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S U M M A R Y 

Material density remains poorly constrained in seismic imaging prob lems, y et knowledge of 
density would provide important insight into physical material properties for the interpretation 

of subsurface structures. We test the sensitivity to subsurface density contrasts of spatial and 

temporal gradients of seismic ambient noise w avefields, using w ave equation inversion (WEI), 
a form of seismic gradiometry. Synthetic results for 3-D acoustic media suggest that it is 
possible to estimate relative density structure with WEI by using a full acoustic formulation 

for wave propagation and g radiometr y. We show that imposing a constant density assumption 

on the medium can be detrimental to subsurface seismic velocity images. By contrast, the 
full acoustic formulation allows us to estimate density as an additional material parameter, as 
well as to improve phase velocity estimates. In 3-D elastic media, severe approximations in 

the gov erning wav e physics are necessary in order to invert for density using only an array of 
receivers on the Earth’s free surface. It is then not straightforward to isolate the comparati vel y 

weak density signal from the influence of phase velocity using gradiometric WEI. Ho wever , 
b y using recei vers both at the surface and in the shallow subsurface we show that it is possible 
to estimate density using fully elastic volumetric WEI. 

Key words: Inverse theory; Crustal imaging; Seismic noise; Rock physics. 
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 I N T RO D U C T I O N  

ynamic processes in the Earth’s shallow subsurface (top few
00 m) in which rocks, soil, atmospheric gases and meteoric water
nteract, are seldom well characterized and understood (Parsekian
t al. 2015 ; Riebe et al. 2017 ). It is of interest for environmen-
al and resource applications to better characterize these chemical
nd mechanical processes using information about heterogeneity
n properties of the near-surface, so-called critical zone (Anderson
t al. 2007 ). In critical zone studies, bulk density is an important
hysical property as an indicator for soil quality and compaction
Suuster et al. 2011 ). Lateral density variations can reveal informa-
ion about changes in porosity, fracture distribution and soil weath-
ring (Flinchum et al. 2022 ). Density is used to inform studies of
oot growth (Brimhall et al. 1992 ; Dexter 2004 ), water movement
nd retention (Huang et al. 2011 ; Flinchum et al. 2018 ), as well as
arbon and nutrient content in soil layers (Nanko et al. 2014 ). It is
herefore of significant interest to be able to estimate near-surface
ensity. 

Direct density measurements can be obtained via auger samples
r Geoprobe coring (Holbrook et al. 2014 ). Ho wever , obtaining in
itu measurements of bulk density at any significant depth is time-
ntensiv e and e xpensiv e, so it may be preferable to estimate density
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ndirectly. So-called pedotransfer functions are used to predict bulk
ensity based on regression models from soil measurement archives
or the very shallow subsurface ( < 1 m; Suuster et al. 2011 ). Un-
ortunately, due to the sparsity of borehole samples from deep soil
ayers, few studies are able to estimate bulk density for deeper tar-
ets (Qiao et al. 2019 ). Well logs can be used to gain insight on
ulk density and to infer porosity of the logged near-surface in-
erval (Fanchi 2010 ; Holbrook et al. 2019 ), but remain inv asi ve,
ocalized and again e xpensiv e sources of information. 

Geophysical methods complement direct observations. They al-
ow larger and deeper subsurface volumes to be investigated, and
emporal changes in properties to be monitored (Parsekian et al.
015 ). Microg ravity sur v e ys are directl y sensiti ve to density anoma-
ies and are commonly used for environmental studies of the subsur-
ace, for example to localize subsurface voids (Tuckwell et al. 2008 )
r for groundwater monitoring (Piccolroaz et al. 2015 ). Ho wever ,
his data type is strongly impacted by microseismic noise which
ight overshadow small signals related to mass distributions in the

ear surface (Boddice et al. 2022 ). Signals from density variations
n the near surface soil (top 5 m) for e xample hav e been shown to
e too weak to be detected by current gravity instrumentation, lead-
ng to lateral variations being obscured by the influence of deeper
nomalies (Boddice et al. 2019 ). Fur ther more, inversion procedures
oyal Astronomical Society. This is an Open Access 
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for subsurface density on the basis of gravity data alone are inher- 
ently ill-posed (Blom et al. 2017 ). To reduce the non-uniqueness in 
such solutions, gravity measurements must be used in conjunction 
with other data types such as geological prior knowledge, well-log 
densities or seismic data, in order to produce realistic density maps 
(Nabighian et al. 2005 ). 

Seismic imaging provides another non-inv asi ve alternati ve to in- 
vestigate the critical zone. Active methods such as seismic refraction 
tomography (Befus et al. 2011 ; Nielson et al. 2021 ; Flinchum et al. 
2022 ) and multichannel surface wave analysis (Handoyo et al. 2022 ; 
Trichandi et al. 2022 ) are popular methods for imaging the near- 
surface. Seismic monitoring of dynamic processes may be achieved 
using omnipresent ambient seismic noise, a natural source of illu- 
mination in the Earth (Curtis et al. 2006 ; Obermann et al. 2015 ; 
Nakata et al. 2019 ), and dense arrays of seismometers may be used 
to provide a repeatable data source with high spatial resolution. 
Ambient noise seismology has thus allowed velocity changes over 
time to be monitored in the critical zone (James et al. 2019 ; Oakley 
et al. 2021 ). 

Seismic methods usually focus on the retrieval of seismic ve- 
locities only, and are unable to isolate the signal corresponding 
to subsurface density unambiguously. Density values are often in- 
ferred via empirical relationships from the speed of P body-waves 
(e.g. Gardner et al. 1974 ) or less commonly from S -wave speeds 
(e.g. Miller & Ste w art 1991 ), and estimating density as a seis- 
mic observable still remains a challenge. Body wave traveltime 
tomography exhibits an inherent insensitivity to density changes: 
body wave scattering caused by a density contrast characteristically 
propagates backwards rather than forwards, and so to first order 
does not interact with travel time measurements of forward prop- 
agating incident waves (Fichtner 2010 ). Surface wa ves, how ever, 
can be represented as an infinite sum of reflections and conversions 
between the free surface and subsurface interfaces, where the reflec- 
tion coefficients depend on the density in the vicinity of the surface; 
this in turn affects the phase velocities of dispersive surface waves. 
Their frequency dependent arri v al times are therefore sensitive to 
density variations in the subsurface, but the sensitivity is oscilla- 
tory with depth and can cancel destructi vel y (Takeuchi & Saito 
1972 ). 

In the context of global seismology, where density plays an im- 
portant role in explaining mantle dynamics, several studies have 
been conducted to invert for density from surface wave data. No- 
let et al. ( 1977 ) showed that Rayleigh wave dispersion data are 
sensitive to the density structure in elastic media, as are normal 
modes at longer periods (Tanimoto 1991 ). It is however usually 
considered too challenging to estimate density in most elastic me- 
dia using surface wave dispersion alone because the sensitivity is 
relati vel y weak compared to sensitivity to seismic velocity struc- 
ture (Muyzert & Snieder 2000 ). Due to the poor constraints on 
density, it has been common practice in surface wave tomography 
to prescribe a scaling relation between density and shear velocity 
anomalies (Karato & Karki 2001 ) and to invert for velocity only. 
From seismolo gical research, howe ver, we know that anticorrelation 
of density and seismic velocity are observed: Resovsky & Tram- 
pert ( 2003 ) show that the long period seismic data clearly favour 
density perturbations that are poorly or ne gativ ely correlated with 
velocity heterogeneity. The uniform scaling of velocity and density 
in tomography arises under the assumption that density variations 
are purely thermal; this is not accurate for density variations related 
to compositional heterogeneities or liquid/gas inclusions (Płonka 
et al. 2016 ). Therefore, independent knowledge of density is im- 
portant in order to discriminate between compositional and thermal 
heterogeneities (Trampert et al. 2004 ; Mosca et al. 2012 ). Addi- 
tional observables such as horizontal to vertical ratios (H/V) of 
surface waves can provide further constraints on density (Lin et al. 
2012 ) but still show strong trade-offs with elastic parameters and 
velocity. 

Variations in density generally have a smaller effect on the full, 
recorded seismic waveforms than variations in seismic velocity 
(Blom et al. 2017 ), and are subject to strong trade-offs with ve- 
locity which depend on the scattering angle of the wave (Luo & Wu 
2018 ). Nevertheless, Płonka et al. ( 2016 ) show that realistic crustal 
density variations have measurable effects on seismograms. Density 
ef fects are mainl y visible as amplitude changes, but also cause the 
waveform shape to be altered especially in the scattered wave train 
(Yuan et al. 2015 ; Blom et al. 2017 ). Hence, seismic methods that 
investigate the full seismic waveform such as full waveform tomog- 
raphy (Płonka et al. 2016 ; Blom et al. 2017 , 2020 ) which includes 
both phases and amplitudes of body, surface and scattered waves, 
show promise to glean further constraints on subsurface density. 
Ho wever , in elastic multiparameter full waveform inversion (FWI), 
the highest ambiguity is attached to density regardless of the model 
parametrization employed (K öhn et al. 2012 ), and it is difficult to re- 
construct density from full waveform inversion even using the dense 
data sets available in industrial exploration geophysics (Virieux & 

Operto 2009 ). Choi et al. ( 2008 ) successfully estimated density 
from 2-D elastic Marmousi models, but only using a low and nar- 
row frequency band around 0.125 Hz. Pan et al. ( 2018 ) observed that 
S -wav e v elocity perturbations strongly contaminate density struc- 
ture which can result in highly uncertain density estimates. Jeong 
et al. ( 2012 ) reports improvement in density recovery by imple- 
menting a 2-stage algorithm that estimates Lam é parameters with 
fixed density in a first step, and then inverts for density based on first 
stage velocity information in a subsequent step. Subsurface density 
of the ocean floor can be reliably estimated from real hydrophone 
data on the basis of a joint visco-acoustic FWI (Prieux et al. 2013 ; 
Operto & Miniussi 2018 ) and can be used as a background model 
to inform and reduce free parameters in elastic FWI. Ho wever , the 
performance of linearized FWI algorithms depends significantly on 
the availability of a well informed starting model (Virieux & Operto 
2009 ; Vantassel et al. 2022 ). 

Density affects the seismic wavefield mainly through reflection or 
backscattering. Hence, the strongest sensitivity of seismic waves is 
to spatial density contrasts or gradients (Blom et al. 2020 ). Hooke’s 
law relates stress to strain, and strain is created by spatial wavefield 
g radients. In tur n, stress can be related to density using Newton’s 
second law, to form a so-called wave equation. This sparked interest 
in constraining density contrasts by deploying methods that are 
directl y sensiti ve to amplitude changes in the wavefield gradients. 
Dense seismic arrays lend themselves well to the calculation of 
wavefield gradients using finite-difference methods. 

A class of imaging techniques now termed seismic gradiometry 
(Cur tis & Rober tsson 2002 ; Langston 2007a , b ; De Ridder & Biondi 
2015 ) calculate temporal and spatial gradients of incoming waves 
or wavefields using dense array measurements to estimate physical 
subsurface parameters. A re vie w of the theoretical background and 
applications of wave g radiometr y methods can be found in Liang 
et al. ( 2023 ). One such method called wave equation inversion 
(WEI, Curtis & Robertsson 2002 ) substitutes the calculated gradi- 
ents directly into the governing equation for wave propagation and 
provides estimates of local material properties via standard linear 
inversion techniques. By deploying a 3-D seismic array geometry 
with receivers recording all three components (3-C) of the wave- 
field, gradients can be estimated both horizontally at the surface 
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nd with respect to depth (Fig. 1 a). WEI can then be performed on
he full elastic wave equation to estimate effective P - and S -wave
elocities at the free surface. In an isotropic, locally homogeneous
arth, full elastic WEI is valid for any incoming wavefield; it thus
as the advantage of being directly applicable to ambient seismic
av efields, but e xhibits a high sensiti vity to recei ver positioning and
rientation (Muijs et al. 2002 ; Vossen et al. 2004 ). A second type
f gradiometric approach assumes a particular form or ansatz for
he arri ving w avefield [e.g. a single plane or spherically spreading
ave (Fig. 1 b)], and estimates parameters that describe the geomet-

ical spreading and horizontal slowness (Langston 2007c , b ). The
ethod was applied for example as a new data processing tech-

ique for regional array seismology (Liang & Langston 2009 ; Liu
 Holt 2015 ) and used to image the lunar near-surface structure

Sollberger et al. 2016 ). The method performs well for noiseless
ingle source data, but g radiometr y results based on the plane-wave
ssumption are highly sensitive to uncorrelated noise and to inter-
erence from other arriving waves (Langston 2007a ). In order to use
uch methods in cases of unclassified wave type arrivals or ambient
eismic noise, where two or more waves of similar amplitude and
requency are interfering, a statistical routine to identify individual
nterference-free events needs to be applied in advance (e.g. Edme &
uan 2016 ). Alternati vel y a ‘fingerprinting’ technique based on 6C

eceiver measurements, which contain both translational and rota-
ional ground motion, allows wave types of arriving seismic phases
o be classified and individual arrivals from interfering wavefields
o be isolated using machine learning methods (Sollberger et al.
023 ). 

In the case of an ambient seismic noise field, it is commonly
ssumed that surface waves are the dominating type of wave prop-
gation. To capture the character of 2-D surface wave propagation,
t is sufficient to record the wavefield with a dense receiver array
t the Earth’s surface (Fig. 1 c). This relaxes requirements on the
eld acquisition geometry compared to volumetric gradiometry for
hich a 3-D array is necessary (Fig. 1 a), while still allowing a
avefield comprising a superposition of plane waves arriving from
ifferent angles to be considered, instead of onl y indi vidual plane
aves as in Fig. 1 (b). De Ridder & Biondi ( 2015 ) first approximated

urface wave WEI on the basis of the 2-D Helmholtz wave equa-
ion which describes the propagation of surface waves at frequency
ependent phase velocities (Wielandt 1993 ; Aki & Richards 2002 ).
he method showed that phase velocity maps from the vertical com-
onent of ambient noise data at 0.7 Hz were comparable to results
btained using interferometric cross-correlations, thus validating
he method. The method has since been extended to provide infor-

ation on both isotropic and anisotropic local medium properties
De Ridder & Curtis 2017 ), and to near-real time applications (Cao
t al. 2020 ). 

