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Bayesian geochemical correlation 
and tomography
Hugo Bloem * & Andrew Curtis 

To accurately reconstruct palaeoenvironmental change through time it is important to determine 
which rock samples were deposited contemporaneously at different sites or transects, as erroneous 
correlation may lead to incorrectly inferred processes and rates. To correlate samples, current practice 
interpolates geological age between datable units along each transect, then temporal signatures 
observed in geochemical logs are matched between transects. Unfortunately spatiotemporally 
variable and unknown rates of sedimentary deposition create highly nonlinear space-time transforms, 
significantly altering apparent geochemical signatures. The resulting correlational hypotheses are also 
untestable against independent transects, because correlations have no spatially-predictive power. 
Here we use geological process information stored within neural networks to correlate spatially offset 
logs nonlinearly and geologically. The same method creates tomographic images of geological age 
and geochemical signature across intervening rock volumes. Posterior tomographic images closely 
resemble the true depositional age throughout the inter-transect volume, even for scenarios with long 
hiatuses in preserved geochemical signals. Bayesian probability distributions describe data-consistent 
variations in the results, showing that centred summary statistics such as mean and variance do not 
adequately describe correlational uncertainties. Tomographic images demonstrate spatially predictive 
power away from geochemical transects, creating novel hypotheses attributable to each geochemical 
correlation which are testable against independent data.

Geochemical signatures recorded in stratigraphic columns of sedimentary rocks form a primary data source 
concerning palaeoenvironmental conditions through  time1. However, the temporal record along any stratigraphic 
transect usually contains gaps due to depositional hiatuses, so datasets from different spatial locations must be 
combined to form more complete time  series2. Observations of similar signatures on contemporaneous, spatially 
disparate stratigraphic transects also allows local and regional environmental conditions to be discriminated. 
Matching samples deposited contemporaneously on different geochemical data logs, a step referred to as cor-
relation, is therefore key to making robust palaeoenvironmental interpretations.

Absolute ages of sediments are only available for samples in lithologies conducive to radiometric or other 
dating methods which are often absent over large sections of a stratigraphic column. Correlation therefore 
requires temporal interpolation of ages to all other samples on each  transect3. Most studies assume piecewise 
linear relations to convert from space to  time4, even though this relationship is known to be highly nonlinear 
due to hiatuses and variations in deposition  rate5,6.

Existing correlation methods and algorithms focus mainly on pattern matching—varying the space-time 
transformation to improve the visual or numerical match between coeval patterns observed in data logs from 
different  transects2,7,8. Experts who apply these methods are able to find correlations between some sets of logs, 
but pattern-matching methods tend to fail if data from the same time interval differ significantly between  logs6. 
Correlations are therefore always in error to some extent. Unfortunately, they do not readily submit to hypothesis 
testing against data observed on independent transects, because correlations between existing transects have no 
predictive power elsewhere. That is, current methods provide little information about the space-time conversion 
in the inter-transect volume, as correlation is performed either directly in log height or in a pseudo-time domain 
constructed along each transect.

Uncertainties quoted in geochemical stratigraphy are often limited to geochemical measurement uncertainties 
while correlation uncertainties remain  unquantified9,10. Bowyer et al.11 address correlation uncertainties by pre-
senting multiple possible correlations.12  and13 each present different correlations for the same logs. However, due 
to the nonlinearity in the true space-time conversion, many correlations may be valid to some level of  certainty8, 
yet none of these studies quantify the relative probability of different possible correlations. A Bayesian method 
that estimates uncertainty was implemented by Eichenseer et al.14, but it contains an implicit assumption that syn-
chronous geochemical signatures in all transects should match, and the method has no spatially predictive power.
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This work introduces a probabilistic method for converting from space to time by adding dynamic geological 
process information to the correlation process. This allows geochemical signals that manifest as different patterns 
between logs to nevertheless be correlated correctly, provided that the logs can be predicted by a known geologi-
cal or geochemical process. The method also images the geochemical signature or stratigraphic age of sediments 
tomographically in the volume of rock around the transects, in particular in the inter-transect rock volume, 
and estimates full Bayesian uncertainty on all results. Results can therefore be treated as hypotheses to be tested 
against data from independent transects in the imaged rock volume by comparison with the tomographic image.

Sedimentary geological process modelling (GPM) involves computational simulation of geological processes 
over geological timescales to produce three-dimensional virtual geologies. We use many such simulations to 
infuse our method with information about dynamic geological processes. GPM initiates from a particular time 
and base topography, and simulates variations in sea level and the 3D distribution of sedimentary deposition, 
erosion, transport and redeposition, in addition to a variety of other model-dependent  processes15–22. The age 
of deposition and the sediments preserved at each 3D location are predicted, and by considering variations in 
the chemistry of the marine water it is possible to simulate the geochemical signature throughout the preserved 
stratigraphy.

