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S U M M A R Y 

In geophysical surv e ys or e xperiments, recorded data are used to constrain properties of 
the planetary subsurface, oceans, atmosphere or cryosphere. How the experimental data are 
collected significantly influences which parameters can be resolved and how much confidence 
can be placed in the results. Bayesian experimental design methods characterize, quantify and 

maximize expected information post-experiment—an optimization problem. Typical design 

parameters that can be optimized are source and/or sensor types and locations, and the choice 
of modelling or data processing methods to be applied to the data. These may all be optimized 

subject to various physical and cost constraints. This paper introduces variational design 

methods, and discusses their benefits and limitations in the context of geophysical applications. 
Variational methods have recently come to prominence due to their importance in machine- 
learning applications. They can be used to design experiments that best resolve either all 
model parameters, or the answer to specific questions about the system to be interrogated. 
The methods are tested in three schematic geophysical applications: (i) estimating a source 
location gi ven arri v al times of radiating energy at sensor locations, (ii) estimating the contrast 
in seismic velocity across a stratal interface given measurements of the amplitudes of seismic 
wavefield reflections from that interface, and (iii) designing a surv e y to best constrain CO 2 

saturation in a subsurface storage scenario. Variational methods allow the value of expected 

information from an experiment to be calculated and optimized simultaneously, which results 
in substantial savings in computational cost. In the context of designing a surv e y to best 
constrain CO 2 saturation in a subsurface storage scenario, we show that optimal designs may 

change substantially depending on the particular questions of interest. We also show that one 
method, so-called D N 

design, can be ef fecti ve at substantiall y lower computational cost than 

other methods. Overall, this work demonstrates that optimal design methods could be used 

more widely in Geophysics, as they are in other scientifically advanced fields. 

Key words: Inverse theory; Machine learning; Probability distributions. 
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 I N T RO D U C T I O N  

very geophysical investigation that collects data is an experiment,
sually intended to estimate parameters that describe the proper-
ies of natural systems. How the experimental data are collected
ignificantly influences which parameters can be resolved and how
uch confidence can be placed in the results. It is well known that

he expected results can be improved by explicitly optimizing the
xperimental design. 

The field of optimal experimental design (OED) has a long his-
ory in monitoring industrial processes (Taguchi methods, Kiefer
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
959 ; Atkinson & Fedorov 1975 ) and had its first geophysical ap-
lication in 1977, optimizing seismometer placement to locate seis-
ic sources (Kijko 1977a , b ). The field has developed significantly

ince then: in Geophysics, OED has been used to design more so-
histicated source location experiments (Rabinowitz & Steinberg
990 , 2000 ; Steinberg et al. 1995; Curtis et al. 2004 ; Rawlinson
t al. 2012 ; Bloem et al . 2020; Toledo et al . 2020), seismic to-
og raphy sur v e ys (Cur tis & Snieder 1997 ; Cur tis 1999a , b ; Liner

t al. 1999 ; Gibson & Tzimeas 2002 ; Curtis et al. 2004 ; Brenders
 Pratt 2007 ; Haber et al. 2008 ; Ajo-Franklin 2009 ; Coles & Mor-

an 2009 ; Maurer et al. 2009 , 2017 ; Khodja et al. 2010 ; Coles &
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1309 

http://orcid.org/0009-0008-2065-7428
mailto:dominik.strutz@ed.ac.uk
https://creativecommons.org/licenses/by/4.0/


1310 D. Strutz and A. Curtis 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/236/3/1309/7492801 by U
niversity of Edinburgh user on 30 January 2024
Curtis 2011a ; Djikpesse et al. 2012 ; Coles et al. 2013 ; Bernauer 
et al. 2014 ; Nuber et al. 2017 ; Krampe et al. 2021 ), reflected wave 
amplitude inversions (van Den Berg et al. 2003 , 2005 ; Guest & 

Curtis 2009 , 2010 , 2011 ), electromagnetic and electrical resistivity 
tomography (Maurer & Boerner 1998 ; Maurer et al. 2000 , 2010 ; 
Stummer et al. 2002 , 2004 ; Furman et al. 2004 ; Wilkinson et al. 
2006 , 2012 ; Oldenborger & Routh 2009 ; Qiang et al. 2022 ; Coles 
& Morgan 2009 ), electrical impedance tomography (Hyv önen et al. 
2014 ), expert elicitation (Curtis & Wood 2004 ; Runge et al. 2013 ), 
contaminant transport (Alexanderian et al. 2014 ; Zhang et al. 2015 ; 
Alexanderian & Saibaba 2018 ), CO 2 monitoring (Romdhane & 

Eliasson 2018 ), local array design (Muir & Zhan 2021 ), and others. 
There are three pre-requisites for any experimental design prob- 

lem: first, a function (physical or empirical) that relates the vector 
of model parameters m to the vector of synthetic observations d , 
called the forward function . This relationship 

d = F ( m ) (1) 

can be linear, but in most geophysical problems, F is nonlinear. 
Second, we require a description of what is already known about 
the values of all parameters in vector m , which are necessary to 
e v aluate the forw ard function; this prior knowledge is usually de- 
scribed by a probability distribution function (pdf—a probability 
density if variables are continuous rather than discrete), called the 
prior pdf. Third, a pdf describing the probability of observing a 
datum d if any particular set of values for a model parameter vector 
m were true. The latter is commonly referred to as the likelihood, 
and is often approximated by a Gaussian with mean F ( m ) and vari- 
ance corresponding to the measurement uncertainty; this ef fecti vel y 
changes eq. ( 1 ) to d = F ( m ) + ε, where errors ε are drawn from the 
Gaussian distribution. Using Bayesian inference, these three states 
of knowledge can be combined with information about m derived 
from any future measured data set, the resultant state of information 
being described by the so-called posterior pdf. 

Both the content of data vector d and the form of F are signif- 
icantly influenced by how an experiment is set up, in other words, 
by the experimental design. The appropriate approach to design an 
experiment depends on the nature of the forward function F ( m ) . 
Fig. 1 (a) shows an example of a linear model-data relationship. 
The observed data (green and blue) and their uncertainties (here, 
a Gaussian distribution) on the vertical axis are mapped into the 
model parameter domain by backprojecting the data uncertainty 
through F onto the parameter axis m . The backprojected values are 
then scaled by the prior pdf in model space, which is here assumed 
to be constant. Clearly, a more certain observation (green) yields 
a more certain model parameter estimate (a narrower pdf on the 
horizontal axis) than a less certain observation (blue). Ho wever , the 
data uncertainty ranges are also scaled by the reciprocal slope of 
the forward function: high gradients lead to more certain model 
parameter estimates and, therefore, lower uncertainties. Since the 
slope is constant, this is true for any recorded datum with similar 
uncertainties. Accordingly, OED for linear forward functions varies 
the design so as to maximize the gradient (or higher dimensional 
equi v alents) since a higher slope results in more accurate model 
parameter estimates given the same data uncertainties. 