The latter applications of surface wave WEI are based on the
ssumption that Rayleigh waves are the dominant wave type and
hat the 2-D scalar Helmholtz wave equation describes the recorded
 avefield adequatel y (De Ridder & Biondi 2015 ; Cao et al. 2020 ).
his is a significant approximation for seismic waves because the
elmholtz equation fails to describe general elastic wavefield dy-
amics. Since ambient noise recordings contain all kinds of inter-
ering elastic wave types (including a variety of surface wave types
nd modes), the accuracy of subsurface material property estimates
ay be compromised. Nevertheless, Shaiban et al. ( 2022 ) used a

ynthetic 2-D elastic ambient noise wavefield to show that the cor-
ect local dispersion curves for a layered, laterally heterogeneous
odel could be estimated from the relationship between spatial and

emporal gradients in the Helmholtz equation. 
Surface wave WEI has been shown to require only a few min-
tes of ambient seismic noise recordings and rapid data processing
fter acquisition to produce useful phase velocity maps for the
ear-surface (at frequencies between 18 and 24 Hz), and so shows
romise for efficient field deployment and near-real time monitoring
urposes for the shallow subsurface (Cao et al. 2020 ). By estimating
hase velocity maps for narrow bandpass filtered wavefields over a
road frequency range (depending on the ambient noise spectrum),
he latter authors showed that 3-D images of a layered subsurface can
e produced via inversion of local surface-wave dispersion curves
or S -wave velocity ( V s ) structure. 2-D shear-velocity maps for sev-
ral depth levels up to 50 m were obtained in a matter of seconds
rom the dispersion curve through depth inversion performed by
ixture-density neural netw orks. Ho wever , the quality of the 3-D

hear velocity models are not only dependent on the accuracy of the
hase velocity data but also on the impact of density in the inversion
rocess (Ivanov et al. 2016 ). Dispersion-curv e inv ersion for V s is
ften implemented using predefined values for compressional-wave
elocity ( V p ) and density because their sensitivities to the phase ve-
ocity are much smaller than that of the S -wave velocity (Foti et al.
018 ; Pan et al. 2019 ; Wu et al. 2020 ). Such a priori information on
 p is commonly obtained from other measurements, and density is
ften assumed to be constant (e.g. Cao et al. 2020 ) or inferred from
mpirical relationships with compressional wave speed (Gardner
t al. 1974 ). Unfor tunately, ver tical density variations have been
hown to affect the inverted V s results, and the use of an inaccurate
ensity background model can lead to false structures and overes-
imations in the V s result (Ivanov et al. 2016 ). Expanding surface
ave WEI to estimate the density structure of the subsurface and to
uantify the effect of density gradients on the phase velocity esti-
ates could therefore improve V s models and seismic interpretation

ased on gradiometric methods. 
In this study we investigate whether it is possible to estimate

ubsurface density on the basis of gradiometric surface wave WEI
sing ambient seismic noise. Both the accuracy in wave amplitude
nd shape are important considerations in gradiometric methods,
nd density heterogeneities were found to have an influence on both
Płonka et al. 2016 ; Blom et al. 2017 ). Hence, we expect to have
ensitivity to the effect of density contrasts if we use data that record
ariations in wavefield amplitudes and phases. 

In the Helmholtz formulation, which has been used in previous
urface wave WEI studies, the wave equation does not exhibit an
xplicit sensitivity to density. In elastic media, the scalar Helmholtz
ave equation is valid for surface waves only in laterally homo-
eneous media. In a realistic scenario, the subsurface is hetero-
eneous with velocity and density varying both laterally and with
epth. In heterogeneous media, the superposition of multipathing
urface waves propagates with a velocity that depends not only on
he structural properties of the underlying medium, but also on the
istribution of amplitudes of the interfering wavefield (Friederich
t al. 2000 ). This implies that the Helmholtz wave equation is not a
alid description for surface wave propagation and is likely to influ-
nce the accuracy of phase velocity estimates made via 2-D scalar

EI. In practice, if the medium is only smoothly heterogeneous,
he Helmholtz equation is usually considered to be approximately
alid for each surface wave mode separately. Seismic surface waves
re then commonly approximated by acoustic waves, by assuming
hat the wavefield is purely dilatational and is dominated by pressure
ave propagation. The acoustic approximations neglects mode con-
ersions and the directivity of scattering from a point heterogeneity
Friederich et al. 2000 ), simplifying the mathematical model of
ave propagation considerably. 
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Figure 1. Schematic of acquisition geometries and physical assumptions made for different g radiometr y types in plan view and cross-section view. Receivers 
are denoted by triangles and the configurations requiring the minimum number of receivers are shown to estimate gradients via classical finite difference around 
the central point (green star) with receivers recording translational motion. (a) The left-hand column shows principles of volumetric wavefield g radiometr y as 
proposed by (Curtis & Robertsson 2002 ): with a 3-D receiver acquisition, second horizontal and vertical wavefield deri v ati ves are approximated at a central 
point. To calculate deri v ati ves in x -, y - and z -direction, 3-component (3C) receivers are necessary. Arrows denote interfering waves coming from all directions 
and angles; all wave types can be included in the wavefield, for example surface waves, body waves, scattered waves, etc. (b) Middle column shows g radiometr y 
for non-interfering waves as proposed by (Langston 2007a ). Individual plane or cylindrical waves can arrive from any direction at the receiver array. Receivers 
are used to estimate first horizontal deri v ati ves of the wave field quantity; the central point does not require a recording. Receivers can be (1C) or (3C) depending 
on which wave type is analysed. Rotational sensors at the free surface allow for direct measurement of first deri v ati ves (Schmelzbach et al. 2018 ; Sollberger 
et al. 2020 ). (c) Right-hand column shows principles of surface wave g radiometr y as proposed by (De Ridder & Biondi 2015 ) where second order horizontal 
w avefield deri v ati ves are approximated. This g radiometr y type assumes a wavefield composed of interfering surface plane waves in a 3-D medium, or Lamb 
waves in a 2-D sheet (inset). 
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The scalar Helmholtz wave equation more accurately describes 
waves in acoustic media than in elastic media. In fact, in the acoustic 
case, the main simplification made in the deri v ation of the conven- 
tional scalar wave equation is that density is assumed to be constant 
across the local receiver array. To describe a more complex, physi- 
cally more realistic medium, a variable density assumption can be 
introduced, which allows the acoustic medium to be described by a 
so-called full acoustic wave equation. The full acoustic wave equa- 
tion was initially derived by Bergmann ( 1946 ) to define conditions 
under which density gradients in the atmosphere and large bodies of 
water should not be neglected in the governing wave equation for- 
mulation of sound pressure. The formulation of the full acoustic 
wave equation considered in that work assumes that gravity ef- 
fects are negligible, and allows for density changes caused by either 
temperature gradients or changes in chemical composition of the 
material (Bergmann 1946 ). 

In this paper, we first analyse wavefield sensitivities to subsurface 
density contrasts via WEI of the full-acoustic wave equation where 
density is treated as a variable. We expect the full acoustic formula- 
tion may allow us to analyse the role of density independently from 

wave speed. To test this hypothesis, we initially consider waves 
propagating through an acoustic medium so that the physics of that 
wave equation are consistent with the physics of the medium. We 
show that it is then possible to invert for density on the basis of 
full acoustic WEI and compare the effect of using the Helmholtz 
and full acoustic equation on phase velocity results in 3-D acoustic 
media. We then analyse whether the same procedure is applicable 
to elastic media despite the concomitant severe approximations to 
the complex elastic wavefield physics. In elastic media, particle ve- 
locity is the natural w avefield observ able rather than pressure, but 
we show that measuring pressure is necessary in order to relate the 
full acoustic wave equation approximation to the elastic case and to 
formulate an inverse algorithm that is explicitly sensitive to density. 
We then investigate whether volumetric g radiometr y better lends 
itself to invert for density using the physically more representative 
full elastic wave equation at the free surface. By expressing the full 
elastic wave equation both in terms of pressure and displacement 
at the free surface we establish that a direct sensitivity to density 
exists and that density can be estimated. 

2  WAV E  T H E O R E T I C A L  B A C KG RO U N D  

Density plays a different role in elastic and acoustic media. To 
illustrate, we compare the deri v ations of the respectiv e gov erning 
wave equations from Newton’s 2nd Law 

∇ · σ + f = ρ ∂ 2 t u , (1) 

where σ = σkl is the stress tensor assuming k and l to range from 

1 to 3 (for the x- , y- and z -directions), ρ is subsurface density, f 
= [ f x , f y , f z ] T is the distribution of applied body forces, u = [ u x ,
u y , u z ] T the observed wave field quantity of displacement or particle 
velocity and ∇ = [ ∂ x , ∂ y , ∂ z ] T in three dimensional media. The wave 
field quantity u is defined with respect to a reference state in which 
the medium is in equilibrium under gravity. It is well known that 
in isotropic elastic media and small displacements, Hooke’s law 

allows stress to be expressed in terms of the strain tensor ε (where 

art/ggae097_f1.eps
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lement εxy = ∂ x u y + ∂ y u x and similarly for other elements) and the
am é parameters λ and μ which describe the medium’s elasticity.
his relationship can then be substituted into eq. ( 1 ), and similarly

or acoustic media although the equations are then simpler because
he shear modulus μ = 0: 

 · ( λ tr ( ε) I + 2 με) + f = ρ ∂ 2 t u in elastic media (2a) 

 · ( λ tr ( ε) I ) + f = ρ ∂ 2 t u in acoustic media (2b) 

here tr() is the trace operator. By substituting expressions for
lements of ε into eqs ( 2a ) and ( 2b ) we obtain the familiar 3-D
lastic wave equation for isotropic, locally homogeneous media and
 description of pressure wave propagation in terms of the wave
eld quantity u , respecti vel y: 

− μ

ρ
[ ∇ × ( ∇ × u )] + 

( λ + 2 μ) 

ρ
[ ∇( ∇ · u )] + 

f 

ρ

= ∂ 2 t u in elastic media (3a) 

λ

ρ
[ ∇( ∇ · u )] + 

f 

ρ
= ∂ 2 t u in acoustic media . (3b) 

n this paper, we focus on the case in which we would like to use
mbient seismic noise, so we assume an absence of strong local
ources in the area of wavefield recording and henceforth omit
ource term f (we discuss the introduction of suitable force terms
n Section 7 ). In acoustic media, the first Lam é parameter λ is the
coustic bulk modulus K a , whereas the bulk modulus in elastic
edia is K e = λ + 

2 
3 μ. In elastic media, density is expressed only

n combination with the Lam é parameters within the terms equating
o P -wav e v elocity v P,e = 

√ 

( λ + 2 μ) /ρ and S -wav e v elocity v S,e =
 

μ/ρ in eq. ( 3a ), and similarly for acoustic media. This implies that
hile it may be possible to estimate the velocities from waveform
ata u , it will not be possible to discriminate the Lam é parameters
rom the density since any velocity value can be fit by any reasonable
ensity given a suitable choice of λ and μ. 

In acoustic media, we often measure pressure P rather than wave-
eld displacement or particle velocity. The particle velocity field can

hen be estimated from this measured pressure field (Robertsson &
ragh 2002 ; Amundsen et al. 2005 ). Pressure is directly related to

he divergence of the wavefield displacement u via P = K a ∇ · u ,
here K a is the bulk modulus in acoustic media. By applying a
ivergence operator to both sides of the acoustic wave eq. ( 3b ) it is
ossible to express the sensitivity of measurements of pressure P to
ensity ρ explicitly: 

 ·
(

K a 

ρ
[ ∇( ∇ · u )] 

)
= ∇ · ∂ 2 t u (4) 

⇒ v 2 P,a ρ ∇ ·
(

1 

ρ
∇ P 

)
= ∂ 2 t P , (5) 

here in eq. ( 5 ) we have used the definition of P -wave velocity
n acoustic media v P,a = 

√ 

K a /ρ. Since density appears separately
rom P -wav e v elocity and has a different relationship to the measur-
ble right-hand side of eq. ( 5 ), we expect a potentially distinguish-
ble density signature in seismic waves travelling through hetero-
eneous media in which the spatial deri v ati ve of density on the left
s non-zero. 

Cance & Capdeville ( 2015 ) show how elastic and acoustic wave
quations can be related in an isotropic, homogeneous domain for
n e xplosiv e isotropic source emitting only P waves. In such a case,
he curl of the wavefield is equal to zero ( ∇ × u = 0 ) and any
ector field such as the displacement u or the particle velocity field
 = ∂ t u can be derived from a potential � (Kaufman et al. 2000 ).
he potential � may be chosen as in Cance & Capdeville ( 2015 ) to
e 

u = 

1 
ρ

∇�, (6) 

here � is directly related to acoustic pressure via the relationship
 = −2 P e and where the pressure wavefield P e in elastic media is 

P e = −1 

2 
K a ∇ · u . (7) 

ubstituting eq. ( 6 ) into eq. ( 3a ) yields, 

λ + 2 μ

ρ
∇ 

[ 
∇ ·
(

1 

ρ
∇� 

)
− 1 

λ + 2 μ
∂ 2 t � 

] 
= 0 (8) 

 ·
(

1 

ρ
∇� 

)
− 1 

λ + 2 μ
∂ 2 t � = const . (9) 

Since eq. ( 8 ) holds everywhere and so the constant is independent
f position of the recording, and because the wavefield is absent
has zero energy) at infinity (Kaufman et al. 2000 ), eq. ( 9 ) gives the
otential equation in elastic media, 

c 2 ω ρ ∇ ·
(

1 

ρ
∇� 

)
= ∂ 2 t �, (10) 

here c ω is the phase velocity at frequency ω. Eq. ( 10 ) describes
acoustic’ wave propagation in elastic media and is the elastic equiv-
lent of eq. ( 5 ) for acoustic media. 