A disadvantage of GPM is computational cost, and the difficulty involved in fitting the models to specific 
observations from logs or geological  outcrops23,24. We overcome these difficulties by training a generative adver-
sarial network (GAN) to predict space-time transforms from many GPM results. This allows Bayesian inference 
to be applied to correlate intra-basin logs while implicitly accounting for information about dynamic geological 
processes. Fully nonlinear Bayesian methods have been applied in geophysical tomographic applications in recent 
 years25–27, but only recently have they incorporated dynamic geological  information28–30. However, no published 
work uses geochemical data and GPM for Bayesian correlation, and neither have geochemical data been used for 
inter-transect tomography. In principle, Bayesian inference provides a probability distribution over all possible 
correlation and tomographic models that are consistent with observations and pre-existing geological knowledge. 
The non-uniqueness of geochemical correlations demonstrated in previous work makes this especially important.

The δ13 C isotope ratio relates the sedimentation of organic carbon to the total  carbon31 and is often used as 
a proxy for biological activity over geological  timescales1,32. We demonstrate the method using synthetic δ13 C 
datasets.

Methods
We first discuss dynamic process modelling of geological data and the creation of space-time transforms, then a 
method to embody this information within neural networks, and finally we combine these to create a Bayesian 
method to perform correlation of logs and geochemical tomography.

Geological information
The conversion of geochemical observations from space to time would be simple under conditions of constant 
sedimentation rate and no erosion, as is often assumed between interpreted hiatuses in conventional correla-
tion  methods2. In reality the interaction of dynamic processes typically results in a relationship that is strongly 
nonlinear and spatially variable. Logs are usually recorded along sub-vertical transects and this variability causes 
the height-to-time relationship to vary with location—for example, logs from samples deposited in deeper water 
tend to conserve more of the geochemical record compared to those from shallower  areas6,33. We constrain the 
space-time relationship using geological information derived from GPM software SedSimple, which simulates 
geological processes of sedimentary deposition, erosion, transport and redeposition to produce a synthetic 
stratigraphy in space and  time20. Computational simulations provide complete information about the time of 
deposition of sediment preserved at any location, and the temporal length of every hiatus, so each simulation 
produces a spatio-temporally complete space-time transform.

Figures 1 and 2 show 2D basin-to-land cross-sections through 3D volumes produced by two example GPM 
simulations, referred to as geological model A and B, respectively. Panels (a) show geological facies represented 
by different colours: red and green represent coarse and fine siliciclastics respectively, blue represents carbonates. 
Panels (b) display the time of deposition at each location in the preserved sediment and is therefore exactly the 
space-time transform produced by this simulation. The two simulations differ only in the pattern of sea level 
variations as shown in the inset panels (a).

Vertical geochemical transects are simulated at horizontal locations 70 km and 90 km through model A, 
and 75 km and 100 km through model B, by assuming that sediments record the secular variation in seawater 
chemistry at time of deposition, shown in the figure insets. Transects through geological model A are chosen to 
pass through deeper water and therefore preserve more of the geochemical signature than those through model 
B, so in principle it may be easier to correlate the former than the latter.

Storing geological information in neural networks
Simulating geological processes with GPM is computationally expensive—a single simulation can take days to 
run. This is problematic because for Bayesian correlation many models must be generated and tested against 
observed geochemical signatures. We therefore train a generative adversarial network (GAN) to generate models 
resembling those from GPM; generating such models is then possible in under a second, albeit with slightly less 
detail and  accuracy30,34–38 (see below for details about network structure and training). The GAN is trained to 
represent a mapping from a low-dimensional latent space of random variables to the high-dimensional geological 
model space. The latent variables have arbitrary, user-defined continuous probability distributions but have no 
intuitive meaning. The GAN nevertheless translates any set of values of the latent parameters into a geological 
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model sample; since each such sample includes a space-time transform it can be used to convert logs from height 
to age of deposition.

The abstract nature of the sampling process makes it almost impossible for a human to find geological models 
that fit observed data to within their uncertainties on all transects. Furthermore, while the latent space is relatively 
low-dimensional it still has 30 parameters (dimensions) to explore, creating a parameter space which is densely 
packed with information. As a result, continuous changes in any combination of latent parameters causes the 
model to update continuously, but highly nonlinearly. Algorithms used for Bayesian inference are therefore 
designed to explore the latent space by analysing many models, to find those that produce satisfactory data  fits39.

Training a GAN to produce images of space-time transforms such as that in Fig. 1b is impractical because 
the important (coloured) parts of the image change location within the panel for each GPM run. Therefore, 
transforms are first converted to a form where the vertical axis represents time of deposition and the colourmap 
represents the corresponding height on the vertical transect through the geological model at horizontal offset x. 
All of our GPM simulations have a time span of 5 Ma so all features of interest then span the entire vertical axis. 
Figure 3a shows an example transform which corresponds to that in Fig. 1b.