The ef fecti veness of this design criterion deteriorates as F de vi- 
ates from linerarity. Most properties still hold in a related sense for 
slightly nonlinear functions, as shown in Fig. 1 (b). Each measured 
datum still maps to a single point in model parameter space, and 
provided data uncertainties are small, the slope of the function at 
the backprojection point is usually the most influential factor affect- 
ing how measurement uncertainties relate to model uncertainties. 
Ho wever , unlike for linear functions, the slope now depends on 
the model parameter values, so parameter uncertainties do too: for 
example, in Fig. 1 (b) note that compared to the blue data and param- 
eter estimates, the more accurate green data measurement produces 
slightly larger parameter uncertainties due to the lower gradient of 
F encountered during backprojection. In this case, the range of pa- 
rameter values that we expect might occur (our prior information 
about the parameters) thus influences which design is optimal. An 
av erage slope ov er the range of possible model parameter values 
can thus be used as a design quality metric for slightly nonlinear 
forward functions. Since the range of parameter values that might 
be encountered is described by the Bayesian prior probability dis- 
tribution, optimizing this quality metric is typically referred to as 
Bayesian OED in the statistical literature. Ho wever , this terminol- 
ogy is misleading, because this approach only optimizes an average 
of a design quality measure that only accounts for physics that 
is linearized around each parameter value. It would therefore be 
more appropriate to refer to these as pseudo-Bayesian or linearized 
design methods (Pronzato & Walter 1985 ; Chaloner & Verdinelli 
1995 ; Fedorov & Hackl 1997 ; Winterfors & Curtis 2012 ; Ryan et al. 
2016 ). 

The simple averaging method described above breaks down for 
generall y nonlinear functions, especiall y for those that are multi- 
modal (have multiple distinct peaks and troughs). An example of 
such a function and how it affects the mapping from data to model 
parameter space is given in Fig. 1 (c). This shows that a single datum 

may be consistent with different distinct regions of model parameter 
space far removed from each other (green). Even a datum whose 
mean measurement value is consistent with only a single model can 
also map to a range of distinctly different model parameter values 
due to its measurement uncertainty around the mean (blue). If we 
are to define a quality measure that describes the aspects of any ex- 
perimental design for a fully nonlinear forward function, clearly, it 
must depend on all models that might explain the data. Since the set 
of parameter values consistent with the data are then non-unique, 
possibly disjoint, and may have a varying probability of being true 
given the data, we describe the set of values by the Bayesian posterior 
pdf. The most commonly used design quality metric in substantially 
nonlinear problems is the expected information gain ( EIG , Lindley 
1956 ), which will be introduced in Section 3 . 

This work aims to introduce a set of Bayesian OED methods that 
are novel to Geophysics. Each method calculates the EIG in the con- 
text of geophysical applications with generally linear or nonlinear 
forward functions. We illustrate their relative merits and computa- 
tional costs in the context of three representative Geophysical exper- 
iments: (i) locating seismic sources based on P - and S -wave arrival 
times, (ii) assessing the contrast in seismic velocity across a stratal 
interface given measurements of the amplitudes of waves reflected 
from that interface and (iii) designing a surv e y to best constrain CO 2 

saturation in a subsurface storage scenario. While these examples 
concern seismic wav es, the y are representative of design problems 
for the location of other source types (Kim & Lees 2014 ; Lugrin 
et al. 2014 ) and for reflections of other wave types (Tarantola 1984 ; 
Hunziker et al. 2016 ), since elastic wav es e xhibit intermediate phys- 
ical complexity between acoustic and electromagnetic waves. We 
also demonstrate that optimal designs may change substantially de- 
pending on which question about the subsurface we wish to answer 
(Arnold & Curtis 2018 ). These results and illustrations show that 
optimal design methods might usefully be adopted more widely 
in Geophysics as they are in other scientifically advanced disci- 
plines, and they allow practitioners to make more informed choices 
between the various methods for their particular applications. 
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(a) (b) (c)

Figure 1. The green and blue Gaussian distributions on the d -axis represent two measurements with different uncertainties. Distributions on the m -axis represent 
the resulting backprojections of the two measurements through (a) linear, (b) slightly nonlinear and (c) more strongly nonlinear model-data relationships (black 
lines). 
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 B AY E S I A N  E X P E R I M E N TA L  D E S I G N  

he Bayesian posterior distribution is denoted p( m | d ) and de-
cribes the state of knowledge post-experiment. It can be expressed
sing Bayes rule as 

p ( m | d ) = 

p ( m ) p ( d | m ) ∫ 
M 

p ( m 

′ ) p ( d | m 

′ ) d m 

′ = 

p ( m ) p ( d | m ) 

p ( d ) 
, (2) 

here p( m ) is the prior pdf, p( d | m ) is called the likelihood function
nd p( d ) is called the evidence. The prior and posterior pdf’s are
efined over the model parameter space M , while the likelihood and
vidence are defined over data space D . The dimensionality of these
paces is a primary factor in the computational complexity of both
nference and design problems. 

An intuitive example of the model parameter space is the 3-D
pace for seismic source (earthquake) location, with an optional
ourth dimension for the origin time. A corresponding data space
ight be the n -dimensional space of arri v al times of first-arriving
aves detected at each of n receiv ers. Alternativ ely, we might pick
oth P - and S -wave arrival times, in which case the data space
ight consist of these data at n /2 receivers. This example thus

llustrates that the choice of data processing algorithms may change
he data space substantially, and so may be a primary element of
ny experimental design. 

Eq. ( 2 ) can be used to characterize the solution to many geo-
hysical parameter estimation problems. Since the interest of this
aper lies in experimental design, it is necessary to include a vari-
ble describing the design ξ ∈ � , where � denotes the space of all
otential experimental setups. Provided that the experimental de-
ign does not impose a change in the parametrization of the model,
he prior distribution p( m ) is usually not affected by a change in
esign. The design influences the solution to any inference problem
hrough the likelihood p( d | m , ξ ) , which in turn affects the evi-
ence. The posterior of the model parameters given an observation
nd experimental design is therefore 

p ( m | d , ξ ) = 

p ( m ) p ( d | m , ξ ) ∫ 
M 

p ( m 

′ ) p ( d | m 

′ , ξ ) d m 

′ = 

p ( m ) p ( d | m , ξ ) 

p ( d | ξ ) 
. (3) 

he evidence p( d | ξ ) acts as a normalizing factor for the result-
ng posterior pdf and is sometimes not calculated explicitly when
olving inference problems—for example, commonly used Markov
hain Monte Carlo Methods (McMC) are designed to avoid its cal-
ulation (Mosegaard & Tarantola 1995 ). Ho wever , many nonlinear
ED algorithms depend on p( d | ξ ) . For nonlinear problems, cal-

ulating either p( m | d , ξ ) or p( d | ξ ) generally requires many eval-
ations of p( d | m , ξ ) to estimate the inte gral e xpression in eq. ( 3 ),
nd each e v aluation of p( d | m , ξ ) requires a computation of the
orward function. Therefore, the tractability of design problems de-
ends on the complexity of F and the number of e v aluations required
o estimate this integral, unless a way to avoid its e v aluation or a
uf ficientl y accurate approximation is found. For a general, yet de-
ailed mathematical treatment of Bayesian inference and additional
xamples, we refer readers to Tarantola ( 2005 ). 