The above equations show that different seismic observables in-
eract dif ferentl y with the subsurface: to isolate the ef fect of density
rom wave speed in elastic media on the basis of the full acoustic
pproximation or the elastic wave equation at the free surface, it is
ecessary to measure pressure instead of particle displacement or
elocity (eqs 6 –10 ) because pressure implicitly includes a power
f K a which changes the form of the respective equations. Classi-
al seismometers only measure particle velocity, from which dis-
lacement can be calculated by time integrating the data, whereas
lastic pressure is usually not observed on land. The expression
or pressure is proportional to the divergence of the displacement
eq. 7 ) which can be determined from four geophone recordings at
he Earth’s free surface using g radiometr y (Rober tsson & Muyzer t
999 ; Shapiro et al. 2000 ; Robertsson & Curtis 2002 ). Given that
tress is equal to zero across the free surface, the vertical deri v ati ve
f the wavefield can be expressed in terms of horizontal deri v a-
ives [e.g. see eq. ( 14 ) further below]. This results in the wavefield
ivergence taking a modified form that can be written in terms
f the Lam é parameters and the horizontal wavefield components
nly ∇ · u = (2 μ/ ( λ + 2 μ)) ∇ H · u H , where ∇ H = [ ∂ x , ∂ y ] T and

u H = [ u x , u y ] T (e.g. Maeda et al. 2016 ). Ho wever , calculating the
ivergence alone is not sufficient to isolate density in the wave equa-
ions because the bulk modulus is not accounted for as it is in the
ull pressure measurement (eq. 7 ). 

Edme et al. ( 2018 ) suggest that it is possible to measure pressure
irectly at the free surface of an elastic medium with a land hy-
rophone. The land hydrophone is insensitive to the direction and
ngle of incoming waves which makes it predominantl y sensiti ve to
ressure fluctuations induced by ground-roll (more specifically, S -
o P -conversions generated by upcoming S waves) due to destruc-
ive summation of events at near vertical incidence angle. At the
ree surface of the Earth, elastic pressure P e ,F S can be written in
erms of displacement in a 2-D plane and its horizontal deri v ati ves
s (Edme et al. 2018 ) 

P e ,F S = K e ,F S ∇ H · u H ≈ 0 . 37 K a ∇ H · u H (11) 
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where the elastic bulk modulus at the free surface is K e ,F S = 

2 ρ v 2 S (1 − 4 v 2 S / 3 v 
2 
P ) and v P and v S are the local P - and S -wave

v elocities, respectiv ely. The elastic pressure at the free surface 
can be related to acoustic pressure using v P = 

√ 

3 v S for a Pois- 
son solid. The measured pressure thus corresponds to the volume 
change caused by the dilatational part of surface wave propagation. 

Acoustic pressure caused purely by P -wave propagation in a 
non-rotational medium has a similar expression to elastic pressure 
at the free surface of the Earth caused by the dilatational part of 
surface wave propagation. Surface waves can only be produced 
in a medium where rotation exists, and are generated by P - and 
S -wave interactions upon reflections and scattering at medium het- 
erogeneities. Their propagation is mostly driven by S waves which 
correspond to the purely rotational part of the w avefield. Ne verthe- 
less, Ra yleigh wa v es do e xhibit dilatational wav e propagation that 
produces a measurable pressure field at the free surface. The full 
acoustic approximation is only valid for elastic P waves in a homo- 
geneous, isotropic medium, and is compromised in heterogeneous 
or anisotropic media due to P -to- S conv ersions. P wav es and the P 

component of Rayleigh waves therefore presumably interact differ- 
ently with the medium and might exhibit dif ferent sensiti vities to 
different subsurface parameters such as subsurface density. Cance 
& Capdeville ( 2015 ) found that acoustic and elastic pressure are not 
the same for rough, heterogeneous media: a good agreement can 
onl y be achie ved in homo geneous or weakl y hetero geneous, smooth 
media. This suggests that in a realistic subsurface problem, invert- 
ing for the parameters on the basis of an acoustic approximation 
might be too approximate an approach to obtain suf ficientl y accu- 
rate information about elastic subsurface parameters by measuring 
pressure. We test this in what follows. 

In elastic media it is not strictly necessary to consider the acoustic 
approximation in order to isolate density by substituting pressure. 
If we introduce the free surface conditions 

∂ z u x = −∂ x u z (12) 

∂ z u y = −∂ y u z (13) 

∂ z u z = − v 2 P,e −2 v 2 S,e 

v 2 P,e 
( ∂ x u x + ∂ y u y ) (14) 

which express the fact that stress across the free surface must be 
zero, then equation ( 3a ) can be written in a modified form that is 
valid at the free surface and in the absence of body forces (Curtis 
& Robertsson 2002 ): 

∂ 2 z u x = 

∂ 2 t u x 
v 2 S,e 

−
(
∇ 

2 
H u x 

)
− 2 
(

1 − v 2 S,e 

v 2 P,e 

)
∂ x ( ∇ H · u H ) (15) 

∂ 2 z u y = 

∂ 2 t u y 
v 2 S,e 

−
(
∇ 

2 
H u y 

)
− 2 
(

1 − v 2 S,e 

v 2 P,e 

)
∂ y ( ∇ H · u H ) (16) 

∂ 2 z u z = 

∂ 2 t u z 
v 2 P,e 

+ 

(
1 − 2 

v 2 S,e 

v 2 P,e 

)
∇ 

2 
H u z . (17) 

Even though a free-surface is usually referred to as the interface 
of a half-infinite elastic medium in contact with vacuum (Roberts- 
son et al. 1995 ), free-surface conditions are a reasonable approx- 
imation on Earth given that the subsurface has elastic properties 
and the contact layer is air which has low density. In the case of 
granular medium (such as regolith) or in heavy atmospheres, the 
free-surface condition would need to be updated with more appro- 
priate constraints. 

By using a so-called Lax–Wendroff derivative centering tech- 
nique (Lax & Wendroff 1964 ; Blanch & Robertsson 1997 ; Curtis & 

Robertsson 2002 ), the first order vertical deri v ati ve can be correctly 
represented at the free surface by a finite difference approxima- 
tion to horizontal spatial deri v ati ves. Using a 3-D recei ver array as 
proposed in Fig. 1 (a) it then becomes possible to approximate all 
quantities necessary to estimate body wave velocities at the free sur- 
face. For example, a new expression can be derived for the vertical 
displacement component in eq. ( 17 ) by using the free-surface con- 
dition ( 14 ) and the Lax–Wendroff corrected finite difference depth 
deri v ati ve: 

∂ 2 t u z = v 2 P,e A z ( t) − v 2 S,e B z ( t) , (18) 

where A z ( t ) and B z ( t ) are expressions containing finite difference 
approximations to deri v ati ves of the wavefield 

A z ( t) = 

2 
	z 

(∇ H · u H + [ ∂ z u z ] f d 
) − ∇ 

2 
H u z (19) 

B z ( t) = 

4 
	z 

(∇ H · u H 

) − 2 
(∇ 

2 
H u z 

)
(20) 

and where 	 z is the distance between the surface and the buried re- 
ceiver, and [ ∂ z u z ] fd is the first order finite difference depth derivative. 
The deri v ation of these expressions is described in detail in Curtis 
& Robertsson ( 2002 ), and herein, we only consider constraints de- 
rived from the vertical displacement component as they were shown 
to better constrain body wave velocity estimates than those derived 
from horizontal components. Fur ther more, inhomogeneous ter ms 
arising from variations in subsurface parameters do not play a role 
in the vertical component at the free surface, making the expres- 
sions valid for any type of elastic medium without approximations 
(Appendix E ). 

By using the relation P = P e , FS /0.37 from eq. ( 11 ), acoustic 
pressure can be substituted into eqs ( 19 ) and ( 20 ): 

A 

′ 
z ( t) = 

2 
	z 

(
1 

K a 
P + [ ∂ z u z ] f d 

) − ∇ 

2 
H u z (21) 

B 

′ 
z ( t) = 

4 
	z 

1 
K a 

P − 2 
(∇ 

2 
H u z 

)
. (22) 

Feeding the expressions for A 

′ 
z ( t) and B 

′ 
z ( t) into eq. ( 18 ) we 

obtain 

∂ 2 t u z + v 2 P,e 

[ 
− 2 

	z 
[ ∂ z u z ] f d + ∇ 

2 
H u z 

] 
− 2 v 2 S,e ∇ 

2 
H u z 

= 

1 

ρ

[ 
1 

	z 

( 

2 − 4 v 2 S,e 

v 2 P,e 

) 

P 

] 
. (23) 

Displacement measurements are all on the left-hand side and pres- 
sure measurements on the right-hand side of eq. ( 23 ); in order to 
use this equation to constrain the velocities and density, both dis- 
placement and pressure must be measured simultaneously at the 
free surface. An explicit sensitivity becomes clear from eq. ( 23 ) 
with density connecting the left- and right-hand sides of the equa- 
tion linearly. 

3  G R A D I O M E T R I C  M E T H O D O L O G Y  

Herein, we focus on the potential of gradiometric methods based 
on 2-D surface arrays [similarly to De Ridder & Biondi ( 2015 ) in 
Fig. 1 c] and 3-D volumetric arrays [similarly to Curtis & Robertsson 
( 2002 ) in Fig. 1 a] to estimate density in addition to the medium’s 
wave speed. We start outlining the 2-D gradiometric methodology 
(Section 3.1 ) for density inversion in light of eqs ( 5 ) and ( 10 ). These
equations are naturally suitable for acoustic wave propagation, but 
are subject to restrictive and potentially unrealistic assumptions in 
elastic media. We investigate whether a practical 2-D array setup, 
that limits the complexity of the wave equation that can be used for 
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EI (v ertical wav efield gradients can not be measured for exam-
le), yields sufficient information to estimate density in an acoustic
edium where the physics fits the used eqs ( 5 ) and ( 10 ), and to ex-

end the method to elastic media. We then test whether using a 3-D
rray configuration (Section 3.2 ) that includes an additional buried
eceiver, and which makes it possible to use a physically more ap-
ropriate equation for elastic wavefield data (i.e. eq. 23 ), improves
he density estimates in elastic media. The following subsections
re therefore ordered according to the gradiometric WEI approach
sed for density estimation—using free surface and then volumetric
rray recordings (Sections 3.1 and 3.2 , respecti vel y). 

.1 Free surface arrays 

n pre vious w avefield g radiometr y studies perfor med with data from
-D receiver arrays on the Earth’s surface, the role of density has
een neglected. If density is assumed to be constant over space,
q. ( 10 ) reduces to the scalar Helmholtz wave equation, the 2-D
ersion of which is usually used as a basis for WEI where ∇ is used
s a 2-D operator ( ∇ = ∇ H = [ ∂ x , ∂ y ] T ) and x = [ x , y ] T : 

c ω ( x ) 
2 ∇ 

2 θ ( x , t) = ∂ 2 t θ ( x , t) . (24) 

ere, θ denotes any type of wavefield quantity (e.g. one component
f the wavefield displacement or particle velocity field, or the pres-
ure field) which varies as a function of horizontal position x and y
nd time t . This equation is a major approximation of how seismic
 aves actuall y propagate in the Earth’s subsurface: all 3-D propa-
ation of elastic body waves and of different types of surface waves,
ach associated with multicomponent particle motions, are approx-
mated by a single wave type propagating in 2-D across the Earth’s
urface with a single independent component of particle motion. For
xample, in isotropic media Love waves are horizontally polarized
nd arrive most prominently on the transverse component, whereas
he Rayleigh waves are polarized in a vertical plane and appear

ainly on the vertical and radial components (Shearer 2019 ). In the
ase of ambient noise, we deal with complex wavefields arriving
rom multiple sources which makes it impossible to distinguish ra-
ial contributions from transverse contributions; Love and Rayleigh
aves therefore interfere in the horizontal particle velocity field yet

re treated as one wave type in the 2-D scalar wave equation. On
and therefore, 1C geophone recordings are usually used as gradio-

etric measurements, because Rayleigh waves typically dominate
he ambient seismic noise field and predominantly excite vertical
isplacements. A similar argument applies to Scholte waves which
ravel along the water-seabed interface. And since surface waves
redominantly travel across the Earth’s surface and have a dominant
ode number, they are commonly approximated by superpositions

f dispersive, single-mode plane waves that each satisfy the 2-D
calar wave equation. 

In order to improve the suitability of the Helmholtz approxima-
ion for surface waves, the wavefield is usually first filtered around
 fixed frequency ω. WEI then proceeds by estimating all spatial
nd temporal deri v ati ves in eq. ( 24 ) given measurements of a pass-
ng wavefield made on a dense array. Thereafter the equation can be
olved for the phase velocity c ω , assuming that a single surface wave
ode exists in the data. Nevertheless, the series of approximations

bov e de grades the estimates of surface wav e v elocity. 
In acoustic media ho wever , the Helmholtz wave equation may be

 reasonable model of wave propagation because the only approx-
mation made in the governing physics is that density is assumed
o be locally constant across the array of receivers used to estimate
patial deri v ati ves in ∇P . To account for a spatial variability in sub-
urface density, we consider the full acoustic wave equation (eq. 25 )
n the time domain: 

∇ ·
(

1 

ρ( x ) 
∇ P ( x , t) 

)
= 

1 
ρ( x ) c ω ( x ) 2 

∂ 2 t P ( x , t) . (25) 

he full acoustic wave equation represents the underlying physics
hat relates phase velocity c ω and density ρ to dilatational wavefield
bservations where pressure P is used as wavefield quantity � . In
coustic media, eq. ( 25 ) captures the full physics whereas it is only
n approximation of wave propagation in elastic media. To perform

EI on the basis of the full acoustic wave equation in elastic media,
e need to compute the pressure wavefield P from eq. ( 7 ) and

ubstitute the resulting potential � = K a ∇ · u into eq. ( 10 ) where
u = u H and ∇ = ∇ H . 

