to be sufficiently constrained in the inverse problem,
whereas in acoustic media they are indeed essential to explain the
data.
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6.2 Volumetric arrays

6.2.1 Elastic data

In a first step using a volumetric array, body wave velocities are
estimated for a wavefield filtered between 7 and 9 Hz using a least-
squares inversion from eq. (18). Those velocity results (Fig. 17a)
are substituted into eqs (44) and (45) along with the calculated pres-
sure. Pressure at the free surface is given in eq. (11), but we find that
using only the related acoustic expression P = K,Vy - uy deliv-
ers more reasonable inversion results for density. Fig. 17 shows the
estimated density results obtained by linear regression of eq. (46).
The accuracy of the density results depends on how well the ve-
locities can be estimated. The mean value of the relative parameter
error over the receiver grid (Fig. 17b, right-hand panel) measures
3.04 per cent illustrating that the estimated results are close to the
true parameter values. Once body wave velocities and densities are
estimated, we can proceed to calculate Lamé parameters via empir-
ical relationships: results are shown for the first Lamé parameter in
Fig. 17(c).

7 DISCUSSION

We have shown that in acoustic media, relative density gradients
of only 1.6 per cent produce a substantial change in the synthetic
wavefield. This allows us to set up an inverse problem that success-
fully estimates density structure of the medium. The WEI approach
has been demonstrated both for models in which density and veloc-
ity structure are uncorrelated, as well as structurally more common
models that approximate geological interfaces in which density and
velocity are correlated. Relative density contrasts down to an am-
plitude of 0.5 per cent can be imaged with a parameter error smaller
than 10 per cent (Fig. 7). First tests suggest that the inversion pro-
cess is robust for random noise up to 1 per cent of the mean trace
amplitude (Fig. 14) which encourages a future trial on real data.

In elastic media, other effects interfere with the density signal,
making density estimation more difficult from surface array data
alone. Elastic results (Section 6.1.2) and sensitivity analysis (Sec-
tion 6.1.3) show that there is sensitivity to relative density gradients
in elastic media. However, the full acoustic approximation is too se-
vere for elastic wave physics and density is too weakly constrained
to be fully estimated using the proposed iterative inversion process.
This makes it unlikely that density inversion based on full acoustic
WEI will be feasible in an elastic Earth, or worse a viscoelastic Earth
where the already small density signal might be overshadowed by
the addition of energy dissipation. The full acoustic method might
only be applicable in localized areas where the wavefield passes
predominantly through gas or liquids.

To estimate density in elastic media it is therefore necessary to
use volumetric array measurements and to adopt a more accurate
representation of underlying wave physics as a basis for gradiomet-
ric WEI, such as the full elastic wave equation. However, it became
clear from eq. (3a) that if we only measure particle velocity or dis-
placement and if the source term f is omitted, density does not
appear as an independent term outside of the expressions for body
wave velocity. It is therefore impossible to estimate density inde-
pendently of the Lamé parameters using a sourceless full elastic
equation. However, if both displacement and pressure are measured
in a dual sensor configuration, the full elastic wave equation at the
free surface exhibits a direct, independent sensitivity to density in
the form of a linear relationship between pressure and displacement
terms (Section 6.2). If we are willing to deploy buried receivers

then the results herein suggest that density can be estimated directly
from recorded data, together with P- and S-wave velocities. Pres-
sure sensors for solid earth applications have been presented as a
prototype (Edme et al. 2018), but reliable pressure measurements
are not readily available as of now.

While our focus herein has been to make use of the ambient
wavefield, an alternative exists if we consider the introduction of a
local source within the receiver array. In that case, if the associated
body force term f is clearly defined, density can be isolated within
the wave equation (see eq. 56) and could in theory be estimated.
We therefore propose a thought experiment in which we consider a
weight drop within a 3-D gradiometric receiver array (Fig. 1a) and
perform volumetric gradiometry. If we assume that the weight drop
acts as a vertical point load on the surface then the body force f is
generally defined as a distribution of force density as a function of
position and time (Madariaga 2007):

Sx, 1) = fos(1) 8(x — xo), (54
where f; is a unit vector in the direction of the point force
fo=10,0, 117, s(¢) is a source-time function (the variation of the
amplitude of the force as a function of time) applied in the verti-
cal direction and §(x — xy) is the Dirac distribution centred at the
source location x,. Neitzel (1958) first analysed the seismic charac-
teristics of a weight-drop source in a field experiment: he measured
the force applied to the ground in an effort to characterize the source
term and recorded the wavefield response. Several authors thereafter
proposed source term expressions to explain wavefield observations
produced by a weight drop: based on the work of Lamb (1904),
Pekeris (1955) and Mooney (1974) derived analytical expressions
of the wavefield response at the free surface due to the applica-
tion of an arbitrary excitation. The use of Heaviside step function
and Dirac Delta function could not reproduce wavefield quantities
accurately, whereas a sinusoidal source—time function was shown
to better approximate the resulting wavefield (Abe er al. 1990).
Defining a generalized source term as accurately as possible is an
essential task in predicting the Earth response to a weight drop, and
hence also in the proposed application to gradiometry. Colombero
et al. (2015) found that the source—time function in the near-field
of a weight drop can be represented by a modified Gabor wavelet
[based on Semblat & Pecker (2009)] expressed in terms of particle
velocity:

2
21 27 .
s(t) = C, Bt exp [— (ﬂt> ] cos (Tst) if0 <t <1.27T;

otherwise,
(55)

where ¢ is a generic time instant, 7 the period of the function, Cj,
the momentum of the dropped weight and «, B and y are constants
whose corresponding values are given in Colombero et al. (2015).
By comparing recorded particle velocity from drop load tests and
synthetic data generated by propagating the proposed source signal,
they found that simulated and real impulse responses in the near-
field of the source match well.

We therefore propose that in the case where we allow ourselves
the luxury of a local source, the modified Gabor source—time wavelet
(eq. 55) could in principle be incorporated in the volumetric gra-
diometry workflow in order to estimate density on the basis of
the full elastic wave equation at the free surface. Alternatively, one
could use a piezoelectric sensor as a controlled source using a preset
electrical current signal (e.g. a Ricker wavelet) to drive the resulting
vibrations at the source point in the form of a known source-time
function. In a first step we consider eq. (3a) without body forces.
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Figure 17. Plan view of (left-hand column) true model and (middle column) gradiometric estimates of material parameters. The corresponding parameter error
(eq. 53) is shown in the right-hand column. Rows (a), (b) and (c) correspond to results for P-wave velocity, density and the first Lamé parameter A. Velocities
are estimated via WEI of eq. (18), densities by linear regression of eq. (46) and Lamé parameters are obtained from the latter estimated velocity and density

results where A = (v%, - 21)%),0.

We can then estimate P-wave velocity vp ., and S-wave velocity vg .
at the free surface for any incoming wavefield using volumetric
gradiometric measurements and the Lax—Wendroff correction (Lax
& Wendroff 1964) as proposed by Curtis & Robertsson (2002).
Then by applying body forces in the form of a weight drop where
s(?) is clearly defined (eq. 55), eq. (18) that describes the vertical
component of a wavefield 6 = [0,, 6,, 0.] at the free surface takes
the form:

[02 6. — v}, 4.(0) + v2. B.)] p = £ (56)

with 4.(¢) and B.(¢) given in eqs (19) to (20). The entire left-hand
side of equation (56) is then known apart from density, so this
equation sets up a linear inverse problem which might be solved for
density.

8 CONCLUSION

We investigated whether surface wavefield gradiometry can be used
to gain insights into material density via WEI of the full acoustic
wave equation in both 3-D acoustic as well as 3-D elastic media
using ambient noise data. We propose and test an iterative inversion

scheme for both density and phase velocity based on gradiomet-
ric WEI and surface recordings of simulated ambient noise. No
inherent scaling between velocity and density is imposed, mak-
ing it suitable to detect density changes caused by temperature or
chemically induced mechanisms. Synthetic results for 3-D acoustic
media suggest that it is possible to estimate relative density structure
with WEI by using a full acoustic formulation for wave propagation
along the surface. We show that using a constant density assumption
for the medium can be detrimental to subsurface velocity images,
whereas the full acoustic formulation of gradiometry improves our
knowledge of all material properties. It allows us to estimate den-
sity as an additional material parameter as well as to improve phase
velocity estimates by incorporating approximations of the density
structure.

By expanding this methodology to the elastic case, we tested the
feasibility of estimating density in the solid Earth with gradiometric
WETI on the basis of a full acoustic approximation. The dilatational
component of Rayleigh waves at the free surface was shown to be
imprinted by effects from relative density changes in the medium. It
proved however to be more difficult to obtain reliable estimates on
relative density changes in elastic media than in acoustic media due
to a stronger trade-off between density and phase velocity caused
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by the difference in the measured wave type sensitivities to material
parameters in both analysed media. However, using a 3-D array
and the full elastic wave equation at the free surface it is possible
to obtain reliable absolute density estimates in elastic media. We
suggest that another reasonable way to obtain density estimates
in elastic media would be to fire a local source and include the
corresponding source term within an inversion of the full elastic
wave equation.
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Throughout this analysis we use 2nd order accurate formulations of the finite difference approximation of the 2nd spatial derivative of the

wavefield quantity 6:

9%6 _0(x — Ax) —20(x) + 0(x + Ax) Ax? %0
ax2 Ax? 24 x4’

(AT)

Following (Langston 2007a) we can calculate the error of this approximation due to the sampling for a sinusoidal wave by assuming a plane

wave in the form

O(x, 1) = =),

(A2)

We can then calculate the error € (Fig. A1) based on the following formulation:

Ax? 9% 2 2
€= |24t _ Ax”(2r)
a 220 24)2

ax2

Setting an accuracy threshold ¢ for the second derivative, the condition

¢ 2422

< Ax <
€e<{& Ax < an )

(A3)

(A4)

implies the spacing Ax needs to be at most 0.247 X to ensure an error lower than { = 0.1.
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Figure Al. Error evolution of the used finite difference approximation with frequency for different receiver spacings given in m. Black dotted line shows
threshold error of 10 per cent. The wavelength is calculated for a velocity of 1550 ms~!.