Generative adversarial network
A Generative Adversarial Network (GAN) is a mathematical construct from the machine learning community 
which uses a neural network called a Generator to create samples of a probability distribution that is trained to 
emulate some target distribution. In our case the target distribution represents the set of geological transforms 
produced by GPM given prior information about active geological processes. Traditional machine learning tech-
niques would use a mathematical formula to evaluate whether generated samples resemble samples of the target 

Figure 1.  Cross-sections through an example GPM simulation from software package SedSimple showing (a) 
a facies map where red and green colours represent coarse and fine siliciclastic respectively, blue represents 
carbonates. Colours grade between these canonical facies to reflect the relative volumes of each in mixed facies. 
(b) The time of deposition (equivalent to geological age) of facies preserved at each location. The vertical lines 
show transect locations in Fig. 4a. Inset panel (a) shows the sea level curve imposed during the simulation, and 
inset (b) shows the secular change of δ13 C in marine water chemistry used to derive geochemical signatures in 
Fig. 4a. The colourmap of both insets represents the time of deposition along the transect in panel (b).
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Figure 2.  Similar to Fig. 1 but for a GPM simulation with different sea level oscillations and secular variations 
in sea water geochemistry. Vertical lines correspond to the transect locations in Fig. 4b.

Figure 3.  (a) An alternative view of the space-time transform in Fig. 1b. Here, the y-axis represents the time 
of deposition and the colourmap shows the corresponding height on any vertical transect through geological 
model A at horizontal offset x. The white region indicates that no sediment was deposited for x > 150 km. (b) 
shows two examples of GAN generated samples of space-time transform models, where the GAN was trained 
on models of similar form to that in (a). Note that the horizontal axis represents horizontal distance between the 
transects.
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distribution. A GAN however uses a separate neural network for this evaluation—the so-called discriminator D 
which is trained simultaneously with the Generator G.

During the training phase of the GAN, D is fed samples from both the target distribution and from G. D is 
trained to discriminate from which distribution each sample originates. G is trained to generate samples that 
are indistinguishable from target distribution samples—in effect it is trained to ‘fool’ the discriminator into pre-
dicting that its samples are directly from the target distribution. Thus, D and G have adversarial objectives and 
training can be difficult as both networks must be effective for either to be so. In this work we use the WGAN-GP 
 network37 that improves upon the original GAN by introducing a more effective loss fuction. The loss functions 
for D and G respectively are:

and

where m, m̃ , and m̂ are respectively models from the GPM, models generated by G, and model samples taken 
randomly from either distribution, and where � is a gradient penalty weighting parameter which is generally 
set to 10.

Our implementation of the WGAN-GP network is based  on40 and on numerous tests to find a structure that 
performs effectively. Specifically, the generator consists of five blocks each with three convolutional layers, each 
preceded by batch normalisation layers. The discriminator consists of 6 blocks each with three convolutional 
layers followed by a pooling layer which reduces the dimensionality. The blocks gradually reduce the number of 
features upon which they act such that the first block influences large areas and the last block controls the finer 
details. The latent space consists of 30 independent Gaussian distributed parameters which map to generated 
height-to-depth conversion models of 128-by-128 parameters.

Estimating correlations and tomographic images
Consider a scenario where multiple geochemical logs are recorded along vertical transects through the same 
sedimentary basin, and assume that the geochemical signatures observed in logs originate from secular varia-
tions in seawater chemistry. If the correct height-to-time transform is applied to any log, each true δ13 C variation 
with respect to time should be revealed, other than during periods of hiatus; conversely, the same log will usually 
exhibit an erroneous secular signal if an incorrect transform is applied. As a result, only the correct transform will 
map all logs onto an identical secular signal within overlapping time periods. The match between transformed 
data on each log can therefore be used as a diagnostic of the quality of any space-time transform.

The misalignment or misfit between any pair of transformed logs can be quantified by an L 2-norm misfit 
measure:

where xi and yi are the i-th time samples predicted from the two logs, and N is the number of sample pairs. 
In order to evaluate Eq. (3) both logs must have the same sampling in time, so each log is first interpolated to 
match the time sampling of the other resulting in two comparable pairs of logs. Squared misfits are calculated for 
both interpolations, and all results are summed in Eq. (3) before the square root is taken. When multiple pairs 
of logs exist, each log should first be interpolated onto the time sampling of each of the others, and the misfits 
between all pairs are summed; the result is then divided by the total number N of sample pairs, after which the 
square root is taken.

While the relative location of the transects to each other is known, the absolute lateral location relative to any 
geological model is not. We therefore first shift the set of transects laterally across each model sample to find the 
lowest misfit value according to Eq. (3) for that model, and fix the horizontal location of the transects relative to 
the stratigraphy at the location of that minimum.