Using the foundation of the full acoustic wave equation we set
p an inversion process to estimate both velocity and density from
radiometric measurements. We first parametrize the system in or-
er to remove non-linearity in these forward relations. We simplify
he form of eq. ( 25 ) by introducing parameters g( x ) and h ( x ) that
ary as a function of horizontal position: 

 ( x ) = 

1 
K ( x ) = 

1 
ρ( x ) c ω ( x ) 2 

(26) 

g( x ) = 

1 
ρ( x ) . (27) 

he full acoustic wave equation then becomes 

∇ g( x ) ∇ P ( x , t) = h ( x ) ∂ 2 t P ( x , t) . (28) 

We rely on accurate knowledge of second order spatial gradients
f pressure which can not be measured directly in the field. We cal-
ulate these gradients discretely using finite differences which are
ased around Taylor series expansions (Curtis & Robertsson 2002 ).
e discretize eq. ( 28 ) on a horizontal, regularly spaced receiver

rid at the surface (Fig. 2 a) using classical central finite differences
FD) after (Geiger & Daley 2003 ) to approximate the deri v ati ves.
iscretizing with the FD method does not require regular grids if
e adopt a generalized FD scheme after (Liszka & Orkisz 1980 ;
uiskamp 1991 ; Gavete et al. 2003 ), however in our case receiver

pacing 	 x and 	 y in x - and y -directions, respecti vel y, are con-
tant and equal, and indices i and j define receiver locations, where
 ranges from [0,M] and j ranges from [0,N]. We formulate the
iscretized expression and rearrange the terms isolating the model
arameter g i , j that contains information about subsurface density
nly: 

1 

2 	x 2 

[ 
P 

n 
[0 , −] g [ i, j−1] + P 

n 
[ −, 0] g [ i−1 , j] 

+ P 

n 
[ ±, ±] g [ i, j] + P 

n 
[ + , 0] g [ i+ 1 , j] + P 

n 
[0 , + ] g [ i, j+ 1] 

] 
= h [ i, j] 

[ 
P 

n + 1 
[ i, j] − 2 P 

n 
[ i, j] + P 

n −1 
[ i, j] 

	t 2 

] 
, 

(29) 

here P 

n 
[0 , −] and P 

n 
[0 , −] are written similarly to 

P 

n 
[0 , + ] = P 

n 
[ i, j+ 1] − P 

n 
[ i, j] (30) 

P 

n 
[ + , 0] = P 

n 
[ i+ 1 , j] − P 

n 
[ i, j] (31) 

nd 

P 

n 
[ ±, ±] = P 

n 
[0 , −] + P 

n 
[ −, 0] + P 

n 
[0 , + ] + P 

n 
[ + , 0] . (32) 
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Figure 2. (a) Discretization of wavefield derivatives using a surface receiver grid, shown in plan view on the x –y plane. Receivers are marked by triangles 
(internal stations in blue, border stations in red). The grid has N rows in y -direction and M columns in x -direction. The pressure field P is recorded at each 
receiver position [ i , j ]. The classical second order finite difference stencil of receivers is represented by the cross-shape (orange), using which the second order 
deri v ati ve of the wavefield is estimated at the central point marked by the star symbol (green). (b) shows the corresponding buried receiver (grey) at 1 m below 

the surface that is used for volumetric g radiometr y across the finite difference cross-shaped stencil. 
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Eq. ( 29 ) can be written in matrix form 

A g est = d , (33) 

where matrix A has dimensions [ R × R × n t ] with R being the 
number of parameters over the receiver grid ( R = M × N ) and n t the 
number of data in the time-series. A contains purely observed data 
consisting of the pressure differences (eqs 30 –32 ) and is banded 
and square [ R × R ] for each time step n in the time-series of 
the signal. Vector g est = [ g [0, 0] , g [1, 0] ,..., g [ M , N ] ] T ] is the parameter 
vector of dimension [ R × 1] to be estimated, and d is an observed 
data vector of dimension [ R × n t ] that contains time deri v ati ves 
of the recorded pressure field P i , j multiplied by terms h i , j (right- 
hand side of eq. 29 ). Equally accurate calculations of derivatives 
at the corners and boundaries of the array are not possible since 
neighbouring receivers are not available in all directions so the full 
cross-shaped finite difference stencil (Fig. 2 ) can not be used and is 
depleted to a stencil formed by two or three adjacent stations only. 
We therefore introduce a weighting matrix W that gives less weight 
to information from corner and boundary points of the receiver grid 
which are likely to provide less accurate constraints than the internal 
receivers. For corner and border receivers we chose a weighting 
factor very close to zero to minimize the impact on results while 
still maintaining the invertibility of matrix A . Consequently, density 
estimates are e v aluated onl y at internal recei vers. 

Since the density information is contained in both parameter 
vector g est and the vector d through parameter vector h = [ h [0, 0] , 
h [1, 0] ,..., h [ M , N ] ] T ], prior information is given in the form of an initial 
reference model for h which we call h 

init : 

h 

i ni t = 

1 

ρ i ni t c ω, i ni t 

. (34) 

So as not to bias the inversion towards a heterogeneous solution, 
we chose a homogeneous reference for density ρi ni t . The reference 
model c ω, i ni t for phase velocity is obtained from an initial wave 
equation inversion using the standard scalar Helmholtz wave equa- 
tion formulation ( 24 ) following the methods of De Ridder & Biondi 
( 2015 ) and Cao et al. ( 2020 ). To stabilize the inverse problem we 
introduce generalized Tikhonov regularization: 

[ W A + � d I ] g 
est = [ d + � d g i ni t ] . (35) 

Damping term � d controls how strongly the solution is drawn to- 
wards the homogeneous reference model g i ni t and has the same 
dimensions as matrix A . We then find the least-squares solution for 
parameters g est that contain the density information 

g est = 

[
� 

n t 
n = 1 

(
ˆ A 

T 

n 
ˆ A n 

)−1 
ˆ A 

T 

n 

] [ 
� 

n t 
n = 1 ˆ d n 

] 
, (36) 

where ˆ A = [ W A , � d I ] T and ̂  d = [ d , � d g i ni t ] T . After one iteration 
solving for g est , we obtain a first approximation to density that we 
note g ′ . Substituting this density approximation into eq. ( 25 ), we 
estimate phase velocity using gradiometric methods where we write 
the discrete finite difference form of eq. ( 25 ) in terms of parameter 
g ′ and estimate the phase velocity via linear regression similarly to 
De Ridder & Biondi ( 2015 ): 

1 

2 	x 2 

[ 
g ′ [0 , −] P 

n 
[ i, j−1] + g ′ [ −, 0] P 

n 
[ i−1 , j] − g ′ [ ±, ±] P 

n 
[ i, j] 

+ g ′ [0 , + ] P 

n 
[ i, j+ 1] + g ′ [ + , 0] P 

n 
[ i+ 1 , j] 

] 
c 2 ω, [ i, j] 

= 

[ 
P 

n + 1 
[ i, j] − 2 P 

n 
[ i, j] + P 

n −1 
[ i, j] 

	t 2 

] 
, 

(37) 

where g ′ [ −, 0] and g ′ [0 , −] are written similarly to 

g ′ [ + , 0] = 

g ′ [ i+ 1 , j] 

g ′ [ i, j] 
+ 1 (38) 

g ′ [0 , + ] = 

g ′ [ i, j+ 1] 

g ′ [ i, j] 
+ 1 (39) 

and 

g ′ [ ±, ±] = g ′ [0 , −] + g ′ [ −, 0] + g ′ [ + , 0] + g ′ [0 , + ] . (40) 

In matrix form, eq. ( 37 ) can be written 

J ′ m 

′ = d ′ , (41) 

art/ggae097_f2.eps
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here m 

′ = [ c 2 ω, [0 , 0] , c 
2 
ω, [1 , 0] , ..., c 

2 
ω, [ M,N ] ] 

T is the parameter vector of
imension [ R × 1], d 

′ is an observed data vector of dimension [ R ×
 t ] that contains time deri v ati ves of the recorded pressure field and
oefficient matrix J of dimensions [ R × R × n t ] contains knowledge
bout the pressure wavefield gradients and density gradients from
he full acoustic wave equation formulation. In the case of real data,
here amplitude differences in the wavefield due to site effects or
ifference in sensors can impact the data, it might be necessary
o impose the condition that medium parameters should not vary
apidly as a function of space (De Ridder & Biondi 2015 ). This can
e achie ved b y penalizing the second order spatial deri v ati ves in the
orm of a regularization term. For the purpose of this paper, where
e analyse synthetic data only and the problem is well constrained,
q. ( 37 ) is solved by linear regression with a mean squared error cost
unction, that is non-regularized least-squares WEI. Information
bout density obtained from eq. ( 36 ) and the updated phase velocity
stimates obtained by solving eq. ( 37 ), provide an updated estimate
f h denoted h 

′ : 

h 

′ = 

g ′ 

m 

′ . (42) 

nd g i ni t is updated by g ′ . We proceed to perform several iterations
f solving eqs ( 36 ) and ( 37 ) until we observe convergence towards a
table estimate of g ′ . In the following, we analyse this methodology
or acoustic media, then test its performance in elastic media. 

.2 Volumetric arrays 

o estimate density with volumetric g radiometr y in an elastic
edium, a 2-step procedure is implemented. First, we discretize

q. ( 18 ) with finite differences on the volumetric array (Fig. 2 b) and
stimate body wav e v elocities with linear inversion techniques based
n the free surface methodology described in Curtis & Robertsson
 2002 ). We use a standard non-regularized, least-squares minimiza-
ion technique to estimate v S ′ and v P ′ . Secondly, we discretize left-
nd right-hand sides of eq. ( 23 ) with classical finite differences and
ubstitute the estimated body wave velocities v S ′ and v P ′ obtained
rom WEI: [ 
∂ 2 t u z + v 2 P ′ 

[ 
− 2 

	z 
[ ∂ z u z ] f d + ∇ 

2 
H u z 

] 
− 2 v 2 S ′∇ 

2 
H u z ︸ ︷︷ ︸ 

L H S 

] 
[ i, j, 0] 

= 

1 

ρ[ i, j, 0] 

[ 
1 

	z 

(
2 − 4 v 2 S ′ 

v 2 P ′ 
)

P ︸ ︷︷ ︸ 
R H S 

] 
[ i, j, 0] 

(43) 

here, 

L H S [ i, j, 0] = 

u n + 1 z[ i, j, 0] − 2 u n z[ i, j, 0] + u n −1 
z[ i, j, 0] 

	t 2 
− 2 

	z 
v 2 P[ i, j, 0] ′ 

[
u z[ i, j, −1] − u z[ i, j, 0] 

	z 

]

+ 

(
v 2 P[ i, j, 0] ′ − 2 v 2 S[ i, j, 0] ′ 

) u n z[ i, j−1 , 0] + u n z[ i−1 , j, 0] − 4 u n z[ i, j, 0] + u n z[ i+ 1 , j, 0] + u n z[ i, j+ 1 , 0] 

	x 2 

(44) 

R H S [ i, j, 0] = 

1 
	z 

( 
2 − 4 v 2 S[ i, j, 0] ′ 

v 2 P[ i, j, 0] ′ 

) 
P [ i, j, 0] (45) 

 hich enab les density to be estimated via linear regression at each
eceiver position [ i , j ,0] at the surface: 

L H S [ i, j, 0] = 

1 
ρ[ i, j, 0] 

RH S [ i, j, 0] . (46) 

 S Y N T H E T I C  T E S T S  

y using wavefield g radiometr y we aim to image the shallow sub-
urface in as much detail as possible. With the following synthetic
tudy we wish to examine the role of density in enhancing or ob-
curing our resolution of lateral heterogeneities. 

We use the 3-D wavefield modelling software Salvus (Afanasiev
t al. 2019 ) to produce accurate synthetic acoustic and elastic
avefield recordings in 3-D heterogeneous media. The wavefield is

ecorded at the surface over a 40 × 40 receiver grid in the middle of
he domain. As a rule of thumb in gradiometry, the wavefield should
e sampled at spatial points spaced a maximum of around 12 per cent
f the minimum wavelength apart, in order to obtain an accuracy
f 10 per cent in first order spatial deri v ati ves (Langston 2007a ).
nalogous error calculations for second order deri v ati ves suggest

hat for a same level of accuracy receivers must be spaced at a max-
mum of 24 per cent of the minimum wavelength (Appendix A ); in
ther words for the same receiver spacing, second order derivatives
re less prone to large finite difference errors than first order deriva-
ives. With a spacing of 2 m and a minimum medium velocity of
550 m s −1 , this allows frequencies up to 180 Hz to be used with
easonable accuracy. All wavefields are recorded for a time interval
f 3 s at a temporal sampling rate of 0.3 ms. A buried receiver is
laced 1 m below every receiver on the surface array for volumetric
 radiometr y. 

Rele v ant depth slices and plan view maps of the true acous-
ic P -wave velocity and density model are shown in Fig. 3 . The
elocity heterogeneity of the top layer follows a sine function
n the x -direction at a wavelength of approximately 113 m. The
ensity structure has a wavelength of 88 m and is rotated by 90 ◦

ith respect to the velocity structure in order that we can clearly
dentify successful estimates of each parameter without concerns
hat we are actually estimating only their correlation. The rota-
ion of the orientation of density heterogeneities relative to those
n velocity should also reveal whether the estimated density struc-
ure contains artefacts caused by velocity heterogeneity and vice
ersa. Layer 1 is 50 m thick and velocities span the range 1550
o 2300 m s −1 , densities span 1200–2000 kg m 

−3 , while the deeper
ayer has a homogeneous velocity of 2700 m s −1 and density of
240 kg m 

−3 . The receiver array spans an area of 78 × 78 m 

2 

nd captures at least half a wavelength of the heterogeneity in
oth velocity and density structures (Figs 3 b and d). Elastic mod-
ls are constructed analo gousl y to Fig. 3 with an additional S -
av e v elocity model related to P -wav e v elocity by a Poisson ratio
f 0.25. 