Generally, we aim to optimize experiments such that they max-
mize information in the posterior distribution, within bounds im-
osed by practical constraints on the cost of performing the exper-
ment. We therefore, need a metric that quantifies the information
mbodied within any probability distribution. Shannon ( 1948 ) infor-
ation is an intuitive measure of information with several beneficial

roperties (e.g. linear additivity of information from independent
ources). The Shannon information I [ · ] described by an arbitrary
ontinuous probability density function p ( x ) is defined as 

I [ p( x) ] = E p( x) 

[
log b ( p( x) ) 

] = 

∫ 
X 

p ( x) log b ( p ( x))dx, (4) 

here x ∈ X is a random variable distributed according to p ( x )
nd E p( x) is the expectation with respect to p ( x ), which is de-
ned by the rightmost expression. Depending on the context, in-
ormation is also often expressed as the ne gativ e of the entropy H ,
 [ p( x) ] = − H [ p( x)] , where entropy H is defined to be the ne gativ e
f either expression on the right of eq. ( 4 ). This absolute informa-
ion measure can be extended to the relative information content of
ne pdf relative to another, also called the Kullback–Leibler (KL)
i vergence (K ullback & Leibler 1951 ) 

L ( P || Q ) = 

∫ 
X 

p ( x) log 

(
p ( x) 

q( x) 

)
dx . (5) 

or fur ther infor mation on the proper ties of infor mation, the reader
s referred to Cover & Thomas ( 2006 ). 

Following Lindley ( 1956 ), we now define the information gain
 IG ) about m obtained by recording data d using experimental de-
ign ξ to be the difference between the posterior state of information
nd the information about m in the prior pdf: 

IG ( ξ, d ) = I [ p( m | d , ξ )] − I [ p( m ) ] (6) 

= KL [ p ( m | d , ξ ) || p ( m ) ] (7) 

= E p( m | d ,ξ ) [ log ( p( m | d , ξ ))] − E p( m ) [ log ( p( m ))] , (8) 

here eq. ( 8 ) is obtained by substituting eq. ( 4 ) into eq. (6 ). The
G depends on d , which is not available during the design stage of

art/ggad492_f1.eps
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an e xperiment. Howev er, the evidence p( d | ξ ) provides the prob- 
ability of observing any particular value for d , given our prior 
state of information about the parameters, and the forward function 
and measurement uncertainties which are both included within the 
likelihood (eq. 3 ). The so-called EIG is therefore defined as the 
expectation of IG over d ∼ p( d | ξ ) , giving 

EIG ( ξ ) = E p( d | ξ ) [ I [ p( m | d , ξ )] − I [ p( m )] ] . (9) 

This criterion depends only on ξ and is used in this work to assess 
the quality of any experimental design ξ prior to the collection of 
data. The EIG is equi v alent to E p( d | ξ ) KL 

( p ( m | d , ξ ) || p ( m ) ) , and 
using this definition we can show that the EIG is identical, even if 
the slightl y dif ferent definition of the IG b y R én yi ( 1961 ) is used. It
also makes clear that the EIG is strictl y positi v e, e xcept if the models 
and data are completely independent so the experiment provides no 
information in which case the EIG is zero. 

While eq. ( 9 ) is perhaps the most intuitive way to express the 
EIG , its value is often calculated using other expressions. Rewriting 
eq. ( 9 ) using eq. ( 2 ), we obtain: 

EIG ( ξ ) = E p( d , m | ξ ) 

[ 
log p( m | d ,ξ ) 

p( m ) 

] 
(10) 

= E p( d , m | ξ ) 

[ 
log p( d , m | ξ ) 

p ( m ) p ( d | ξ ) 

] 
(11) 

= E p( d , m | ξ ) 

[ 
log p( d | m ,ξ ) 

p( d | ξ ) 

] 
. (12) 

In these expressions, the information is written out explicitly, and 
all three lines are equi v alent and can be derived by repeated use of 
Bayes theorem. Both eqs ( 9 ) and ( 10 ) are written only in terms of 
pdfs in the model parameter space, meaning they assign probability 
densities to each vector of model parameter values (e.g. earthquake 
locations in the example introduced above). This means that e v alu- 
ating the EIG in this form requires that we solve an inverse problem 

to obtain the posterior distribution p( m | d , ξ ) for each data vector 
d (or for each of a representative subset of data samples) that is 
likely to be observed according to p( d | ξ ) . This can be impracti- 
cal in se veral w ays: first, sampling-based methods such as McMC 

can not be used, since they do not provide explicit probability val- 
ues p( m i | d , ξ ) for given models m i , and second, solving a large 
number of inverse problems independently is computationally very 
inefficient since an e xpectation ov er a possibly high-dimensional 
model space needs to be e v aluated for each d drawn from p( d | ξ ) . 

Using eq. ( 12 ), on the other hand, the EIG is expressed only in 
terms of distributions in data space, p( d | m , ξ ) and p( d | ξ ) , 

EIG ( ξ ) � E p( m ) [ I [ p( d | m , ξ )] − I [ p( d | ξ )] ] (13) 

making it possible to design experiments without explicitly solv- 
ing inverse problems; this therefore, involves sampling the whole 
model space only once. In this formulation, the main difficulty 
lies in estimating I [ p( d | ξ ) ] . Especially for high-dimensional data 
spaces (e.g. arri v al times recorded b y man y recei vers) this is chal- 
lenging. For problems with low-dimensional model parameter and 
high-dimensional data spaces, it may therefore still be beneficial to 
calculate the EIG in the model parameter space (eq. 9 ). Both model 
parameter and data space approaches are analysed in more detail 
herein. 

Using any expression for the EIG as our design metric, the best 
design is expressed mathematically as 

ξ ∗ = arg max 
ξ∈ � 

EIG ( ξ ) , (14) 
where � is the set of all possible experimental designs. Ideally, 
this optimization is global, but in many cases a greedy (local) op- 
timization algorithm must be used to make the optimization com- 
putationally tractable. Such algorithms usually provide a significant 
impro vement o ver non-optimized experiments. Further details on 
the optimization process are given in Section 4 . 

2.1 Comments on linear design theory 

This paper focuses on algorithms applicable to the complex forward 
functions that occur in nature, so methods designed specifically for 
linear or linearized models will not be covered in detail. We will 
however briefly show the connection between EIG and D-optimality, 
which is one of the so-called alphabetic design criteria (Box & Lucas 
1959 ; Atkinson & Donev 1992 ), which have well-studied properties 
(Kiefer 1959 ). For a more detailed treatment of linear experimental 
design measures, the reader is referred to Atkinson & Donev ( 1992 ) 
for a general overview, and to Curtis ( 1999a ) for an overview of most 
linear design measures used in geophysics. 

2.1.1 Relationship between D-optimality and EIG 

D-optimality is a widely used linear design criterion equal to the 
determinant of matrix A 

T A , where A is the matrix relating m and 
d . For Bayesian linear models it can be related to the EIG . If the 
prior pdf is Gaussian m = N 

( m 0 , � 0 ) , then for linear models the 

posterior pdf is proportional to 
(

A 

T A + � 

−1 
0 

)−1 
and its information 

content is independent of the observed data. Making use of the ana- 
lytical form of the entropy of a Gaussian, the EIG can be expressed 
as 

EIG ( A ) = 

1 
2 log | � 0 | − 1 

2 log 
∣∣A 

T A + � 

−1 
0 

∣∣ + C (15) 

= log 
∣∣A 

T A 

∣∣ · C 

′ + C 

′′ 
, (16) 

where C , C 

′ and C 

′′ are constants. Therefore, maximization of in 
the D-criterion results in the same design as would be obtained by 
maximizing the EIG . 