Given the nonlinear nature of space-time relationships and the fact that measured data contain errors, dif-
ferent transforms may yield potentially satisfactory correlations. Bayesian inversion addresses this possibility by 
characterising the distribution of all possible transform models given the log data. This distribution is known as 
the posterior probability distribution function (pdf), which we refer to herein simply as the posterior. This can 
be calculated by evaluating Bayes rule

where m defines a space-time transform such as that in Fig. 3a, d is a vector of observed log data, ρ(d|m) is 
called the data likelihood (a non-normalised pdf that describes the data fit provided by transform m ), ρ(d) is 
the evidence which is constant for fixed data observations d , and ρ(m) is the prior distribution which contains 
information known about the transform independently of the current dataset. In this study, geological informa-
tion within the GAN is used as the prior pdf and represents information within the set of models used to train the 
GAN. This constrains the posterior distribution to models that resemble potential results from GPM simulations.

We simulate transform models m from the posterior distributions using a Metropolis-Hastings Markov-
Chain Monte Carlo (McMC) method. McMC samples the posterior distribution by creating chains of samples, 

(1)LD = Em̃∼PG
[D(m̃)] − Em∼PGPM [D(m)] + �Em̂∼Pm̂

[(||∇x̂D(m̂)||2 − 1)2]

(2)LG = −Em̃∼PG
[D(m̃)]

(3)S :=

√

√

√

√

1

N

N
∑

i=1

(xi − yi)2

(4)ρ(m|d) =
ρ(d|m)ρ(m)

ρ(d)
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where a new sample m′ in the chain is related to the preceding sample m by a proposal distribution q(m′|m) and 
is accepted with probability:

If sample m′ is not accepted then m is repeated as the current sample of the chain. The density of model samples 
in the chain is proven to converge towards the true posterior distribution when the number of samples tends 
to  infinity41,42. In our case the proposal distribution is defined to be Gaussian, and by creating multiple chains 
with different random initial models drawn from the prior distribution we create an ensemble of chains whose 
samples together converge towards the posterior distribution more rapidly.

The McMC algorithm does not sample the space-time transforms similar to Fig. 3a directly, but rather the 
low-dimensional latent space of the GAN. Thus, each sample proposed by the McMC algorithm is mapped to a 
space-time transform model by the GAN, which in turn is used to convert logs to time in order to calculate misfit 
S according to Eq. (3). Finally, Eq. (5) can be evaluated by assuming Gaussian uncertainties with unit variance 
on the log data, resulting in a likelihood proportional to exp(−S2) . In real-data examples the variance would 
be determined by expected geochemical laboratory measurement errors. The sample is accepted or rejected 
according to Eq. (5), allowing the chain to progress.

Results
Assuming the purely secular geochemical signature shown in Fig. 1b, geochemical sampling along the two 
transects in Fig. 1 produces the synthetic logs in Fig. 4a. Each log consists of δ13 C ratios in a preserved sediment 
at each time step of 10k years, providing a median spatial sampling interval of 0.26 m. This sampling density 
accounts for the apparent smoothness of the logs, and also for the individual points visible around 300 m height 
in the right hand log. While this sampling is relatively dense compared to many field  campaigns43,44, some  field45,46 
and  core47 related sampling schemes are similarly dense. Due to differences in sedimentation rate between the 
two locations, the log at 70 km is spatially compressed compared to that at 90 km. Furthermore, while the deeper 
water (left-hand) logs show an almost complete geochemical signature in the sense that they reflect most of the 
secular variation, the shallower logs exhibit hiatuses (reflected in apparent discontinuities) down to about 300 
m in height, caused by erosion of deposited material.

For data collected in the field the age of deposition of each sample is rarely known. An approximate age may 
be estimated for samples which lie within a dateable facies  types48, and geochemists typically interpolate the 
ages of other samples between these facies. Similar temporal patterns are sought within different logs in order to 
correlate between transects, despite errors in interpolated ages. In the case of shallow marine sediments, these 
errors can be expected to be large, and may distort geochemical signatures  unrecognisably6.

The true time of deposition is known for the modeled logs in Fig. 4a and is illustrated by the colour scale; 
correlation between the transects consists of matching colours between the logs. Due to the simplicity of the 
sinusoidal geochemical signature which is clearly visible on both transects, these data would be relatively straight-
forward to correlate even if these were field data without known times of deposition. However, this is not gen-
erally the case for more complex secular geochemical variations or different geological models, for example as 
shown in Fig. 4b. In that case, if the time of deposition was unknown it would be difficult to make an accurate 
unique estimate of the true correlation. Instead, the family of all possible correlations should be interpreted if 
scientific inferences are to be robust.