To test the performance of WEI for simulated ambient noise,
ve isotropic sources are placed on a circle around the receiver
rray at a radius of 290 m from the midpoint. They fire Ricker
avelet signatures with different central frequencies ranging from
.5 to 16 Hz at random time intervals but with the same amplitude
o examine whether WEI is robust against waves of overlapping
requency. The sources fire close to the surface at 10 m depth to
nsure that the dominant wave energy travels along the surface,
llowing the assumption that the pressure gradient in z -direction
s small compared to horizontal directions. The increasing velocity
ith depth in the model ensures that the waves are dispersive as in

he true Earth’s subsurface. 
In addition to the proof-of-concept synthetic model where density

tr ucture is or thogonal to the velocity str ucture, which is discussed
n the main body of the paper, we examine models that resemble nat-
ral borders between geological units more closely in Appendix D .
wo true density models whose structure oscillates in parallel with
he velocity structure of Figs 3 (a) and (b) are analysed for the acous-
ic data case. In Fig. D1 (a) the density gradients follow the same
ine curve as the velocity structure and are directly aligned with the
elocity gradients (Fig. D1 b), whereas the density and velocity in
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Figure 3. (a) Acoustic velocity model cross-section in xz -plane. Source locations relative to the receiver array are indicated b y stars. Recei ver groups marked 
by red triangles highlight the location of one line of 40 receivers at the surface and their corresponding buried receiver positioned at 1 m depth below. The 
total array spans an area of 78 × 78 m 

2 spaced at 2 m intervals across the range [261, 339] m in both x - and y -directions. For g radiometr y relying e xclusiv ely 
on the surface array, deri v ati ves are calculated over a decimated receiver grid spaced at 4 m, whereas all surface receivers at 2 m intervals are used to perform 

volumetric g radiometr y. All plan views showing model parameters are represented on the decimated grid at 4 m recei ver spacing. (b) 2-D xy -plan vie w map 
of the section of the true velocity model spanned by the internal receivers of the surface array. Depth boundary from layer 1 to layer 2 does not correspond to 
a step function change but a linear increase within the model cell that transitions between properties from the shallower layer to the deeper layer. (c) Density 
model depth cross-section in yz -plane. (d) 2-D xy -plan view map of the section of the true density model spanned by the internal receivers of the surface array. 
For the pressure signals in Figs 4 (a) and (b), a constant density model of 1600 kg m 

−3 is used instead for the top layer (Appendix B , Fig. B1 ). Elastic runs are 
performed with the same velocity and density structure and an additional shear-wave velocity field. Acoustic and elastic forward models have slightly different 
meshing criteria due to their respective minimum model velocities. 
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Figs D2 (a) and (b) both also vary in the x -direction but are spatially 
shifted with respect to each other. 

5  D E N S I T Y  F I N G E R P R I N T  

5.1 Free surface arrays 

Sensitivity to relative density gradients in the full acoustic wave 
equation 

The full acoustic wave eq. ( 25 ) can be written in the form of the 
Helmholtz wave equation and a source term containing relative den- 
sity gradients ∇ρ( x ) /ρ( x ) acting on pressure gradients ∇ P ( x , t) : 

∇ 

2 P ( x , t) − 1 

c ω ( x ) 2 
∂ 2 t P ( x , t) = 

∇ρ( x ) 
ρ( x ) · ∇ P ( x , t) . (47) 

Relative density gradients influence pressure gradients whenever 
a spatial density gradient ∇ρ( x ) , that is, a laterall y hetero geneous 
density structure, exists. Otherwise the term on the right-hand side 
of eq. ( 47 ) becomes zero. 
To illustrate the role that relative density gradients play in in- 
fluencing wa vefields w e compare the second-order spatial pressure 
g radient ter ms in Fig. 4 for a model in which density varies (Fig. 3 ) 
to one in which density is fixed at the average value of the former 
model (Appendix B , Fig. B1 ). The spatial pressure gradients are 
expressed as 

∇ 

2 P ( x , t) (48) 

for the Helmholtz eq. ( 24 ) and 

ρ( x ) ∇ ·
(

1 

ρ( x ) 
∇ P ( x , t) 

)
(49) 

for the full acoustic eq. ( 25 ). For simplicity of notation, we drop the 
indication of space and time dependencies of density ρ and pres- 
sure P hereafter. In variable density media, terms ( 48 ) and ( 49 ) have 
quite different discretized finite-difference coefficients as shown in 
Table 1 . In the Helmholtz case, classical discretization coefficients 
for second order deri v ati ves are used, whereas ratios of density 
from neighbouring receiver stations dominate the discretization co- 
efficients in the full acoustic case (eqs 37 –40 ). If the pressure field 
passes through a homo geneous medium, the coef ficients in the full 
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Figure 4. Effect of density gradients in 3-D acoustic (a and c) and elastic media (b and d). Panels (a) and (b) show the discretized Helmholtz (dotted grey) 
and full acoustic (dashed black line) normalized spatial gradients at receiver [13,13] for a constant acoustic and elastic density model (Appendix B , Fig. B1 ) 
respecti vel y. The dif ference between Helmholtz and full acoustic gradients (solid red line) shows that constant density has no influence on the measured 
wav efield. P anels (b) and (d) show the same information for a heterogeneous density model (Figs 3 c and d) in acoustic and elastic media, respecti vel y. The 
difference between Helmholtz and full acoustic gradients contains the signal generated by the density gradient in y -direction. The influence of the density 
gradient can clearly be distinguished (solid red line). In this example, the wavefield is filtered between 7 and 9 Hz. 

Table 1. If divided by receiver spacing 	 x 2 , the presented values correspond to finite 
difference discretization coefficients on a regular grid (Fig. 2 ) for second order spatial 
pressure gradients in Helmholtz ( 24 ) and full acoustic ( 25 ) equations, respecti vel y. 
Helmholtz coefficients correspond to the classical central finite difference discretiza- 
tion values. Full acoustic coefficients are dependent on density ratios g ′ (eqs 38 –40 ) 
of neighbouring receivers. 

[ j −1] [ i −1] [ i , j ] [ i + 1] [ j + 1] 

Helmholtz 1 1 -4 1 1 
Full acoustic 1 

2 g 
′ 
[0 , −] 

1 
2 g 

′ 
[ −, 0] 

1 
2 g 

′ 
[ ±, ±] 

1 
2 g 

′ 
[ + , 0] 

1 
2 g 

′ 
[0 , + ] 
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coustic case reduce to the Helmholtz coefficients since ratios of
djacent density values are equal to 1: the phase velocity estimates
re thus identical in this case regardless of which equation is used
or WEI. Whenever the densities between neighbouring receiver
tations vary, the full acoustic coefficients contain density ratios
ot equal to 1 and an effect on the phase velocity estimate is ex-
ected depending on whether the Helmholtz or the full acoustic
ave equation is used as a basis for WEI. 
This behaviour of the spatial gradients becomes obvious in both

coustic (Figs 4 a and c) and elastic (Figs 4 b and d) media. In the
omogeneous model, Helmholtz and full spatial gradients are the
ame, resulting in no difference between them (Figs 4 a and b). In
he model with variable density we observe a clear change in wave
mplitude and a phase shift between the two spatial gradient ex-
ressions which is prominent between recording times 1 and 2 s
n the acoustic case (Fig. 4 c). Density gradients therefore create a
learly distinguishable fingerprint in measureable wavefield quan-
ities (Figs 4 c and d), where the fingerprint � is defined as the
ifference between normalized spatial gradients: 

 = 

[
ρ∇ ·

(
1 

ρ
∇ P 

)]
− [ ∇ 

2 P ] = 

∇ρ

ρ
· ∇ P . (50) 
n the synthetic model, density v aries exclusi vel y in the y -direction,
o ∂ x ρ = 0 and � reduces to the form: 

 = 

1 

ρ
∂ y ρ ∂ y P . (51) 

he difference between Helmholtz and full acoustic spatial gradi-
nts is less pronounced in elastic media, even though underlying
ensity gradient values are the same in both acoustic and elastic
odels. Nev ertheless, ne glecting variability in the density structure

n either acoustic or elastic media results in gradients that are not
epresentative of the propagation medium. This causes the phase
elocity to be either over- or underestimated by WEI when using
he Helmholtz equation in a variable density medium. 

.2 Volumetric arrays 

ensitivity to density in the free surface, full elastic wave equation 

he linear equation derived from the vertical component of the
ax–Wendroff corrected full elastic wave equation puts constraints
n density directly. Eq. ( 46 ) shows that density linearly relates the
emporal and spatial deri v ati ves of displacement to the pressure
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term. In Fig. 5 it becomes clear that the left- and right-hand sides of 
eq. ( 46 ) are related by a scaling factor. By fitting a regression line 
with the slope of the inverse of true density in the heterogeneous 
forward model, a coefficient of determination R 

2 equal to 1 is ob- 
tained suggesting that the scaling factor between left- and right-hand 
sides corresponds to the density of the medium. Fig. 5 (b) shows that 
residuals are essentially zero between left-hand and right-hand sides 
of eq. ( 46 ) if the true density is substituted. The same is observed 
in homogeneous media. 

6  I N V E R S I O N  R E S U LT S  

We now present results from the iterativ e inv ersion process for 
density and phase velocity using simulated ambient noise. In Sec- 
tion 6.1.1 we investigate the performance of density estimation in 
acoustic media at a central frequency of 8 Hz where the wavefield 
data is filtered with a narrow bandpass in the range 7–9 Hz. We 
then show how that density information improves the accuracy of 
phase velocity estimates based on WEI of the full acoustic wave 
equation, and how random noise impacts the robustness of these 
estimates. We then investigate the quality of density inversion over 
a broader frequency range from 4 to 14 Hz and the impact that 
full WEI has on estimates of phase velocity dispersion curves. In 
Section 6.1.2 , we discuss the density estimated in elastic media 
using acoustic equations for WEI and the same iterative inversion 
w orkflo w. Misfit functions are then presented to illustrate trade-offs 
between density and phase velocity in both acoustic and elastic me- 
dia (Section 6.1.3 ). Thereafter, we show density results in elastic 
media obtained by gradiometric linear regression using the full elas- 
tic wave equation at the free surface (Section 6.2 ). An overview of 
the structure of this results section summarizing the data types, ar- 
ray configurations and governing equation assumed in the inversion 
methods is given in Table 2 . 

6.1 Free surface arrays 

6.1.1 Acoustic data 

Density estimation 

Fig. 6 (a) shows the density inversion results as a mean over all cross 
sections in x (Fig. 6 a, left-hand panel) and y -direction (Fig. 6 a, 
right-hand panel). Corresponding lateral relative y - and x -gradients 
in density are depicted in Fig. 6 (b) in the left- and right-hand column, 
respecti vel y. Without damping, there is no constraint on the absolute 
value of the density. Hence, the inversion process is quite sensitive 
to different initial damping parameters � d . As a rule of thumb, 
setting the initial damping parameter at 10 per cent of the mean 
amplitude of all recorded pressure signals stabilized our inversions. 
The mean value over the true density model is fed to the inversion 
as the initial homogeneous reference model ρ init . 

We clearly see the effect of the damping term in the first iteration 
where the inverted density estimate is skewed towards the initial 
reference model. After the initial iteration we decrease the damping 
parameter by a factor of 10 and keep it constant for a total of 100 
iterations. Lowering the damping parameter gives less weight to the 
reference model. Tests showed that the inversion process is only 
sensitive to the initial damping parameter: decreasing the damping 
parameter further after the initial stabilization phase did not have 
an effect on the final result, but it allowed the inversion to converge 
more quickly towards a minimum misfit solution. After only 10 
iterations of alternately updating velocity and density, the density 
estimates approximate the true solution fairly well and remain stable 
over subsequent iterations. The initial spiky character observed in 
the x -direction might arise because we did not impose any smooth- 
ness constraints on the inversion. The logarithm of the data misfit 
vector δd of dimension [ R ×1] 

δd = 

� 

n t 
n = 1 
(

J ′ n m 

′ − d n 
)2 

n t 
(52) 

for the predicted model at each iteration is shown in Fig. 6 (c) and is 
used to determine whether the iteration delivers satisfactory results. 
After the initial iteration the logarithm of the full acoustic misfit 
of −7.0 is comparable to the Helmholtz misfit level at a value of 
−6.1. From there, the data misfit monotonically decreases with each 
iteration. In the first 10 iterations, the logarithmic misfit decreases 
rapidly from −7.0 to −13.2 at iteration 10. After 12 iterations the 
logarithm of the misfit remains almost constant around a value of 
−13.5 and only improves marginally to −13.9 until the inversion is 
stopped at iteration 100. 

The steep drop in misfit at iteration 10 correlates well with the 
improvement in the relative parameter error on the relative density 
gradient in the y -direction. The relative error of parameter p at each 
location i , j is defined as the difference between the absolute values 
of true and estimated values | p | true and | p | estimate divided by the true 
values 

| Er r or | i, j = 100 

∣∣∣∣∣ | p | 
true 
i, j − | p | estimate 

i, j 

| p| true 
i, j 

∣∣∣∣∣, (53) 

where in this instance, parameter p stands for the relative x - or y - 
density gradients ∂ x ρ/ ρ and ∂ y ρ/ ρ, respecti vel y, but can stand for 
any other estimated quantity. In the case where the true value in 
eq. ( 53 ) is equal to 0, the denominator is replaced by 1. 

The density gradient result with minimum parameter error in 
x -direction is achieved at iteration step 21. The slight increase in 
parameter error in density thereafter is likely to originate from the 
velocity updates dominating the misfit evolution. Velocity has a 
much stronger effect than the density since it appears squared in 
the full acoustic wave equation. We showed in Fig. 4 that in a 
medium with homogeneous density the spatial gradient expressions 
from the Helmholtz and the full acoustic equation are identical 
and so phase velocity estimates remain unaffected by homoge- 
neous densities across the array. Since density is constant in the 
x -direction, the true phase velocity is only dependent on density 
structure in the y -direction. Given the poor constraints on den- 
sity in the x -direction the mean estimate on the density gradient 
in x -direction deviates, if only slightly ( ±0.15 per cent), from the 
true value of zero (Fig. 6 b). This introduces artefacts in the phase 
velocity estimates which in turn impairs density estimates through- 
out the iterative process. Nevertheless, in our experiments the data 
misfit minimum does tend to indicate when parameter estimates 
are most accurate. Cross-talk between density and velocity appears 
to be weak because the density structure of the true model could 
be reconstructed with reasonable accuracy without major artefacts 
(Fig. 6 ). 

Relative density gradient results for models with parallel spatial 
g radients (i.e. density str ucture var ying in the same directions as the 
velocity structure) are shown in Appendix D (Figs D1 c and D2 c) 
and could also be reconstructed without a significant increase in 
cross-talk compared to the models with density and velocity spatial 
g radients or thogonal to each other. Misfits are higher by two to 
three orders of magnitude but still suggest a good agreement with 
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Figure 5. Role of density at the free surface of 3-D elastic media [heterogeneous forward model (Fig. 3 )] shown at the example receiver at location [13,13]. 
The wavefield is filtered around a central frequency of 8 Hz with a bandpass of 2 Hz. Panel (a) shows the waveform of the discretized left-hand side (left-hand 
panel) and right-hand side (right-hand panel) of eq. ( 46 ) when true velocity model parameters are used. The middle panel in (a) shows a scatter plot of left- and 
right-hand data with a regression line of a slope corresponding to the inverse of true density at receiver [13,13]. R 

2 is the coefficient of determination defining 
the goodness of fit of the regression line and the data. Panel (b) shows the residuals (LHS-1/ ρ RHS) between left- and right-hand side of eq. ( 46 ) if the true 
model density is used. 