2.1.2 Linearized models 

Extensive work has been made to extend the alphabetic criteria de- 
veloped for linear to nonlinear problems (Tsutakawa 1972 ; Chaloner 
& Verdinelli 1995 ). For this, a linearized version of eq. ( 1 ) is used 

d − F 

( m 0 ) = A m 0 ( m − m 0 ) + ε , (17) 

where A m 0 is the Jacobian matrix of partial deri v ati ves of F ( m ) 
with respect to m , e v aluated at (linearized around) reference model 
m 0 . The physical relationships between d and m are thus only ap- 
proximate and are only accurate in some locality of m 0 . Conse- 
quently, the design that results from optimizing this relationship 
would no longer be independent of the reference model—which, in 
turn, should be free to vary according to the prior pdf. By taking 
the expectation over reference models, a Bayesian (linearized) ver- 
sion of the D-optimality criterion is gi ven b y Chaloner & Verdinelli 
( 1995 ): 

E p( m ) 

[
log det ˜ L m 

]
, (18) 

where ˜ L m 

= A 

T 
m 

A m 

. The other alphabetic criteria can be extended 
to linearized problems using expectations in the same way. 

The problems with this approach are apparent in Fig. 1 : an averag- 
ing approach may work intuiti vel y for nonlinear but approximately 
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Figure 2. Illustration of EIG estimation methods in data space. Samples in 
model parameter space (blue dots) are generated from the prior pdf (blue 
curve). The likelihood (and the underlying forward model evaluation) can 
be used to generate samples from the evidence in data space (green dots) 
using the model space samples. Details of how p( d | ξ ) is estimated using 
various methods (crosses, and black and red curves in the top graph) are 
described in Section 3 . NMC denotes Nested Monte Carlo. 
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onotonic functions Fig. 1 (b) because the resulting estimate of de-
ign quality is inversely related to the expected uncertainty of the
olution approximated locally by linearized physics. Ho wever , as
hown in Fig. 1 (c), in the presence of multimodality, an approach
ased on deri v ati ves breaks down, because the solution uncertainty
pproximated by the gradient of F only approximates one of the
odes of the posterior pdf over parameter values that are consis-

ent with the data (Winterfors & Curtis 2012 ). This is clear from
q. ( 18 ), which shows that around each prior value of the parameter
pace at which L m 

is e v aluated, the posterior solution accounted
or in eq. ( 16 ) consists of a single Gaussian. Therefore, even the
inearized uncertainty estimate represented by the term in brackets
n eq. ( 18 ) is substantially incorrect. 

 E I G  E S T I M AT I O N  

he mathematical formulation of the EIG is straightforward. How-
 ver, its e v aluation is not, as neither p( d | ξ ) nor p( m | d , ξ ) are typ-
cally known in closed form, and both d and m over which each is
efined can have many dimensions. The following sections present
pproaches to computing an approximation of the EIG correspond-
ng to any given design. 

The basis for the following methods is to take samples m i of
he prior pdf (bottom of Fig. 2 ) and to project them into the data
pace b y e v aluating the forw ard function and taking samples d i 
f the likelihoods p( d i | m i , ξ ) . This procedure provides samples
f the evidence (green dots in Fig. 2 ) but no probability values
or those points in data space because the explicit e v aluation of
p( d | ξ ) crequires that we e v aluate the normalizing integral in eq. ( 3 )

hich is over the whole model space. The nested Monte Carlo
NMC), variational marginal and D N methods below use different
pproaches to estimate p( d i | ξ ) which is needed to estimate the
nformation described by the evidence. 

.1 Monte Carlo methods 

he most straightforward and rob ust, b ut computationally e xpensiv e
 ay of e v aluating eq. ( 13 ) is to deploy a naive NMC approach as

ntroduced by Ryan ( 2003 ) and Myung et al. ( 2013 , further analysed
n detail by Vincent & Rainfor th 2017; Rainfor th et al. 2017 ). The
o-called NMC EIG estimator is defined as 

EIG NMC ( ξ ) = 

1 

N 

N ∑ 

i= 1 
log 

p ( d i | m i, 0 , ξ ) 
1 
M 

∑ M 

j= 1 p 
(
d i | m i, j , ξ

) , (19) 

here m i, j ∼ p( m ) and d i ∼ p 
(
d | [m = m i, 0 

]
, ξ

)
. The nested

oop results in a slightly unusual sampling notation. An N × ( M
 1) array of prior pdf samples m i, j is generated from p( m ) . The
rst row in this square is then referred to by m i, 0 , which means the
uter loop only uses samples of this first row, while the inner loop
ses a different column j (excluding the first element) of samples
or each step of the outer loop. 

Pointwise estimates of the evidence p ( d i | ξ ) at N points d i in data
pace are calculated using the average of the M likelihood functions
1 
M 

∑ M 

j= 1 p 
(
d i | m i, j , ξ

)
(inner loop of eq. 19 ), which estimate how

ikely it is that one would observe the datum d i . This results in
 set of N points with an assigned probability in data space (grey
rosses in Fig. 2 ). As these points are sampled from the prior, they
an then be used to calculate an MC estimate of I [ p( d | ξ ) ] by

1 
N 

∑ N 
j= 1 p ( d i | ξ ) . The likelihood term p ( d i | m i, 0 , ξ ) of eq. ( 19 )

akes the influence of the data noise into account which might
hange for different designs ξ (e.g. receiver positions close to noise
ources may produce larger measurement uncertainties than those
ocated in quiet areas). 

The estimator EIG NMC has a computational cost of T = O( N M)
ith an RMSE (root-mean-square error) convergence rate of
( N 

−1 / 2 M 

−1 ) which means it is asymptotically optimal to set
M ∝ 

√ 

N . The number of inner samples M controls the bias, while
he number of outer samples N controls the variance of this quality
stimate (Huan & Marzouk 2013 ). The computational cost of the
MC approach can be reduced considerably if the same samples
f the inner loop ( M ) are reused for each iteration of the outer
oop as demonstrated by Huan & Marzouk ( 2013 ), Qiang et al.
 2022 ) and Zhang et al. ( 2015 ), resulting in a computational cost of

T = O( N + M) total samples. This reuse of samples increases the
ias in the EIG estimate, but if the bias is stationary this would not
ffect the subsequent design optimization. To our knowledge, no
seful bounds on the size of the bias nor practically implementable
onditions that guarantee stationarity for particular problems are
vailable. The EIG NMC estimate is an upper bound and will, there-
ore, al wa ys be larger than the true EIG (Foster et al. 2019a ). 

.2 Maxim um entrop y method 

f the likelihood is independent of the design, p( d | m , ξ ) =
p( d | m ) , meaning that the measurement uncertainty on each da-
um does not vary with the design (e.g. with receiver location),
q. ( 13 ) is equi v alent to 

EIG ME ( ξ ) = − I [ p( d | ξ ) ] + C (20) 

art/ggad492_f2.eps
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1 Here referred to as either SGD for minimization or SGA for maximization. 
Ho wever , both are essentially the same algorithm where the sign of the 
optimization metric is flipped. 
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and maximizing the EIG is equi v alent to maximizing the entropy 
(ne gativ e information) of the evidence, resulting in so-called max- 
imum entropy design (Shewry & Wynn 1987 ). This only slightly 
lowers the cost compared to the NMC method, since the main cost 
in e v aluating eq. ( 13 ) is the estimation of I [ p( d | ξ ) ] which can be 
taken out of the expectation due to its independence of m . The later 
cost is the same in both the NMC and the maximum entropy meth- 
ods. EIG ME can, therefore, be estimated either by using a similar 
nested Monte Carlo loop as for NMC or using specific methods 
to calculate the entropy of a set of samples, such as k - d partition- 
ing (Stowell & Plumbley 2009 ; Bloem et al. 2020 ). The restriction 
that the uncertainty on each datum does not vary is an unrealistic 
assumption in many cases, for example, if different receivers have 
dif ferent noise le vels, or if noise depends on the spatial location of 
receivers. 