(5)Paccept =

{

1,
ρ(m′)ρ(d|m′)q(m|m′)

ρ(m)ρ(d|m)q(m′|m)

}

Figure 4.  Simulated logs on vertical transects for: (a) geological model A with logs at lateral locations 70 km 
and 90 km, and (b) geological model B with logs at lateral locations 75 km and 100 km, as shown in Figs. 1 and 
2, respectively. Colours correspond to the age of deposition of preserved sediment and adhere to the colourmap 
of Figs. 1b and 2b.
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Representative examples of space-time transform models produced by the GAN are shown in Fig. 3b. Models 
in the prior distribution are oriented both with the shallow region on the left and the right, assuming that a priori 
we do not know the orientation of the geological structure relative to the transects. Other than this left/right 
ambiguity, model samples show similar features to the example in Fig. 3a albeit at slightly reduced definition, 
indicating that the GAN represents space-time transforms to a reasonable level of detail.

The horizontal axis of GAN generated transform models represents distance between the transects, whereas 
the geochemical logs are measured at absolute locations. GAN generated transform models are translated to the 
absolute location-axis by finding the best-fit horizontal locations of the logs within each GAN model by minimis-
ing S in Eq. (3). The posterior distribution is then generated according to Eqs. (4) and (5), and the family of pos-
terior transforms can be characterised using various statistics such as the posterior mean and standard deviation 
at each point in the space-time transform (Fig. 5). The left and right logs are shown to have mean height ranges 
of 25–150 m and 140–360 m respectively (colours, left panel of Fig. 5) and span the full 5 Ma period, which is 
consistent with the true deposition shown in Fig. 1b. Standard deviations (right panel) are small throughout the 
model with a higher uncertainty between 3 Ma and 5 Ma at the right edge which corresponds to the locations 
of hiatuses in the right-hand log observed in Fig. 4a, and that ambiguity is shown to create a specific locus of 
intense uncertainty in the space-time transform around 80 km at 4.9 Ma.

If the correct space-time transform is chosen then the two logs should map to the same geochemical signature 
in time. Figure 6a shows the histogram of logs through geological model A in Fig. 4a converted to time using 
10,000 posterior samples of space-time transforms, while the red line indicates the true geochemical signature. 
Lighter colours indicate that more samples mapped logs to those locations of the plot, which indicates higher 
posterior probabilities that geochemical samples were deposited at those times. There is a close resemblance 
between high probability regions of both logs and the true geochemical signature, indicating that we find approxi-
mately correct models for these logs. We also note for later that the uncertainty around high probability areas 
is approximately symmetrical in this case. The vertical lines around 4 Ma for the right log indicate missing data 
during hiatuses, as seen in Fig. 4a.

The analyses above only considers height-time transforms at the location of the logs, yet these transforms 
are also defined between the log locations as seen in Fig. 5. This allows us to perform inter-transect geochemical 
tomography: by switching the time of deposition and height axes in each model sample, then recalculating the 
mean and standard deviation, in Fig. 7b we show a cross-section that corresponds to that through the true model 
in Fig. 1b and repeated in Fig. 7a. The mean model includes additional deposition close to 0 Ma and 5 Ma indi-
cated by the slightly thicker red and dark blue areas at the top and bottom, presumably because the data do not 
adequately constrain rates or durations of deposition close to the temporal boundaries of the data. These regions 
show low uncertainties due to the fact that the height-to-time conversion models were all drawn from a prior 
distribution that fixed the geological simulations to be between 0 and 5 Ma, which is appropriate if, for example, 
dateable facies occur at top and bottom of the succession. Intuitively, if any sediment exists in the uppermost 
parts of the model then it must have been deposited close to 0 Ma, with low uncertainty on that interpretation, 
and similarly for lowermost areas. The step changes in true age caused by erosion in the true model around 300 
m height are less pronounced in the mean model, but in the map of standard deviation these boundaries cause 
the appearance of so-called uncertainty loops (regions of high uncertainties spanning portions of the model that 
exhibit rapid lateral changes, surrounding regions which are relatively well  constrained49). These loops appear 
because perturbations in the location of a discontinuity in model parameter values have little effect on the data, 
and indicate that the exact location of such discontinuities remains uncertain. The geometrical configuration of 

Figure 5.  Mean and standard deviation of the posterior space-time transforms for geological model A 
calculated over all posterior samples.
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uncertainty loops is itself an interpretable indicator of a potential discontinuity, as has been observed in other 
types of studies (seismic  tomography49, electrical resistance  tomography50, ambient-noise  tomography51, and 
grain orientations in anisotropic  media52). This is the first time that this phenomenon has been observable using 
geochemical data.