Table 2. Overview of the WEI approaches that are used in the Inversion Results section. For the 
inversion method based on free surface arrays (Fig. 2 a) and volumetric arrays (Fig. 2 b), used to 
produce the results, the reader can refer to Sections 3.1 and 3.2 , respecti vel y. For free surface arrays, 
the governing equation used to estimate density is the full acoustic wave eq. ( 25 ): density inversion 
with surface arrays using full acoustic WEI is tested on synthetic data from both acoustic and elastic 
media. For volumetric arrays, density is obtained using a modified version of the full elastic wave 
equation at the free surface (eq. 43 ) in which both vertical particle velocity and pressure appear. 

Array type Synthetic medium Equation used for WEI 

Free surface Acoustic (Section 6.1.1 ) Full acoustic (from Section 3.1 , eq. 25 ) 
(Section 6.1 ) Elastic (Section 6.1.2 ) 

Volumetric Elastic (Section 6.2.1 ) Modified full elastic free surface 
(Section 6.2 ) (from Section 3.2 , eq. 43 ) 
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he data (Figs D1 d and D2 d); also the evolution of the mean error
n the relative density gradients is comparable to the model with
rthogonal density and velocity structures. 

As discussed in Section 5 , the inversion is predominantly sen-
itive to relative changes in density ∇ρ/ ρ, where ∇ρ corresponds
o the gradient of density at a central point ρ = ρ i , j over the finite
ifference stencil ( cf . Fig. 2 ), and is less sensitive to the absolute
alues ∇ρ (Fig. 7 ). Fig. 7 shows that the minimum misfit estimate
f the local density gradient in the y -direction is typically within
10 per cent of the true value for relative density changes larger

han 0.5 per cent over the width of the spatial finite difference sten-
il. The accuracy of estimates decreases for weak relative changes
elow 0.5 per cent. Estimates of absolute values may be biased de-
ending on which initial density reference model is fed to the first
teration of the inversion. Results in Fig. 6 (a) could successfully
econstruct absolute density values due to an appropriate choice of
tarting model ρ init . If the initial guess of bulk density varies more
ignificantly from the true values, the absolute estimates are under-
 i
r overestimated according to the input starting model (Fig. 7 a,
eft-hand panel) because the inversion fits the relative changes in
ensity ratios (Fig. 7 a, right-hand panel) as becomes obvious from
q. ( 47 ). By reconstructing relative density changes, the results are
nbiased by the choice of initial density model ρ init (Fig. 7 a, right-
and panel). The results of relative density gradients for each local
eceiv er position ov er the entire grid are shown in Fig. 8 as 2-D plan
iew maps. 

ffect of density gradient on phase velocity estimates 

e no w sho w the extent to which the estimated density structure
nfluences the accuracy of phase velocity maps. Fig. 9 (a) shows the
hase velocity map estimated using the same data as above, but
ith the Helmholtz wave equation, so without taking density into

ccount in the formulation of wave propagation. Fig. 9 (b) shows
hase velocity estimates based on the full acoustic wave equation at

teration 100 where the data misfit is minimal. 
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Figure 6. Inversion result for a wavefield filtered to include frequencies in the range of 7–9 Hz. Only the results for the internal receivers 2–19 are displayed, as 
boundary stations need to be disregarded for finite difference estimates. (a) Mean value of inverted density results over all cross-sections in x -plane (left-hand 
panel) and y -plane (right-hand panel) showing the evolution of inverted density results at selected stages during 100 iterations. True model is depicted as dashed 
dark blue line and initial model as dotted black line. The minimum misfit result at iteration 100 is highlighted by red circles. (b) Relative density gradients 
∇ρ/ ρ of (a) in y - and x -direction, respecti vel y. (c) Lo garithm of the mean data misfit evolution for the full acoustic wave equation (black crosses) over all 
internal receivers (upper row) and corresponding mean parameter error on x - and y -relative density gradients over all internal receivers (lo wer ro w) spanning 
over 100 iterations. Their respective minimum value positions are marked by vertical lines in red for minimum misfit at iteration 100, dark orange and light 
orange at iteration 12 and 21 for minimum parameter error on relative density y - and x -gradients. As a reference, the misfit achieved with linear regression 
based on the Helmholtz equation is shown by the dotted grey line. The minimum mean parameter error is evaluated only after the initial iteration. 
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Figure 7. Impact of initial density reference model ρinit on inversion results of (a) absolute density y -gradients ∂ y ρ (left-hand panel) and relative density 
y -gradients ∂ y ρ/ ρ (right-hand panel). Their respective errors (eq. 53 ) are depicted in (b). Results from an optimal ρinit starting model (red circles) correspond 
to the estimates in Fig. 6 (a) where ρinit is the mean bulk density of the true model (dashed dark blue line). Results for a less well informed initial reference 
model with higher mean bulk density (green circles) and lower mean bulk density (light blue circles) are shown for comparison. 

Figure 8. Plan view of (left-hand panel) true model and (middle panel) inversion results for absolute values of relative density gradients in y -direction ∂ y ρ/ ρ
at iteration 100. The corresponding parameter error (eq. 53 ) is shown in the right-hand panel. 
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By visually comparing these maps to the true velocity structure
Fig. 3 b) it is obvious that the Helmholtz approach fails to reproduce
he relative structure of the subsurface velocity pattern. By contrast,
he results obtained by WEI of the full acoustic wave equation yield
n improved estimate of the velocity structure that is much closer
o the true model in terms of relative structural features. This ob-
ervation is reflected in the much lower misfit values obtained for
he full acoustic model compared to the Helmholtz model (Fig. 9 c).
t is notable how the misfit evolution over the y -axis is dominated
y the slope of the density heterogeneity in the tr ue str ucture (red
ashed line). The Helmholtz misfit values approach the full acoustic
isfit values at a density gradient close to zero [see green highlight

t y -receiver 6 in Fig. 9 (c)], whereas, for steep changes in density
t y -receiver 13 in the model, the Helmholtz equation performs
elati vel y poorl y. 

Fig. 10 illustrates the effect of density gradients on phase ve-
ocity estimates at two specific receiver stations in the array. Phase
elocity squared is given by the slope of the linear relationship
etween spatial and temporal gradients [eq. ( 24 ) for Helmholtz
nd eq. ( 25 ) for full acoustic equation]. Fig. 10 (a) shows that
he full acoustic spatial gradients reveal a clearer linear relation-
hip than the Helmholtz model as indicated by a coefficient of
etermination R 

2 closer to 1. The difference in best fit slope es-
imates shows that phase velocity is considerably underestimated
or the Helmholtz model at receiver [13,13] due to the fact that
he relative density structure is neglected in the computation of
he spatial gradients. This disparity in the accuracy of phase ve-
ocity estimates becomes evident also in the comparison of left-
and and right-hand side signals of the full acoustic and Helmholtz
quation (Fig. 10 b) and their respective residuals (Fig. 10 c). They
llustrate that the full acoustic expression matches the pure data
ector well, whereas the Helmholtz expression exhibits larger resid-
als than the full acoustic case for both receiver stations. In-
orporating density in the spatial g radient ter ms of WEI is thus
hown to be important in order to estimate phase velocities accu-
ately. 

If we compare the misfit residuals for receiver [13,13] (Fig. 10 c,
eft-hand panel) and [13,6] (Fig. 10 c, right-hand panel), we can see
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Figure 9. Phase velocity map estimated using (a) linear regression based on Helmholtz wave equation and (b) full acoustic wave equation inversion. Red and 
green squares mark receiver stations of interest [13,13] and [13,6]. (c) Data misfit post inversion averaged over all x -cross sections (red dotted line in (a) given 
at example of fixed receiver position x = 13) for both phase velocity maps (a) and (b). Black and grey crosses show the logarithm of misfit δd in eq. ( 52 ) for 
the Helmholtz equation (grey) and the full acoustic wave equation (black). The red dashed curve shows the absolute value of the y -gradient of the true density 
heterogeneity 	ρ. Green and red highlighting at receiver station 6 and 13 represent the respective positions in the 2-D plan view map. 
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that the full acoustic residuals are of the same order of magnitude 
at both stations whereas the Helmholtz residuals are two orders of 
magnitude larger for receiver [13,13]. Receiver [13,13] is located 
in an area where density is highly variable between the surrounding 
stations (26 kg m 

−3 from Fig. 9 c) which explains why the Helmholtz 
wave equation is subject to much larger residuals than the full 
acoustic equation. Receiver [13,6] is in an area with only weak 
variations in density among neighbouring receivers (4 kg m 

−3 from 

Fig. 9 c), so the left-hand sides of both Helmholtz and full acoustic 
equations agree well with the observed data vector. The accuracy 
of velocity estimates thus depends on the true density gradient 
across surrounding receivers when using the Helmholtz equation for 
WEI. 

Changing data frequencies 

The effect of the density gradient on phase velocity is persistent over 
a wider frequency range than w as anal ysed above. In Figs 11 (a) and 
(b), the dashed blue lines depict the true P -wave velocity in y - 
and x -direction, respecti vel y, for the shallow layer 1 and the deeper 
layer 2 of the synthetic model (Fig. 3 ). Due to wave dispersion, 
the estimated phase velocities should lie in between those two ex- 
pected absolute thresholds depending on the analysed frequency. 
The Helmholtz estimates for phase velocity (Fig. 11 a) are consis- 
tently underestimated for receivers where density gradients are high 
(see Fig. 12 as reference), due to the use in WEI of discretization 
coefficients that neglect the influence of density (Table 1 ), whereas 
they approximate full acoustic (Fig. 11 b) phase velocity estimates 
at low density gradient v alues. Howe ver, the influence of the den- 
sity gradients on the Helmholtz phase velocity estimates seems to 
become smaller with increasing frequency. 

Accuracy of density gradient estimates seems to decrease with 
increasing frequency (Fig. 12 ): at a frequency of 6 Hz, the true 
gradient model in layer 1 is well appro ximated, w hereas the result 
at frequency 14 Hz shows a clear discrepancy between true and 
estimated density gradients. A trend between errors on density gra- 
dients and strength of the density fingerprint (Fig. 12 , right-hand 
panel) becomes notable: parameter errors on estimated density gra- 
dients via WEI increase with decreasing strength of the density 
signal. This suggests that higher frequencies are less sensitive to 
density. 

For the model tested, no frequency dependence of the relative 
density gradient estimate is observed. This is likely due to the fact 
that the lower layer of the investigated model is homogeneous and 
consequently does not have an associated density fingerprint. From 

Fig. 7 we know that the bulk density estimate is influenced by 
the damping parameter of the inversion process. Testing the fre- 
quency dependence on the absolute density is possible if we hold 
the initial reference model in the inversion process constant over 
the narrow band-passed frequency bands. Fig. C1 in Appendix C 

shows that there is no clear increase of the absolute density esti- 
mate with decreasing frequency and thus the higher bulk density 
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Figure 10. (a) Linear relationship between temporal gradients δ2 
t P and ρ∇ ·

(
1 
ρ
∇ P 
)

from ( 49 ) for the full acoustic wave equation and ∇ 

2 P from eq. ( 48 ) for 

the Helmholtz wave equation at the two receiver locations shown in Fig. 9 (a). The coefficient of determination R 

2 denotes the goodness of fit of the data by 
the linear regression model, and phase velocity estimates using each equation are shown along with the reference velocity obtained for a homogeneous density 
forward model. (b) Discrete time-series of the observed data vector ( d = δ2 

t P , solid blue) and the left-hand sides of both Helmholtz ( c 2 ω,H ∇ 

2 P , black dotted) 

and full acoustic ( c 2 ω,F A ρ∇ ·
(

1 
ρ
∇ P 
)

, grey dashed) wave equations, respectively, when using the estimated parameter values for phase velocity and density. 

(c) Respective residuals (difference between right-hand and left-hand side) of both Helmholtz and full acoustic wave equations. 
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Figure 11. Results for the estimated phase velocities for 2 Hz wide bandpasses around central frequencies 4, 6, 8, 10, 12 and 14 Hz from Helmholtz 
linear regression (a) and full acoustic WEI (b). Estimated phase velocities are shown as a mean over all x (left-hand panel) and y (middle panel) cross- 
sections, respecti vel y. For the estimation of full acoustic phase velocities, density information as shown in Fig. 12 is used. The mean value ov er all the frequenc y 
results is shown for both full acoustic and Helmholtz velocities in a black solid line. (c) shows the error evolution over frequency for the 2nd order accurate 
approximation of the spatial gradients with a spacing of 4 m used in this example (see Appendix A ). 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae097/7624675 by guest on 11 April 2024
of the homogeneous low er la yer does not seem to influence the 
estimates. 

Fig. 13 (d) shows how phase velocity perturbation increases with 
decreasing frequency and is roughly correlated with the signal 
strength of density. Full acoustic WEI can account for these density 
induced effects in phase v elocity ov er a broad range of central filter 
frequencies, producing more accurate dispersion curves (Figs 13 a–
c). The full acoustic estimates display higher coefficients of deter- 
mination (Fig. 13 b) and lower misfits (Fig. 13 c) than the Helmholtz 
results over all frequencies. As a reference we estimate a dispersion 
curve for the velocity model in Fig. 3 with a constant density of 
1600 kg m 

−3 in layer 1 (Appendix B , Fig. B1 ) and compare it to 
dispersion curves obtained with full acoustic and Helmholtz WEI 
(Fig. 13 a) for the variable density model (Fig. 3 ). The dispersion 
curve calculated on the basis of full acoustic WEI is able to re- 
produce the general trend of the reference dispersion curve. We 
do not expect a perfect match as the imposed density structure in 
the laterally heterogeneous case does influence the paths taken by 
wave energy. The Helmholtz dispersion curve does not reproduce 
the key feature of a classical dispersion curve where phase velocity 
increases with decreasing frequency. This shows that it is detrimen- 
tal for depth model reconstruction to assume a constant density over 
space in a medium with laterally heterogeneous density, especially 
at lower frequencies. 