Especially in cases with a large number of data dimensions (e.g. 
observations made using many receivers), both the NMC and the 
maximum entropy estimator, while consistent, will converge pro- 
hibiti vel y slowl y to be practical for most geophysical applications. 
Perhaps luckily then, experimental design is often particularly effec- 
tiv e for e xperiments with restricted e xperimental resources which 
ma y ha ve few er observations and hence data space dimensions; 
MC methods are then useful in some cases. MC methods are also 
necessary for benchmarking algorithms that employ different ap- 
proximations introduced in the following sections. 

3.3 Variational methods 

The bottleneck in e v aluating expressions ( 9 ) and ( 13 ) occurs in 
the estimation of p( m | d , ξ ) and p( d | ξ ) , respecti vel y. The main 
inefficiency in the NMC method arises because the integrand in 
eq. ( 19 ) is estimated separately for each d . Instead of evaluating 
this integrand directly, Foster et al. ( 2019a ) proposed to find a 
variational (closed form, or otherwise analytic) approximation to 
either p( m | d , ξ ) or p( d | ξ ) . 

Suppose the construction of this functional approximation re- 
quires M samples. In that case, the total computational cost is on 
the order of O( N + M) , which may be a substantial reduction com- 
pared to the NMC method. We therefore now introduce variational 
approaches to EIG estimation. 

3.3.1 Variational marginal method 

The variational marginal method operates in data space by finding 
a variational estimator q m 

( d | ξ ) that approximates the evidence 
p( d | ξ ) . The evidence is, in fact, the data space marginal posterior 
pdf, hence the name of this design method. Instead of e v aluating 
the marginal density p( d | ξ ) for each of the N data samples d n , the 
idea is to find a variational functional emulator q m of p( d | ξ ) using 
M samples. Once q m is available, using eqs ( 13 ) and ( 19 ), the EIG 

can be approximated as 

EIG marg ( ξ ) = 

1 

N 

N ∑ 

n = 1 
log 

p ( d n | m n , ξ ) 

q m 

( d n | ξ ) 
, (21) 

where m i ∼ p( m ) and d i ∼ p ( d | [ m = m i ] , ξ ) . 
The variational approximator q m 

( d | ξ ) is found by first introduc- 
ing a variational family q m 

( d | ξ, φ) (e.g. the family of multivariate 
Gaussians) with parameters φ (e.g. describing mean and covari- 
ance) that parametrize possible forms of q m . The key is to find 
parameters φ that provide the best possible approximation q m to 
p( d | ξ ) on average for any d . It can be shown (see the appendix of 
Foster et al. 2019a ) that this formulation yields an upper bound to 
the true EIG , and EIG marg = EIG if and only if q m 

( d | ξ ) = p( d | ξ ) .
The optimal parameters φ∗ can therefore be found ef ficientl y using 
stochastic gradient descent (SGD) 1 (Robbins & Monro 1951 ) to 
solve the following optimization problem: 

φ∗ = arg min 
φ

⎧ ⎨ 

⎩ 

−E p( d , m | ξ ) 

{ 
log q m 

( d | ξ, φ) 
} 

+ I [ p( d | m , ξ ) ] ︸ ︷︷ ︸ 
constant 

⎫ ⎬ 

⎭ 

. (22) 

This means that we want to find the variational family for which the 
samples of evidence have the highest expected probability of being 
observed. The lower the value of the term in eq. ( 22 ), the closer is 
the variational marginal estimator is to the true EIG , since it is an 
upper bound on the EIG . The tightness of the bound is determined 
by how well q m 

( d | ξ, φ∗) represents the true evidence. 
The variational family for the variational marginal method used in 

this study is a Gaussian mixture model (GMM)—a sum of Gaussians 
(Bishop 2006 ). The red curve in Fig. 2 illustrates an example of 
a variational marginal pdf. The density of the evidence samples 
(green) is used to find a function, here a sum of Gaussians, which 
can be e v aluated straightforw ardl y to approximate the probability 
of observing points in data space. These probabilities are then used 
to calculate the EIG . We have also successfully applied normalizing 
flows (Tabak & Turner 2013 ; Dinh et al. 2014 ; Rezende & Mohamed 
2015 ; Durkan et al. 2019 ; Zhao et al. 2020 ) to construct the above 
function, but they are omitted in this paper for brevity. 

3.3.2 Variational posterior method 

F inding an appro ximator to p( d | ξ ) as above might be disadvanta- 
geous if the number of data dimensions is high and the number 
of model dimensions is low (e.g. when designing a seismic source 
location experiment with man y recei v ers recording trav eltime mea- 
surements). Eq. ( 9 ) allows us instead to calculate the EIG in the 
model space by finding an approximator to p( m | d , ξ ) . This is 
achie ved b y finding a v ariational function q p ( m | d , ξ ) to represent 
the posterior pdf given an observed datum d measured under design 
ξ . The EIG can then be approximated by the variational posterior 
method as 

EIG post ( ξ ) = 

1 

N 

N ∑ 

n = 1 
log 

q p ( m n | d n , ξ ) 

p ( m n ) 
, (23) 

where m i ∼ p( m ) and d i ∼ p ( d | m = m i , ξ ) . To e v aluate this MC 

estimator, it is necessary to find the function q p ( m | d , ξ ) . For this a 
famil y of v ariational distributions q p ( m | d , ξ, φ) parametrized by 
φ is introduced. To find φ and therefore a function that is close 
to p( m | d , ξ ) , we can make use of the fact that EIG post ( ξ ) is a 
lower bound on the true EIG , which is tight strictly if and only if 
q p ( m | d , ξ, φ) = q( m | d , ξ ) . Maximizing this lower bound to find 
the optimal choice φ∗ is equi v alent to e v aluating 

φ∗ = arg max 
φ

⎧ ⎨ 

⎩ 

E p( d , m | ξ ) 

{ 
log q p ( m | d , ξ, φ) 

} 
− I [ p( m ) ] ︸ ︷︷ ︸ 

constant 

⎫ ⎬ 

⎭ 

(24) 

which maximizes the expected probability of observing the prior 
sample used to generate a data sample. The parameters φ can be opti- 
mized using stochastic gradient ascent (SGA). Then, q p ( m | d , ξ, φ) 
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esults in a different pdf for each datum d (orange pdfs on the right
f Fig. 3 ). The maximization in eq. ( 24 ) is equi v alent to minimizing
he KL divergence between q m 

( m | d , ξ, φ) and p( m | d , ξ ) . A con-
iderable advantage of this approach is that it maximizes the EIG
n the model parameter space, making it suited to design experi-
ents with a high-dimensional data space but a lower dimensional

arameter space. 
In this study, the v ariational famil y for the approximation of

he variational posterior pdf is a Gaussian mixture density network
MDN) (Bishop 1994 ; Meier et al. 2009 ). We have also successfully
pplied conditional normalizing flows (Tabak & Turner 2013 ; Dinh
t al. 2014 ; Rezende & Mohamed 2015 ; Durkan et al. 2019 ; Zhao
t al. 2020 ) but these are omitted in this paper for brevity. 

For both variational estimators EIG marg and EIG post , the quality
f the final result depends on how accurately q m or q p represents the
rue evidence or posterior. This depends on the flexibility (expres-
iveness) of the parametrization of the two functional distributions,
nd on how well the gradient descent optimization has converged. 