Compared to model A, correlation between the logs through geological model B in Fig. 4b is significantly 
more difficult because hiatuses in the shallow log at location 100 km cause large temporal discontinuities. We 
apply the Bayesian correlation and tomography scheme to convert the logs to the time domain, and the histo-
gram of results from 10,000 posterior transform samples is illustrated in Fig. 6b. Brighter areas represent places 
to which log samples are more often mapped in time, and the red dashed line is the true geochemical signature. 
While there is a greater spread in the deeper (left-hand) log compared to that in the simpler case in Fig. 6a, 
we see that higher probability areas in both logs tend to coincide with the true geochemical signature. Due to 
the large data loss to hiatuses, the shallow log exhibits fewer high probability areas, but most of them span the 

Figure 6.  Logs through (a) geological model A logs (Fig. 4a) and (b) geological model B logs (Fig. 4b) 
converted from height to time using 10,000 posterior transform samples, represented as a histogram of number 
of samples predicting each δ13 C value at each time. Lighter colours indicate a greater number of posterior 
samples are mapped to the same location in the panel. Red dashed line is the true geochemical signature; orange 
dashed line indicates the posterior mean geochemical signature. Solid and dashed white lines in (b) represent 
two high-probability posterior geochemical trends analysed further in the main text.

Figure 7.  (a) True time of deposition in geological model A, and (b) posterior mean and standard deviation of 
the time of deposition for locations between the transects in Fig. 1.
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true geochemical signature. However, while in Fig. 6a the probability of δ13 C was centrally peaked around the 
mean which also coincided approximately with the true secular variation, in Fig. 6b there appear to be at least 
two high probability secular change curves shown in white (solid and dashed). This indicates multimodality in 
the posterior solution (that is, there are separate regions of the space of possible transforms which have a high 
posterior probability), and as expected the mean (orange curve) then lies between the high probability solutions 
and has a low probability of being true.

Figure 8 shows the true time of deposition (panel (a)) and the posterior mean and standard deviation of the 
tomographic results (panel (b)). Similarly to the less complicated scenario, the mean model resembles the true 
model but in this case discontinuities in time are not as well defined. We also observe that the light blue time 
period is displaced from its true location, but note that the results alert us to this possibility through high uncer-
tainties for that space-time interval. The standard deviation map shows uncertainty loops around the locations 
of hiatuses; this shows that the posterior distribution contains information about hiatuses and provides explicitly 
quantified uncertainty about their exact spatial locations and durations. And similarly to the results for Model 
A, the posterior mean extends the depositional areas around 0 Ma and 5 Ma (bottom right and top left, respec-
tively), again because the data only poorly constrain deposition duration and rates close to the start and end of 
the time period considered. Since the mean and standard deviation maps can only be calculated across models 
in which sediment was deposited at each location, panel (c) shows additionally the posterior mean and standard 
deviation of whether sediment is present at each location (value 1 indicates presence, 0 indicates absence). This 
data shows the constraints that the transect data place on exactly where sediment was deposited within the 5 Ma 
period, and exhibits uncertainty loops around the edges as expected. The combined posterior results in panels 

Figure 8.  (a) True time of deposition in geological model B, and (b) posterior mean and standard deviation of 
the time of deposition for locations between the transects in Fig. 2. (c) Posterior mean and standard deviation of 
whether sediment is present at that location (value 1 indicates presend, 0 indicates absence).
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(a) to (c) thus provide quantitative constraints on both time of deposition and delineation of the sedimentary 
domain corresponding to the age range of interest.

One intriguing aspect of the tomographic models is that they can be combined with the inferred secular 
change curves to predict geochemical signatures of sediments across the tomographic image. Figure 9 shows the 
resulting true and inferred inter-transect geochemical images corresponding to geological model A. The inferred 
geochemical values are estimated using the mean inter-transect time of deposition in Fig. 7b, by estimating the 
mean geochemical variation from Fig. 6a. Overall, there is good resemblance between the true and inferred 
geochemical values, but also less pronounced discontinuities, and extensions outside of the true region of deposi-
tion due to the poor constraint on depositional durations at the top and bottom of the formation. These features 
are inherited because this result is a combination of the results in Figs. 7b and 6a which show similar features.

For geological model B, the true and inferred inter-transect geochemical images constructed from the mean 
model of Fig. 8 and the mean of Fig. 6a are shown in Fig. 10b, and exhibit far less resemblance than for case A. 
The geochemical signature in Fig. 6b is not recovered well, reflecting the fact that the mean of Fig. 6b is in fact a 
poor indicator of the true change in δ13 C . The lower panels in Fig. 10 show images constructed using each of the 
two interpreted high probability δ13 C signals (white lines) in Fig. 6b. In panels (c) and (d) the band of high δ13 C 
is better resolved compared to when using the mean geochemical signal in panel (b). However, both (c) and (d) 
show a second high δ13 C area near the bottom of the image that is not present in the true image. This is explained 
by Fig. 6b in which neither of the interpreted curves fit the true secular variation close to 0 Ma - and indeed that 
the true variation is impossible to constrain accurately around this time interval because information is missing 
around the red curve due to depositional hiatuses. This proves first, that accounting for uncertainty in the cor-
relation of the logs is critical to represent the final state of knowledge about the geochemistry of the formation. 
Second, that individual modes of the posterior probability distribution function describing uncertainty in the 
correlation must be accounted for separately, rather than using statistics such as the mean and standard devia-
tion which combine the information from multiple modes under the assumption that the underlying posterior 
probability distribution is centrally focused—which is incorrect in this case.