Random noise 

Given that in real use case scenarios WEI depends on field record- 
ings, it is important to consider the robustness of density estimation 
to errors in the recorded signal. The density signal is relati vel y weak 
compared to that of phase velocity, hence it may be obscured by in- 
strumentation noise in the field. We add random noise, expressed 
as a percentage of the mean trace amplitude over the whole grid, 
to the simulated observed signals in order to determine a thresh- 
old of noise beneath which the method still delivers meaningful 
results. For each receiver, the added noise follows an uncorrelated 
normal distribution with a spread of 0.1–5 per cent of the mean 
trace amplitude. 

Correlation factors for density decrease with increasing noise 
levels. At noise levels 0.1–1 per cent of the mean trace amplitude, 
the pressure with added noise remains relati vel y similar to the true 
pressure (Fig. 14 a). The density distributions are thus centred around 
the optimal correlation line where true and estimated density match 
perfectly (Fig. 14 b). At a random noise level of 5 per cent the 
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Figure 12. Results for density inversion at the lowest misfit iteration for 2 Hz wide bandpasses around central frequencies 4, 6, 8, 10, 12 and 14 Hz. Estimated 
density is shown as a mean over all x (left-hand panel) and y (middle panel) cross-sections, respecti vel y. The right-hand panel shows the mean error (eq. 53 ) 
on relative y -gradients of density averaged over the whole array per analysed frequency. The mean density fingerprint for normalized spatial pressure gradients 
(eq. 50 ) is calculated for each frequency as 1 /n t � 

n t 
n = 1 | � n | and then averaged over the array. 

Figure 13. Mean phase velocity dispersion curve (a) over the whole array obtained via full acoustic WEI (black crosses) and Helmholtz WEI (grey crosses), 
respecti vel y. Phase velocity results are obtained for a reference model (blue dotted line with cross marker) produced by the same setup as described in Fig. 3 
but with constant density in layer 1 (Appendix B , Fig. B1 ). Corresponding coefficients of determination (b) and misfits (c) are shown to e v aluate the data fit. 
(d) The perturbation of phase velocity ∂c 

c (red dashed line with square markers) is defined by the difference between phase velocity in the heterogeneous (grey 
crosses) and homogeneous baseline model (blue crosses) obtained via linear regression on the basis of the Helmholtz wave equation. The mean fingerprint � 

of the density signal is defined as in Fig. 12 and shown by black triangles. 
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Figure 14. (a) Correlation plots between true pressure signal and pressure signal at 8 Hz with added random noise at 0.1, 0.5, 1 and 5 per cent of the mean 
amplitude of the modelled pressure signal over the whole grid. The black dotted line represents optimal correlation (correlation coefficient of 1). Wavefield 
arri v als at t > 2 s are used to visualize the effect of the added random noise on lower amplitude signals. Correlation plots of model material parameters at the 
various noise levels; the correlations between true and estimated (b) density and (c) phase velocity are shown. True phase velocity is taken at 0.9 of the S -wave 
speed in the surface layer, hence the frequency dependence is not taken into account as it is difficult to determine the expected phase velocity in a laterally 
heterogeneous medium. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae097/7624675 by guest on 11 April 2024
density distribution does not approximate the optimal correlation 
line well which suggests that the relative density structure cannot be 
estimated accurately. The correlation of phase velocity is dominated 
by the quality of the density information and vice versa: correlation 
coef ficient v alues follow the same deteriorating trend when the 
noise level becomes higher (Fig. 14 c). The estimates for both phase 
velocity and density remain stable up to a noise level of 1 per cent, 
but even at a noise level of 5 per cent the main structural trends are 
still recognized. 

6.1.2 Elastic data 

The iterative full acoustic inversion procedure is now performed us- 
ing data generated in an elastic medium for the calculated wavefield 
potential � (from eq. 7 ) for a central frequency of 8 Hz. The damp- 
ing applied had to be 10 times stronger than in the acoustic case, 
with the damping factor at the initial stabilizing iteration equal to 
the mean amplitude of all recorded pressure signals. All subsequent 
iterations are carried out with 10 per cent of the initial damping. The 
results obtained for density (Fig. 15 a) and relative density gradients 
(Fig. 15 b) suggest that the structural trends of the true model in the y - 
direction can be estimated approximately, but contain substantially 
more artefacts than in the acoustic case (Fig. 6 ). The sinusoidal 
trend of the lateral heterogeneity in y -direction is recognizable but 
its shape is not correct. These distortions are naturally also mapped 
into estimates of relative spatial density variations. The poorly con- 
strained results in the x -direction demonstrate relative density gra- 
dients deviating from zero, especially between receiver 3–6 which 
does not agree with the constant true model. 

By examining the parameter error in x - and y -directions individ- 
ually it becomes apparent that the parameter error in the x -direction 
monotonically increases with iterations, whereas the parameter er- 
ror on the relative gradient in y -direction at first steadily decreases 
until iteration 60 after which it also follows an increasing trend. 
Consequently, artefacts are mapped into the density result during 
the inversion process. False structural density features are thus es- 
timated by the inversion which suggests a strong cross-talk with 
other material parameters. A trade-off with velocity could cause 
the trend in velocity gradients in the x -direction, thereby distorting 
density. By mapping a false trend originating from the velocity error 
into the x -direction density g radient, g radients in y -direction might 
compensate by over or underestimating the density variation. The 
inversion being strongly influenced by the velocity response sug- 
gests that density has less weight in the elastic medium compared 
to the acoustic case. This becomes apparent in the misfit function 
map that explores the phase velocity and density space, display- 
ing trade-offs between parameters in the acoustic and elastic case 
(Fig. 16 ). 
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Figure 15. Inversion result for an elastic wavefield filtered to include a narrow frequency range around 8 Hz. Only the results for the internal receivers 3–18 
are displayed, as boundary stations need to be disregarded for finite difference estimates and computing pressure entails an additional differentiation step 
in approximating the divergence of the displacement. Mean value of inverted (a) density and (b) relative density gradient results over all cross-sections in 
x -plane (left-hand panel) and y -plane (right-hand panel) showing the evolution of the inversion at selected stages during 200 iterations for a density model with 
sinusoidal heterogeneity as shown in Fig. 3 . True model is depicted as dashed dark blue line and initial model as dotted black line. The minimum misfit result 
coincides with the last iteration 200 and is highlighted by red circles. (c) Logarithm of the mean data misfit over all internal receivers (upper row) for the full 
acoustic wave equation (black crosses) over 200 iterations. As a reference, the misfit achieved with linear regression based on the Helmholtz equation is shown 
by the dotted grey line. Mean parameter error on x - and y -relative gradients is shown in the lower row over all internal receivers. The respective minimum value 
positions are marked by vertical lines in red for minimum misfit at iteration 200, dark orange and light orange at iteration 60 and 2 for minimum parameter 
error on relative density gradients in y -direction and x -direction. The minimum mean parameter error is e v aluated after the initial stabilizing iteration. 
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Figure 16. Misfit functions for (a) acoustic and (b) elastic media at receiver 
location [13,13] for a central frequency of 8 Hz. The misfit function are 
representative of the data used to produce Figs 6 and 15 , respecti vel y. The 
| Error | (eq. 53 ) shows the deviation of the relative density gradient value at 
the global minimum misfit in the grid search (red star) from the true value 
(white dashed line). Misfit is calculated as defined in eq. ( 52 ) and displayed 
for a single receiver. Crosses of increasing size sho w ho w total relative 
density gradient results of the iterative inversion process converges towards 
the global misfit of the grid search (small: iteration 5, medium: iteration 
25, large: iteration 100). The true phase velocity c ω (thin white dotted line) 
denotes the phase velocity obtained from full acoustic WEI when the true 
density structure is known. 

data. 
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6.1.3 Comparison between acoustic and elastic sensitivities 

To visualize the sensitivities of the inversion towards the investi- 
gated parameters, we perform a grid search where we analyse a 
grid of potential solutions for phase velocity and relative density 
gradients, and their misfit to the true model (eq. 52 ) at a fixed cen- 
tral receiver location [ x 0 , y 0 ] (Fig. 16 ). The density at the central 
location is fixed at the true value, but both neighbouring cells in 
the y -direction are freely variable in order to investigate the misfit 
e volution for v arious relati ve density gradient v alues. The density 
at [ y 0 + 1] and [ y 0 − 1] vary by ±25 per cent around the true den- 
sity value at [ x 0 , y 0 ] and produce relative gradient values between 
±6.25 per cent. The phase velocity at the central point is variable 
around the phase velocity at [ x 0 , y 0 ] obtained by full acoustic WEI 
and spans a range of ±25 per cent. 

We compare the misfit function for acoustic and elastic wavefield 
data at the central frequency of 8 Hz. At the example receiver 
[13,13], the global misfit minimum is about 3 orders of magnitudes 
lower in the acoustic case than in the elastic one. This suggests that 
more uncertainty is attached to the inversion process in the elastic 
medium given that wavefield traces have been normalized prior to 
the e v aluation. 

The misfit function distribution in the acoustic medium shows 
that density gradients are better constrained than phase velocities 
(Fig. 16 a): for logarithm misfit values within two orders of mag- 
nitude from the minimum misfit [yellow area, log( δd ) < −11.4], 
the phase velocity can vary up to 4 per cent whereas the relative 
density gradient is better constrained with no fluctuation at all over 
the applied binning. The absolute minimum misfit coincides ex- 
actly with the true value of the relative density gradient ( | Error | = 

0 per cent) and the minimum misfit phase velocity agrees well with 
the value of 2592 m s −1 obtained via full acoustic WEI using the 
true density structure. All iterations from the inversion process plot 
very closely to the global misfit due to the strong constraints on both 
parameters. 

In elastic media, Fig. 16 (b) shows that a comparati vel y larger 
number of relative density gradient and phase velocity values can 
explain the data on the basis of the full acoustic equation. For all so- 
lution pairs with misfit values within two orders of magnitude from 

the minimum misfit [yellow to orange area on Fig. 16 (b), log( δd ) 
< −8.1], density gradients vary between 12.8 per cent over the 
density gradient parameter space, whereas phase velocity fluctuates 
between 40.8 per cent over the phase velocity parameter space. The 
comparati vel y higher uncertainty than in the acoustic case might 
be attributed to the weaker density signal strength (Fig. 4 ) and 
approximations in physics. An error of 12 per cent between the 
tr ue relative g radient and the value at the global minimum misfit 
suggests that the elastic data can not be fully explained by an un- 
derlying full acoustic wave equation. This implies that the inversion 
is prone to converge towards a slightly incorrect relative density 
gradient value. Iteration 5 of the inversion process gives an estimate 
on relative density gradient with a misfit value that is far away from 

the global misfit minimum (about two orders of magnitude) and 
provides a poor estimate on phase velocity and relative density gra- 
dient. Due to the comparati vel y poor constraints on both parameters, 
subsequent iterations are subject to parameter cross-talk and arte- 
facts are mapped into the solution, corrupting primarily the relative 
gradient in the x -direction. Nevertheless, the inversion manages to 
con verge to w ards a v alue in the vicinity of the true relative density 
gradient. To test the gradiometric estimate on phase velocity at the 
inv estigated receiv er location, we use the surf-96 code (Herrman 
2013 ) to calculate an expected value for mean Rayleigh wave ve- 
locity between 7 and 9 Hz from the generated dispersion curve. 
The phase velocity value of 1260 m s −1 corresponding to the lowest 
misfit marked by the red star in Fig. 16 (b) is only 6 per cent smaller 
than the expected value of 1340 m s −1 generated by a 2 layer model 
matching the 1-D depth structure at the receiver location in our true 
model. 

In summary, both acoustic and elastic media show sensitiv- 
ity to relative density gradients. Ho wever , relative density gradi- 
ents might not cause a large enough perturbation in the elastic 
wavefield to be sufficiently constrained in the inverse problem, 
whereas in acoustic media they are indeed essential to explain the 
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.2 Volumetric arrays 

.2.1 Elastic data 

n a first step using a volumetric array, body wave velocities are
stimated for a wavefield filtered between 7 and 9 Hz using a least-
quares inversion from eq. ( 18 ). Those velocity results (Fig. 17 a)
re substituted into eqs ( 44 ) and ( 45 ) along with the calculated pres-
ure. Pressure at the free surface is given in eq. ( 11 ), but we find that
sing only the related acoustic expression P = K a ∇ H · u H deliv-
rs more reasonable inversion results for density. Fig. 17 shows the
stimated density results obtained by linear regression of eq. ( 46 ).
he accuracy of the density results depends on how well the ve-

ocities can be estimated. The mean value of the relative parameter
rror over the receiver grid (Fig. 17 b, right-hand panel) measures
.04 per cent illustrating that the estimated results are close to the
rue parameter values. Once body wave velocities and densities are
stimated, we can proceed to calculate Lam é parameters via empir-
cal relationships: results are shown for the first Lam é parameter in
ig. 17 (c). 

 D I S C U S S I O N  

e have shown that in acoustic media, relative density gradients
f only 1.6 per cent produce a substantial change in the synthetic
avefield. This allows us to set up an inverse problem that success-

ully estimates density structure of the medium. The WEI approach
as been demonstrated both for models in which density and veloc-
ty structure are uncorrelated, as well as structurally more common
odels that approximate geological interfaces in which density and
 elocity are correlated. Relativ e density contrasts down to an am-
litude of 0.5 per cent can be imaged with a parameter error smaller
han 10 per cent (Fig. 7 ). First tests suggest that the inversion pro-
ess is robust for random noise up to 1 per cent of the mean trace
mplitude (Fig. 14 ) which encourages a future trial on real data. 

In elastic media, other effects interfere with the density signal,
aking density estimation more difficult from surface array data

lone. Elastic results (Section 6.1.2 ) and sensitivity analysis (Sec-
ion 6.1.3 ) show that there is sensitivity to relative density gradients
n elastic media. Ho wever , the full acoustic approximation is too se-
ere for elastic wave physics and density is too weakly constrained
o be fully estimated using the proposed iterativ e inv ersion process.
his makes it unlikely that density inversion based on full acoustic
EI will be feasible in an elastic Earth, or worse a viscoelastic Earth
here the already small density signal might be overshadowed by

he addition of energy dissipation. The full acoustic method might
nly be applicable in localized areas where the wavefield passes
redominantly through gas or liquids. 