B. Reference density model
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Figure B1. Reference density model depth cross-section in yz-plane. A constant density of 1600 kg m~3 is used for the top layer instead of the variable density
structure imposed in Figs 3(c) and (d). 1600 kgm~> corresponds to the mean value of the top layer in the variable density model.

C. Frequency dependence of absolute density estimate
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Estimates are shown as crosses in the respective corresponding colours. The light blue dashed line shows the density value of layer 2.
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D. Acoustic parallel velocity and density gradient models
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Figure D1. (a) True density model. Dotted black line indicates location of transect shown in panel (b). (b) True velocity (blue) and density (black) structure
exhibit the parallel alignment of the gradients. Both velocity and density gradients follow the same sine curve but have different amplitudes. (c) Inverted
relative density gradients V p/p in y- and x-direction, respectively. Results are obtained for a wavefield filtered between 7 and 9 Hz and are presented as mean
value over all cross-sections in x-plane (left-hand panel) and y-plane (right-hand panel) and show the evolution at selected stages during 100 iterations. True
model is depicted as dashed dark blue line and initial model as dotted black line. The minimum misfit result is highlighted by red circles. (d) Idem Fig. 6(c)
with minimum misfit at iteration 71, and minimum parameter error on relative density y- and x-gradients at iteration 16 and 100, respectively.
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E. Notes on the free surface methodology in inhomogeneous elastic media

In the body of this paper, all derivations from Newton’s second law in eq. (1) are based on the assumption that Lamé parameters are constant
over space (eq. 2a in elastic media and eq. 2b in acoustic media). For laterally varying Lamé parameters, these equations become:

A2 VA
O 9w ) = P v x (v x )]+ v - )+— Vu+ a1+ L = 2 u (Ela)
J P p P
homogeneous terms inhomogeneous terms
A Vi
ZIV(V w4+ —(V-u) +f 92 u. (E1b)
P J p

[ —

homogeneous terms  inhomogeneous terms

Here we investigate the effect that inhomogeneity has on the derivation of the equations in the free surface methodology used to estimate
density and body wave velocities at the free surface presented in Section 2. Writing eq. (Ela) with all terms:

9%uy 4 8%u, + 02u Puy 9w, 0%uy + 82u.
()L+2 ) ax2 dxady Bsz dydx 32y 92z dxdz
12 824, + Bzu} + 92u. _ ﬁ 02u. _ Bzuv‘,- _ Bzuy + 3%y (E2)
0 dydx 92y r)yé)h o 0z0y 92z 92x dxdy
8%uy + 32”} + 02u, 82uy 8%u o 02u, + 9%uy
dz0x 9zdy 92z dxdz 82x 32y dydz
homogeneous terms
o i Quy  Quy  Juy duy Oy du
ax x ox  dy 0z ax  9x 0
1 gi 8“)( Buy 8uz 1 J/)g, duy duy Juy Bu\; 8ux‘,- (’)Lf:
5 b7 A it vy sl Bl I B il Il T
14 A X y z 1Y i du, dur Jus duy Oy du
9z 9z ax dy 0z 9z 0z oz
inhomogeneous terms
dzux
aztz 1 Jx
_ 0“uy _ f
- at v
Puz P\ L
912
we can use the free surface conditions
8uz _ L%*ZUAZ duy duy
= -t 5+ 3 (E3)
oz v ax Ay
ou
9
yo_ B (E4)
0z ay
ou,
9
= -5 (E5)
0z o

to derive the corresponding expression at the free surface. The expression of the homogeneous terms are described in (Curtis & Robertsson
2002) and the inhomogeneous terms become:

(i) Term 3 of eq. (E2)

ax
w\ (ou,  ou, v —20;
~ % + O T (V) (E6)
o\ o x ay v2
0z
(ii) Term 4 of eq. (E2)
F) 20u, au duy  Ju, du
P ) Oy j B aa; + o
1| on uy Ju, Uy uy. Ouz
» gy s a; 2 3ya e T ay (E7)
L ; 9
é dat;z + 8(;4; duz 4 u; (auzz
20u du 3”» du du
? , T 3\/\ —a’_ _()Bx + ?xz
duy. du iy du ouy
= % L3 n Ty F Zayz ay (E8)
@ du ou- du ou- Up 2”3
EE o oy o 2 2 Vi - uy
55 )] [ (5 + 591 +0
iu F} du
=l “*)]+[3y2(2 )]+ 0 (E9)
2v
o+0+[g—';(—z PV )]

In our model, the receiver is buried at 1 m and the Lamé parameters do not change over the depth interval used for the calculation of the
finite difference approximation of the first order depth derivative. We can thus consider the depth derivatives of Lamé parameters du/dz and
d)/0z to be zero, and the inhomogeneous terms disappear in the vertical component of the full elastic wave equation at the free surface.
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