.4 D N 

method 

hile variational methods can substantially reduce the computa-
ional cost of calculating the EIG , their optimization using SGD
s still a significant computational expense. If the evidence can be
pproximated adequatel y b y a multi v ariate Gaussian distribution
 ( μ, � evidence ) with mean μ and covariance matrix � evidence , its in-

ormation content can be calculated as a function of its covariance
atrix by 

I [ N ( μ, � evidence ) ] = −1 

k 
(1 + ln (2 π )) − 1 

2 
ln ( | � evidence | ) , (25) 

here k is the dimensionality of the data space. Under the assump-
ion of Gaussian data noise with covariance � data , the EIG can then
e expressed as 

EIG D N = ln | � evidence | − ln | � data | + C (26) 

hich is the EIG of eq. ( 13 ) in which both terms have been ap-
roximated using a Gaussian distribution, and where the constant
erms have been summarized in the constant C . This defines the
o-called D N method, equi v alent to the v ariational marginal method
ith the multi v ariate Gaussian v ariational famil y. It follows that it

an be extended to non-Gaussian noise, taking only the numerator
n eq. ( 21 ) and using it to replace ln | ( � data ) | . 

This estimator was first introduced by Coles & Curtis ( 2011a )
nd applied by Rawlinson et al. ( 2012 ), Coles et al. ( 2013 ) and
loem et al. ( 2020 ). While eq. ( 26 ) is only valid for a Gaussian
istribution of the evidence, the D N criterion remains useful in
any applications because maximizing the covariance increases

he spread in data space of data points corresponding to different
odels. Intuiti vel y, the farther data from different models are spread

part, the easier it is to distinguish between models in the presence
f data noise. 

Covariance-based measures can fail, most notably in the case of
ultimodality in the evidence, where the distance between modes

oes not necessarily influence the information but where a larger
istance would lead to a higher covariance. Despite this limitation,
he D N method appears to be essential in practice due to the effi-
iency of its e v aluation and the small number of samples necessary
o obtain a stable estimate of the EIG . Fig. 2 shows how the D N 

ethod compares to the NMC and the variational marginal method
y showing the Gaussian (green) with the same mean and covari-
nce as the evidence samples (green). It is not necessary to use this
df to obtain sample probabilities as the information of a Gaussian
s known in closed form (eq. 25 ). 

.5 Other methods 

his section has mainly focused on methods that have been used
re viousl y in geophysical applications, with the addition of with
ariational methods which have been developed in reasonable gen-
rality only recently. There are, of course, many other methods. A
ummary of methods up to 2016 is available in the re vie w of Ryan
t al. ( 2016 ), since when, the field has progressed substantially, most
otably through bounds on mutual information and methods that use
hese (e.g. Kleinegesse & Gutmann 2021 ; Guo et al. 2021 ). There
re other more recent approaches which may, in the future, also
dvance EIG estimation for geophysical applications (e.g. Beck
t al. 2018 ; Wu et al. 2020 ; Goda et al. 2020 ; Carlon et al. 2020 ;
lexanderian 2021 ; Long 2022 ; Englezou et al. 2022 ). All of these

re beyond our scope for this paper. 

 E I G  O P T I M I Z AT I O N  

he maximization in eq. ( 14 ) requires an optimization algorithm to
e chosen independently of the method of EIG estimation, and the
hoice determines how often the EIG needs to be e v aluated. Each
 v aluation can take a substantial amount of time to compute, so the
hoice of algorithm can dramatically change the overall computa-
ion required for experimental design. It is also possible to extend
he algorithms below to consider the logistical and financial costs
f deployment. A significant difficulty with implementing that ap-
roach is the need to to define how much time or money one unit of
IG is worth. 

.1 Global optimization 

deally, the optimization algorithm used to solve eq. ( 14 ) should
onsider all possible designs in � and choose the one that results
n the highest EIG . This could be achieved most straightforw ardl y
or a continuous design space by sampling � in a sufficiently dense
egular grid and calculating the EIG for every gridpoint. Ho wever ,
his is only possible for low-dimensional design spaces, because
he number of EIG e v aluations scales as ( n grid ) D , where n grid is the
umber of gridpoints per dimension and D is the number of dimen-
ions. To avoid this exponential scaling, several global optimization
lgorithms such as the genetic algorithm (Holland 1992 ) and simu-
ated annealing (Bohachevsky et al. 1986 ) have been used to design
eophysical problems (e.g. Barth & Wunsch 1990 ; Barth 1992 ;
urtis & Snieder 1997 ; Maurer & Boerner 1998 ). Their guarantee

o al wa ys con verge to w ards the global optimum gi ven suf ficient it-
rations comes at the cost of many EIG e v aluations, albeit fe wer
han a grid search approach requires. This, again, makes these al-
orithms infeasible for all but small-scale design problems. Other
opular global approaches for design optimization in general are
ayesian optimization (Jones et al. 1998 ; Kleinegesse & Gutmann
018 ; Foster et al. 2019a ) and McMC methods (Amzal et al. 2006 ;
ones et al. 1998 ). 

.2 Greedy optimization 

he computational infeasibility of global optimization has led to
he use of greedy algorithms that make locally optimal choices but
till lead to designs that substantially improve the EIG compared to
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Figure 3. Illustrates the variational posterior method to estimate the EIG in model parameter space (left). The prior (blue curve) is used to generate samples 
in model parameter space (blue dots). The likelihood (and the underlying forward model evaluation) can be used to generate evidence samples in data space 
(green dots) using each model space sample. These pairs of model parameters and data samples can be used to find a variational approximating functional 
q p ( m | d , ξ, φ) to p( m | d , ξ ) . Thereafter, a different set of data samples is generated in the same way (right). The corresponding posterior pdf for every such 
sample can be estimated cheaply using mapping q p . 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1309/7492801 by U

niversity of Edinburgh user on 30 January 2024
random designs. The most popular of those algorithms are sequen- 
tial design optimization algorithms, in which all but one dimension 
in the design space is fixed, and a 1-D optimization is solved in the 
remaining dimension. Iterating this process through all dimensions 
causes the design to converge to a (locally) optimal design. 

Sequential optimization can be done in different ways but the 
most popular and computationally cheapest is sequential construc- 
tion (Curtis et al. 2004 ; Stummer et al. 2004 ) where the optimal 
design in a 1-D design space is selected first (e.g. a first receiver is 
placed at an optimal location). This locally optimal choice is then 
fixed, and the best choice in a second 1-D design space (a sec- 
ond receiver location) is selected. This process can be iterated until 
the desired number of design dimensions (number of receivers) is 
reached. Alternatives to this approach are sequential destruction 
(Curtis 2004b ) and the sequential exchange algorithm of Mitchell 
( 1974 ). Sequential design optimization algorithms are substantially 
cheaper than global optimization. Ho wever , in practice, they still 
usually result in designs that deliver an EIG close to the global op- 
timum in practice (Coles & Curtis 2011a ; Guest & Curtis 2009 ). A 

detailed mathematical treatment of sequential design optimization 
algorithms is given in Jagalur-Mohan & Marzouk ( 2021 ). 

5  G E O P H Y S I C A L  A P P L I C AT I O N S  O F  

B AY E S I A N  O P T I M A L  D E S I G N  

M E T H O D S  

While linear and linearized OED has been used and studied exten- 
si vel y for geophysical applications, OED for fully nonlinear forward 
models is still not widely used. The first step in this direction was to 
use the number of modes in the misfit of linearized OED as a design 
criterion (Curtis & Spencer 1999 ; Curtis 2004a ). This method was 
designed to alleviate some problems of linearized designs methods, 
but it has yet to be applied in a practical problem. 