To estimate density in elastic media it is therefore necessary to
se volumetric array measurements and to adopt a more accurate
epresentation of underlying wave physics as a basis for gradiomet-
ic WEI, such as the full elastic wave equation. Ho wever , it became
lear from eq. ( 3a ) that if we only measure particle velocity or dis-
lacement and if the source term f is omitted, density does not
ppear as an independent term outside of the expressions for body
av e v elocity. It is therefore impossible to estimate density inde-
endently of the Lam é parameters using a sourceless full elastic
quation. Ho wever , if both displacement and pressure are measured
n a dual sensor configuration, the full elastic wave equation at the
ree surface exhibits a direct, independent sensitivity to density in
he form of a linear relationship between pressure and displacement
erms (Section 6.2 ). If we are willing to deploy buried receivers
hen the results herein suggest that density can be estimated directly
rom recorded data, together with P- and S -wave velocities. Pres-
ure sensors for solid earth applications have been presented as a
rototype (Edme et al. 2018 ), but reliable pressure measurements
re not readily available as of now. 

While our focus herein has been to make use of the ambient
 avefield, an alternati ve exists if we consider the introduction of a

ocal source within the receiver array. In that case, if the associated
ody force term f is clearly defined, density can be isolated within
he wave equation (see eq. 56 ) and could in theory be estimated.

e therefore propose a thought experiment in which we consider a
eight drop within a 3-D gradiometric receiver array (Fig. 1 a) and
erfor m volumetric g radiometr y. If we assume that the weight drop
cts as a vertical point load on the surface then the body force f is
enerally defined as a distribution of force density as a function of
osition and time (Madariaga 2007 ): 

f ( x , t) = f 0 s( t) δ( x − x 0 ) , (54) 

here f 0 is a unit vector in the direction of the point force
f 0 = [0 , 0 , 1] T , s ( t ) is a source–time function (the variation of the
mplitude of the force as a function of time) applied in the verti-
al direction and δ( x − x 0 ) is the Dirac distribution centred at the
ource location x 0 . Neitzel ( 1958 ) first analysed the seismic charac-
eristics of a weight-drop source in a field experiment: he measured
he force applied to the ground in an effort to characterize the source
erm and recorded the wavefield response. Several authors thereafter
roposed source term expressions to explain wavefield observations
roduced by a weight drop: based on the work of Lamb ( 1904 ),
ekeris ( 1955 ) and Mooney ( 1974 ) derived analytical expressions
f the wavefield response at the free surface due to the applica-
ion of an arbitrary excitation. The use of Heaviside step function
nd Dirac Delta function could not reproduce wavefield quantities
ccurately, whereas a sinusoidal source–time function was shown
o better approximate the resulting wavefield (Abe et al. 1990 ).
efining a generalized source term as accurately as possible is an

ssential task in predicting the Earth response to a weight drop, and
ence also in the proposed application to g radiometr y. Colombero
t al. ( 2015 ) found that the source–time function in the near-field
f a weight drop can be represented by a modified Gabor wavelet
based on Semblat & Pecker ( 2009 )] expressed in terms of particle
elocity: 

( t) = 

⎧ ⎨ 

⎩ 

C b β t γ e xp 

[
−
(

2 π
T s α

t 
)2 
]

c os 
(

2 π
T s 

t 
)

if 0 ≤ t ≤ 1 . 2 T s 

0 otherwise , 

(55)

here t is a generic time instant, T s the period of the function, C b 

he momentum of the dropped weight and α, β and γ are constants
hose corresponding values are given in Colombero et al. ( 2015 ).
y comparing recorded particle velocity from drop load tests and

ynthetic data generated by propagating the proposed source signal,
hey found that simulated and real impulse responses in the near-
eld of the source match well. 
We therefore propose that in the case where we allow ourselves

he luxury of a local source, the modified Gabor source–time wavelet
eq. 55 ) could in principle be incorporated in the volumetric gra-
iometry w orkflo w in order to estimate density on the basis of
he full elastic wave equation at the free surface. Alternatively, one
ould use a piezoelectric sensor as a controlled source using a preset
lectrical current signal (e.g. a Ricker wavelet) to drive the resulting
ibrations at the source point in the form of a known source–time
unction. In a first step we consider eq. ( 3a ) without body forces.
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Figure 17. Plan view of (left-hand column) true model and (middle column) gradiometric estimates of material parameters. The corresponding parameter error 
(eq. 53 ) is shown in the right-hand column. Rows (a), (b) and (c) correspond to results for P- wave velocity, density and the first Lam é parameter λ. Velocities 
are estimated via WEI of eq. ( 18 ), densities by linear regression of eq. ( 46 ) and Lam é parameters are obtained from the latter estimated velocity and density 
results where λ = ( v 2 P − 2 v 2 S ) ρ. 
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We can then estimate P -wave velocity v P , e and S -wave velocity v S , e 
at the free surface for any incoming wavefield using volumetric 
gradiometric measurements and the Lax–Wendroff correction (Lax 
& Wendroff 1964 ) as proposed by Curtis & Robertsson ( 2002 ). 
Then b y appl ying body forces in the form of a weight drop where 
s ( t ) is clearly defined (eq. 55 ), eq. ( 18 ) that describes the vertical 
component of a wavefield θ = [ θx , θy , θz ] at the free surface takes 
the form: [
∂ 2 t θz − v 2 P,e A z ( t) + v 2 S,e B z ( t) 

]
ρ = f z (56) 

with A z ( t ) and B z ( t ) given in eqs ( 19 ) to ( 20 ). The entire left-hand
side of equation ( 56 ) is then known apart from density, so this 
equation sets up a linear inverse problem which might be solved for 
density. 

8  C O N C LU S I O N  

We investigated whether surface wavefield g radiometr y can be used 
to gain insights into material density via WEI of the full acoustic 
wave equation in both 3-D acoustic as well as 3-D elastic media 
using ambient noise data. We propose and test an iterative inversion 
scheme for both density and phase velocity based on gradiomet- 
ric WEI and surface recordings of simulated ambient noise. No 
inherent scaling between velocity and density is imposed, mak- 
ing it suitable to detect density changes caused by temperature or 
chemically induced mechanisms. Synthetic results for 3-D acoustic 
media suggest that it is possible to estimate relative density structure 
with WEI by using a full acoustic formulation for wave propagation 
along the surface. We show that using a constant density assumption 
for the medium can be detrimental to subsurface velocity images, 
whereas the full acoustic formulation of g radiometr y improves our 
knowledge of all material properties. It allows us to estimate den- 
sity as an additional material parameter as well as to improve phase 
velocity estimates by incorporating approximations of the density 
structure. 

By expanding this methodology to the elastic case, we tested the 
feasibility of estimating density in the solid Earth with gradiometric 
WEI on the basis of a full acoustic approximation. The dilatational 
component of Rayleigh waves at the free surface was shown to be 
imprinted b y ef fects from relati ve density changes in the medium. It 
prov ed howev er to be more difficult to obtain reliable estimates on 
relative density changes in elastic media than in acoustic media due 
to a stronger trade-off between density and phase velocity caused 
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y the difference in the measured wave type sensitivities to material
arameters in both anal ysed media. Howe ver, using a 3-D array
nd the full elastic wave equation at the free surface it is possible
o obtain reliable absolute density estimates in elastic media. We
uggest that another reasonable way to obtain density estimates
n elastic media would be to fire a local source and include the
orresponding source term within an inversion of the full elastic
ave equation. 
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Figure A1. Error evolution of the used finite difference approximation with frequency for different receiver spacings given in m. Black dotted line shows 
threshold error of 10 per cent. The wavelength is calculated for a velocity of 1550 m s −1 . 

B. Reference density model 

Figure B1. Reference density model depth cross-section in yz -plane. A constant density of 1600 kg m 

−3 is used for the top layer instead of the variable density 
structure imposed in Figs 3 (c) and (d). 1600 kg m 

−3 corresponds to the mean value of the top layer in the variable density model. 

C. Fr equenc y dependence of absolute density estimate 

Figure C1. Frequency dependence of absolute density estimates obtained from full acoustic wave equation inversion. True model values shown at two local 
stations highlighted in Fig. 9 , for example [13,13] (green dashed line) and [13,6] (red dashed line) and as a mean over all stations (dark blue dashed line). 
Estimates are shown as crosses in the respective corresponding colours. The light blue dashed line shows the density value of layer 2. 
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D. Acoustic parallel velocity and density gradient models 

Figure D1. (a) True density model. Dotted black line indicates location of transect shown in panel (b). (b) True velocity (blue) and density (black) structure 
exhibit the parallel alignment of the gradients. Both velocity and density gradients follow the same sine curve but have different amplitudes. (c) Inverted 
relative density gradients ∇ρ/ ρ in y - and x -direction, respectively. Results are obtained for a wavefield filtered between 7 and 9 Hz and are presented as mean 
value over all cross-sections in x -plane (left-hand panel) and y -plane (right-hand panel) and show the evolution at selected stages during 100 iterations. True 
model is depicted as dashed dark blue line and initial model as dotted black line. The minimum misfit result is highlighted by red circles. (d) Idem Fig. 6 (c) 
with minimum misfit at iteration 71, and minimum parameter error on relative density y - and x -gradients at iteration 16 and 100, respectively. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae097/7624675 by guest on 11 April 2024

art/ggae097_fd1.eps


1488 M. Faber and A. Curtis 

Figure D2. (a) True density model. Dotted black line indicates location of transect shown in panel (b). (b) True velocity (blue) and density (black) structure 
exhibit a variation in the same direction. Both velocity and density gradients are shifted with respect to each other but have similar amplitudes. (c) Idem 

Fig. D1 (c). (d) Idem Fig. 6 (c) with minimum misfit at iteration 100, and minimum parameter error on relative density y - and x -gradients at iteration 11 and 
100, respecti vel y. 
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E. Notes on the free surface methodology in inhomogeneous elastic media 

In the body of this paper, all deri v ations from Ne wton’s second law in eq. ( 1 ) are based on the assumption that Lam é parameters are constant 
over space (eq. 2a in elastic media and eq. 2b in acoustic media). For laterally varying Lam é parameters, these equations become: 

( λ + 2 μ) 

ρ
[ ∇( ∇ · u )] − μ

ρ
[ ∇ × ( ∇ × u )] ︸ ︷︷ ︸ 

homogeneous terms 

+ 

∇λ

ρ
( ∇ · u ) + 

∇μ

ρ
· [ ∇ u + ( ∇ u ) T ] ︸ ︷︷ ︸ 

inhomogeneous terms 

+ 

f 

ρ
= ∂ 2 t u (E1a) 

λ

ρ
[ ∇( ∇ · u )] ︸ ︷︷ ︸ 

homogeneous terms 

+ 

∇λ

ρ
( ∇ · u ) ︸ ︷︷ ︸ 

inhomogeneous terms 

+ 

f 

ρ
= ∂ 2 t u . (E1b) 

Here we investigate the effect that inhomogeneity has on the deri v ation of the equations in the free surface methodology used to estimate 
density and body wave velocities at the free surface presented in Section 2. Writing eq. ( E1a ) with all terms: 

( λ + 2 μ) 

ρ

⎛ 

⎜ ⎜ ⎝ 

∂ 2 u x 
∂x 2 

+ 

∂ 2 u y 
∂x∂y + 

∂ 2 u z 
∂ x∂ z 

∂ 2 u x 
∂y∂x + 

∂ 2 u y 
∂ 2 y 

+ 

∂ 2 u z 
∂y∂z 

∂ 2 u x 
∂ z∂ x + 

∂ 2 u y 
∂z∂y + 

∂ 2 u z 
∂ 2 z 

⎞ 

⎟ ⎟ ⎠ 

− μ

ρ

⎛ 

⎜ ⎜ ⎝ 

∂ 2 u y 
∂y∂x − ∂ 2 u x 

∂ 2 y 
− ∂ 2 u x 

∂ 2 z 
+ 

∂ 2 u z 
∂ x∂ z 

∂ 2 u z 
∂z∂y −

∂ 2 u y 
∂ 2 z 

− ∂ 2 u y 
∂ 2 x 

+ 

∂ 2 u x 
∂x∂y 

∂ 2 u x 
∂ x∂ z − ∂ 2 u z 

∂ 2 x 
− ∂ 2 u z 

∂ 2 y 
+ 

∂ 2 u y 
∂y∂z 

⎞ 

⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
homogeneous terms 

(E2) 

+ 

1 

ρ

⎛ 

⎝ 

∂λ

∂x 
∂λ

∂y 
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∂z 

⎞ 
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∂x 
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∂y 
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∂u z 

∂z 

)
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1 

ρ
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⎠ ·
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⎜ ⎝ 
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∂x 
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⎟ ⎠ 
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∂u x 
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⎞ 

⎟ ⎠ 
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︸ ︷︷ ︸ 

inhomogeneous terms 

= 

⎛ 

⎜ ⎝ 

∂ 2 u x 
∂t 2 

∂ 2 u y 
∂t 2 
∂ 2 u z 
∂t 2 

⎞ 

⎟ ⎠ 

− 1 
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⎝ 

f x 
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f z 

⎞ 
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we can use the free surface conditions 
∂u z 

∂z 
= − v 2 p −2 v 2 s 

v 2 p 

(
∂u x 
∂x + 

∂u y 
∂y 

)
(E3) 

∂u y 

∂z 
= − ∂u z 

∂y (E4) 

∂u x 

∂z 
= − ∂u z 

∂x (E5) 

to derive the corresponding expression at the free surface. The expression of the homogeneous terms are described in (Curtis & Robertsson 
2002 ) and the inhomogeneous terms become: 

(i) Term 3 of eq. ( E2 ) 

1 

ρ

⎛ 

⎝ 

∂λ

∂x 
∂λ

∂y 
∂λ

∂z 

⎞ 

⎠ 

(
∂u x 

∂x 
+ 

∂u y 

∂y 
− v 2 p − 2 v 2 s 

v 2 p 
( ∇ H · u H ) 

)
(E6) 

(ii) Term 4 of eq. ( E2 ) 

1 
ρ

⎛ 

⎝ 

∂μ
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∂μ
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∂z + 

∂u z 
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∂u z 
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⎟ ⎟ ⎠ 

. (E9) 

In our model, the receiver is buried at 1 m and the Lam é parameters do not change over the depth interval used for the calculation of the 
finite difference approximation of the first order depth derivative. We can thus consider the depth derivatives of Lam é parameters ∂ μ/ ∂ z and 
∂ λ/ ∂ z to be zero, and the inhomogeneous terms disappear in the vertical component of the full elastic wave equation at the free surface. 
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