Discussion
This work advances geochemical correlation methods by deploying Bayesian methods to evaluate uncertainties 
in the results. It also introduces constraints from geological prior information, and estimates a family of pos-
sible secular δ13 C variations, producing tomographic images of both the time of deposition and the geochemical 
signatures of sediments in the space between geochemical sampling transects.

There are distinct complications and implicit ambiguities in the interpretation of geochemical records from 
shallow marine  environments6. Figures 6b and 10 illustrate clearly that irreducible and complex uncertainty 
remains in the correlation between logs, even with the addition of geological prior information. The importance 
of analysing the full Bayesian uncertainty in a sensible way, rather than simply using mean models has been 
recognised in studies that use manual qualitative correlation methods (e.g.,11 suggested four possible correlations 
of Ediacaran to Cambrian global geochemical records). Our quantitative method exhibits these uncertainties 
explicitly, mitigating against the effects of scientific overconfidence and other interpretative human  biases53–56 
that often lead to herding  behaviour57. This is critical for subsequent research that relies on the results of cor-
relation studies: for example, high-precision U-Pb zircon age constraints on the end Permian of West Texas, 

Figure 9.  Tomographic images of geochemical signatures of sediments between the transects through 
geological model A. (a) shows true δ13 C values, and (b) the inferred mean image and standard deviation. Image 
(b) is constructed from the mean and standard deviation time of deposition models in Fig. 7b and an estimated 
mean and standard deviation geochemical signature derived from Fig. 6a.
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have required dramatic modifications in the interpreted durations of discernible sedimentary packages, and 
therefore in the inferred rates of sea-level change and biological events such as rates of mass extinction, as can 
be seen by  comparing58  with59.

Whether manual or automated, a weakness of previous correlation methods is that provided the sampling 
on each transect is already sufficient, correlation results cannot be formally tested against further independent 
data sets of similar type. If a new transect is sampled then its log merely needs to be correlated with the existing, 
already correlated logs. While in some cases this might lead to alternative hypotheses for the original correla-
tions (e.g.,60), the original correlations can rarely be refuted, and their relative likelihood of being true cannot 
be evaluated. This is because uncertainties in the new correlation are of similar type and magnitude to those 
already incurred. By contrast, our method is quantitatively testable: each posterior distribution of correlations 
implies an inferred distribution of tomographic age models for the inter-transect space. These can in turn be 
converted to a posterior distribution of maps of inter-transect geochemical signatures: the mean inter-transect 
geochemical signatures are shown in Fig. 9, and both the mean and modal solutions are shown in Fig. 10, for 
geological models A and B, respectively, all of which form testable hypotheses of the corresponding space-time 
correlations. A further transect could subsequently be sampled in the inter-transect space, the data from which 
would allow a quantitative significance test of the robustness of each hypothesis, directly corresponding to a test 
of the original inferred distribution of inter-transect correlations.

Current methods use pattern matching to correlate geochemical logs, and so can be foiled due to hiatuses 
caused by erosion and by changes in sedimentation rates which distort observed geochemical  signatures8. Pro-
vided that appropriate geological process models are used for the geology being sampled, our method should 

Figure 10.  Tomographic images of geochemical signatures of sediments between the transects through 
geological model B. (a) shows the true distribution of δ13 C values, and (b–d) the inferred images. The inferred 
images are constructed from the mean and standard deviation time of deposition model in Fig. 8b and estimated 
secular variations derived from the mean, the solid white and the dashed white geochemical signatures in 
Fig. 6b for (b–d), respectively.
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be more robust in such situations because prior information about the dynamic geological processes is used to 
constrain the family of possible nonlinear distortions. Correlation is performed in the time domain using the 
corresponding family of possible space-time transforms to undo these distortions, and the correct transform 
projects all observed logs to the same time-axis. In cases where geochemical data are mainly controlled by secular 
change, the similarity of disparate logs in that domain is a measure of the quality of any particular space-time 
transform and its implied inter-transect correlation.

Our tests of this method involve geochemical sampling densities far higher than are often performed in the 
field. Typical sampling densities are approximately one sample per meter, whereas in comparison the samples 
used herein are effectively continuous over much of the time period. These tests therefore illustrate results for an 
effectively optimal sampling scenario, yet they demonstrate that significant uncertainties remain in inter-transect 
correlations. This corroborates the findings  of6 who explained why even infinitely dense data from shallow marine 
environments cause humans to correlate logs erroneously due to hiatuses and other effects. We show that Bayesian 
inversion is nevertheless able to quantify the resulting uncertainty in correlations, and to provide tomographic 
estimates of the region between transects.