The EIG was first used as a criterion by van Den Berg et al. 
( 2003 , 2005 ). By adopting the maximum entropy sampling method 
they used the entropy of the evidence as a proxy for the EIG . This 
approach has subsequently been refined to a sequential optimization 
(Guest & Curtis 2009 ) and applied to design reflection seismic 
amplitude-v ersus-offset e xperiments with comple x subsurface prior 
information (Guest & Curtis 2010 ). The NMC formulation was first 
used in geophysics by Coles & Prange ( 2012 ) and has recently been 
applied by Qiang et al. ( 2022 ) and combined with physics-informed 
neural networks by Wu et al. ( 2022 ). 

The Laplace method (Tierney & Kadane 1986 ) allows the EIG 

to be calculated in the model space using the Hessian matrix of the 
forward model (second-order derivatives with respect to the model 
parameters), under the assumption that the posterior pdf is mul- 
ti v ariate Gaussian (Long et al. 2013 , with extensions allowing for 
multimodality, Long 2022 ). It was used by Long et al. ( 2015 ) for the 
optimal design of a full-waveform seismic source moment tensor 
in version. Ho wever , the use of the determinants of Hessian matri- 
ces makes this method similar to linearized Bayesian experimental 
design methods. 

The computationall y ef ficient D n method first used b y Coles & 

Curtis ( 2011b ) has subsequently been applied and derived using 
alternative approaches (Rawlinson et al. 2012 ; Coles et al. 2013 ; 
Bloem et al. 2020 ). In addition to the EIG , other studies on nonlin- 
ear design have used bifocal measures (Winterfors & Curtis 2008 , 
2012 ), or problem-specific measures which are not a function of the 
posterior pdf (L ópez-Comino et al. 2017 ; De Landro et al. 2020 ; 
Ferrolino et al. 2020 ; Fichtner & Hofstede 2022 ; Dasgupta et al. 
2021 ). 

More detailed re vie ws of design methods and applications in 
geophysics are given in Curtis ( 2004b , a ) and Maurer et al. ( 2010 ). 
For a general re vie w of design algorithms, the reader is referred to 
Ryan et al. ( 2016 ). 

6  A P P L I C AT I O N S  

We now demonstrate the algorithms introduced above, and explore 
their relative merits in two common geophysical problems. Our aim 

here is to be educational rather than to provide a comprehensive 
study of these optimal design problems. 

6.1 Seismic source location 

In a seismic source location problem, the aim is to determine the 
location of a seismic event, such as an earthquake, using the first ar- 
ri v al times of P and S waves or other seismic phases. To achieve this, 
the subsurface structure needs to be known at least approximately. 

The setup used in this example (depicted in Fig. 4 ) employs the 
elastic extension of the 2-D Marmousi model (Martin et al. 2006 ), 

art/ggad492_f3.eps
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Figure 4. Seismic source location problem with three wells (thick black lines), prior pdf comprising a sum of three spatially correlated Gaussians (blue shading, 
darker being more probable) and seismic first arri v al rays (thin black lines) originating from one of the prior samples (red star) and terminating at regularly 
spaced points on the ground surface. 
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 suitably complex subsurface structure. Three wells with depths
f around 2 km are placed near the middle of the structure, and
re assumed to be involved in some intervention in the subsurface
hich induces seismicity near their terminations. As the locations
f the wells are known, the model parameter prior pdf is constrained
n space, and we represent our assumed prior information as a sum
f three spatially correlated Gaussians (Fig. 4 ). 

The strong prior information combined with the 2-D nature of
his synthetic example, allows a low number of receivers or even a
ingle one to achieve a good posterior estimate of the true location.
nder the assumption of a constant v p / v s ratio and using arri v al

ime differences t diff between P and S waves, the source time can
e excluded from the source location problem similarly to Bloem
t al. ( 2020 ), and hence can be excluded from the design process.
herefore, the model parameter space consists of the set of 2-D
ectors of horizontal and vertical locations. 

The fast marching method (Sethian 1996 ) using the openly avail-
ble implementation of White et al. ( 2020 ) was used to calculate
he seismic wave arrival times. Bloem et al. ( 2020 ) used the same
rav eltime inv ersion to test different linear and nonlinear experi-
ental design algorithms, albeit with other slowness models and

rior pdfs. The likelihood is modelled using a Gaussian distribu-
ion with a mean corresponding to the calculated traveltime and
 standard deviation of 0.02 s as a baseline for the measurement
ncertainty. 

The optimal design problem is to find receivers placed on the
eabed ( z = 0.5 km) at horizontal offsets from 3.1 to 16.4 km, which
ive the highest EIG . The EIG of 200 possible single-receiver lo-
ations was calculated along the seabed using each of the methods
escribed in Section 3 . The sequential construction method was
sed to optimize multireceiver designs because of its computational
fficiency and the possibility of visualizing the design process steps
s receivers are added. 

In most geophysical applications, the generation of data corre-
ponding to model parameter samples is the main computational
ost. We therefore compare the performance of the different meth-
ds for a tw o-receiver netw ork as a function of the number of sam-
les used (see Fig. 5 ). The cost of e v aluating the dif ferent estimators
sing those samples is compared thereafter. 

The variational marginal method has been implemented using a
MM with 10 Gaussians, each with a full covariance matrix. For

he variational posterior method, the variational family is the output
f a Gaussian MDN with a three-layer neural network consisting of
0 nodes in each layer, defining 20 Gaussians with full covariance
atrices as output. 
The NMC method has been implemented using new samples for

ach step of the outer loop, or reusing the M samples of the inner
oop of eq. ( 19, the latter is referred to as NMC re ). This results in a
ost of N × M or N + M samples, respecti vel y. 

To put the results into context, we calculated the EIG for 1000
andom designs, and for a design with receivers at 6.4 and 13.1 km,
 heuristically designed network, using the NMC re method (using
 × 10 5 samples). All optimal design methods converge to an EIG
alue that outperforms almost all of the random designs as well as
he heuristic design. Due to the restrictive Gaussian assumption, the
 N method results in an EIG value that is slightly lower than the op-

imum achie ved b y the other design methods. While not converging
o the optimal possible design, the D N method design substantially
utperforms the median and equispaced design with as few as only
0 samples. All other methods are practically inapplicable with so
e w samples. Both v ariational methods perform similarl y to the
MC re method, con verging to wards the maximum EIG when using
ore than around 1 × 10 4 samples. 
Tests using a four-receiver design lead to similar conclusions,

ith the exception that the variational posterior method performs
etter and is comparable to the NMC re method, demonstrating the
eneficial scaling of this method with data dimensionality. For three
nd four receivers, all methods converge to designs with slightly
ower EIG compared to the best random design, an effect of using
he sequential construction method which can converge to local
axima. 
The final designs for a four-receiver network are shown in Fig. 6 .

or all but the D N method, the resulting network is nearly identical,
nd the deviation of the D N -derived network leads to the slight
e gativ e offset in EIG discussed above. 

For now, we have assumed a constant noise level across all re-
eiver locations, or in other words, we have assumed the noise to
e independent of the design. This is rarely the case in real-world
cenarios. Fig. 7 shows the effect of design-dependent noise. Here,
he experimental design process uses an artificial noise function that

imics the effects of geometrical spreading and of anthropogenic
oise around the wells. The best designs found change substan-
iall y, moving recei vers tow ards regions of low noise, leading to
 higher agreement in the optimal design results from different
ethods. The design dependence of the likelihood also stabilized

he design optimization process, and indeed the result in this case
ight have been designed approximately using intuition alone. This

emonstrates that where intuition can be applied, the design meth-
ds herein conform to expectations. And of course, a quantitative
pproach is necessary for more complex noise models and realistic
-D environments in which intuition fails. 