A limitation of our method is that the GAN distribution is limited to samples that resemble the GPM models. 
In our tests the GPM models represent a widely varying but nevertheless geologically limited set of models, and 
therefore the prior distribution only represents this limited variation in geological models. The GAN distribution 
is a manifold (hyper-surface) within a higher dimensional space, thus any true model outwith this manifold may 
not be represented precisely by the GAN, and in turn may only be approached by the inversion but never found 
exactly. This problem occurs for any method of parametrization and in any inversion scheme, and therefore equal 
care has to be taken to train a GAN that represents a wide variety of geological models.

Different generative networks exist that can achieve similar or perhaps even improved generational quality 
such as diffusive  models61, or which provide uncertainties on their generated samples such as Bayesian Flow 
 Networks62. However, with increased complexity and diversity within the training set, more training data is 
required to ensure that the prior model space is accurately sampled. Thus, there is a trade-off between the com-
plexity and diversity of the generated samples, and the amount of training data and cost of training. We opted 
for a more established GAN where training is well understood at the expense of potentially reduced variability 
in the generated samples. Future work may explore different network types and increased generational flexibility.

The posterior distributions characterised herein are all statistical inferences, except for the lateral locations 
of logs relative to the model samples which is approached as an optimisation problem. This is not obligatory and 
could itself be implemented as a sampling process. Optimisation was chosen purely for computational efficiency. 
While GANs are faster than running the GPM, their computational speed depends on the hardware on which 
they are running. Graphics Processing Units (GPU) run convolutional Neural Networks, like the GAN, an order 
of magnitude faster than Central Processing Units (CPU)63. McMC inference results herein use CPUs, so we 
invoked this optimisation method to improve performance.

Various extensions of this work are possible. Geochemical proxy values are also influenced by factors such as 
the signal preservation properties of different  facies1, the seawater depth at time of  deposition64 and post-depo-
sitional diagenetic  effects65. These factors have not been included explicitly in this work, but can be introduced 
similarly, simply by including them in the GPM. For example, by recording water depth at time of deposition 
from the GPM results, geochemical water depth dependencies could be modelled and accounted for in the 
transforms used to project data to the common time domain. The consistency of projected data could then be 
used to discriminate between different models of depth control, using panels analogous to those in Fig. 6. Further 
emphasis could then be placed on testing this method in conjunction with true models that are inconsistent with 
the geological prior information introduced. Theoretically, provided the prior information does not categorically 
exclude the true structure, Bayesian methods should be able to convert the prior distribution into a posterior 
distribution that includes that true result. In practice however, Eq. (4) shows that the choice of prior distribution 
has significant influence on the resulting posterior distribution, and in turn impacts the ability of algorithms such 
as Monte Carlo methods to find models that lie close to the truth. In the extreme case where the true structure has 
zero prior probability the inversion can only approach the true model but never find it. To mitigate against this, 
the prior distribution should span a broadly conceived range of scenarios consistent with a variety of geological 
concepts, such that the zero probability region will reduce to non-geological models only. As shown  by30 using 
seismological rather than geochemical data, it may then even be possible to use geochemical data to discriminate 
between conceptual geological models, excluding those that are inconsistent with the true structure.

Lastly, since the GPM models in this study were all 3-dimensional from which we selected 2-dimensional 
cross-sections for illustration, it is straightforward to apply the method to find 3-dimensional inter-transect 
images. Indeed, while we have only illustrated tomographic models between the transect pairs, the images can 
be extended outside of this volume, with lower accuracy. It is even possible to image the volume (without per-
forming correlation) using data from a single transect, in effect implementing the example  in66 tomographically.

Conclusion
Current geochemical correlation methods are designed to match patterns in data observed on different transects 
to find samples that appear to correspond to the same geological time of deposition. However, the relationship 
between the log height and time of deposition is highly nonlinear due to differences in local sedimentation rates 
and hiatuses in the data due to erosion or non-deposition of sediments. A novel, semi-automated method to 
correlate geochemical logs using Bayesian inference with geological prior information yields correlations with 
statistical uncertainties, and constructs tomographic images of the time of deposition or geochemical signatures 
in the space between the transects. The method finds correlations and tomographic images even in complex 
scenarios where pattern matching methods break down, and allows correlation and secular change hypotheses 
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to be tested against subsequent independent data sets of the same type, promising significant advances in quan-
titative statistical inference from geochemical logs.

Data availability
Data for this work has been generated using SedSimple which is available for free from Westchase Software 
Corporation. Configuration files for the SedSimple runs are available upon request.
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