While the number of forward evaluations is often the bottleneck
or the feasibility of experimental design algorithms, the cost of the
IG estimator itself is not insignificant. This is especially important
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Figure 5. Benchmark results from different EIG estimation methods using sequential construction, showing the EIG for a two-receiver network for seismic 
source location as a function of the number of samples for which the forward function is e v aluated. The solid line indicates the mean of 10 independent runs, 
while the shaded area indicates the respective minimum and maximum values of those runs. The mean curve of the NMC re results are shown in every panel 
to serve as a benchmark for comparison. On the right, a smoothed histogram of the EIG for 1000 randomly selected designs and for a heuristic design with 
receivers at 6.4 and 13.1 km is shown to put the results into context. Details on the setup and methods are in the main text. 

Figure 6. Optimized four-receiver networks using different EIG estimation methods and the sequential construction method for a constant noise level. The 
upper part shows the noise level as a function of receiver position in multiples of the base (constant) noise level, with a standard deviation of 0.02 s. 
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in prob lems w here physical insights can be used to generate a large 
number of data samples highly efficiently. In the case of the source 
location example, this is possible by making use of the reciprocity 
of the eikonal equation and the full traveltime field generated by the 
fast marching method that is used to solve the eikonal equation: by 
treating receiver locations as eikonal source fields, many data and 
model parameter pairs can be generated cheaply once the traveltime 
field for a gi ven recei ver location has been calculated. After the pre- 
computed traveltimes are stored for each possible receiver position, 
the main bottleneck in design optimization is the cost of the EIG 

estimator. 
The cost of the EIG calculation, excluding the cost of the forward 

e v aluations, is shown in Fig. 8 . All six methods become increas- 
ingly more e xpensiv e as more samples are used. The D N and NMC 

methods are substantially cheaper than the other methods. The vari- 
ational methods have a relati vel y large overhead since they require 
neural networks to be trained to represent the variational approxi- 
mators. Since the training of the variational estimators is the main 
cost in using them for EIG estimation, they scale very well for a 
high number of samples if the maximum number of SGD steps is 
capped (here 10 000 for the variational methods). The point where 
this threshold is reached can be seen as the sharp change in slope 
for those methods in Fig. 8 . The difference in computation time 
between the NMC with and without reused samples is twofold. 
First, if N T is the total number of samples used, the standard NMC 

method requires N T likelihood e v aluations, while the NMC with 
reused samples requires 0.25 × N T 

2 . This quadratic scaling is evi- 
dent in Fig. 8 . A second difference is that a numericall y slightl y less 
efficient method of computing the NMC with reused samples was 
used since otherwise the memory usage for the computation of the 
EIG for 1 × 10 5 samples would be more than 20 GB for storing the 
necessary likelihood values alone. 
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Figure 7. Optimized four-receiver networks using different EIG estimation methods and the sequential construction method for a design-dependent noise 
level. The upper part shows the noise level as a function of receiver position in multiples of the base (constant) noise level, with a standard deviation of 0.02 s. 

Figure 8. Benchmark results from different EIG estimation methods using 
sequential construction. Shows the time to calculate the EIG for a two- 
receiver network for seismic source location, excluding the time to generate 
data samples (the time spent e v aluating the forward function). The solid line 
indicates the mean of 10 independent benchmark runs, while the shaded 
area indicates the respective minimum and maximum values. Details on the 
setup and methods are in the main text. 
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.1.1 Drawbacks of the D N method 

he above results established the D N method as a cheap and robust
ethod that can produce near-optimal designs. This is also con-
rmed in the later Section 6.2 for an amplitude versus offset (AVO)
esign problem. In both cases, the assumption of a Gaussian form
or the evidence only leads to a slight ne gativ e offset. Yet, we inves-
igate conditions under which this assumption nevertheless leads
he D N method to produce a far from optimal design. We set up a
cenario (see bottom of Fig. 9 ) with two separate areas of possible
eismicity, with an inclined low-velocity layer above. For example,
he cause of the seismicity might be related to drilling or injection
or geothermal power production (e.g. Maurer et al. 2020 ). 
In this scenario, the tw o-receiver netw ork designed using the
 N method is quite different (Fig. 9 ) and performs substantially
orse (Fig. 10 ) than one designed using either the NMC (reused
 ) or the variational marginal method (using a mixture of Gaus-

ians). While the D N design still performs better than the median
f 1000 random designs, around a third of the randomly selected
esigns perform better, and it performs worse than a standard de-
ign in which the receivers are equispaced at 5000 and 10 000 m.
he distribution of traveltimes as a function of horizontal receiver
osition illustrates why the D N method performs so poorly in this
cenario (top of Fig. 9 ). As long as the two bands of traveltimes
ue to the two areas of seismicity overlap with extremely low
robability, their information content is independent of the dis-
ance between them. Ho wever , if the two bands are further apart,
he standard deviation of the evidence increases, and therefore,
he information content of the Gaussian used to approximate the
vidence in the D N method decreases. Due to the nature of this
cenario, the distance between the two bands varies substantially
cross the different receiver placements. Therefore, the D N method
s, to first order, influenced by the distance between the traveltime
ands and not their respective spread, whereas the latter property
over ns the infor mation content of the evidence. In applications
here substantial multimodality may occur a priori in data space,

his deficiency trades off with the computational efficiency of the
ethod. 

.1.2 Source location interrogation 

s mentioned in Section 3.3.2 , solving the EIG estimation in
odel parameter space allows one to design interrogation prob-

ems (Arnold & Curtis 2018 , for more information see Appendix
2 ). Instead of maximizing the information of p( m | d , ξ ) , the goal

n such problems is to maximise the information in a target space
 , which is used to answer a specific question or set of questions Q .
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Figure 9. Setup for demonstrating shortcomings of the D N method. The lower part shows the subsurface P -wave velocity model, including the prior pdf for 
event locations (blue contours). The dotted lines give examples of first arri v al rays originating from 10 representative prior locations to three receiver locations. 
The optimal design calculated using sequential construction with the NMC method (black triangles) and the D N method (purple triangles) to estimate the EIG 

are shown, as well as a heuristic equispaced design (orange triangles). The top part shows a histogram of traveltimes generated by forward modelling samples 
from the prior pdf for each possible receiver location. Darker grey tones indicate that more samples produce the same traveltime. 

Figure 10. Comparison of the EIG values for tw o-receiver netw orks derived 
using sequential construction with the NMC (reused inner samples), the 
variational marginal, and the D N methods to estimate the EIG , as well as 
an equispaced heuristic design (see Fig. 9 ). The blue smoothed histogram 

represents the EIG values of 1000 randomly selected designs. 
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For this, a target function T ( m | Q ) , which maps samples from M 

to T , needs to be defined. 
We apply this concept to search for the optimal receiver place- 

ments to constrain only the epicentre or only the depth of the seismic 
source, respecti vel y. In this case, T selects and returns one of the 
two coordinates, making the target space 1-D ( R 

1 ). 
A slightly simpler setup than the one above is used to demonstrate 

the interrogation design process; see Fig. 11 . The same constant 
noise level as in the previous test was used. The only thing that 
changed is the prior , no w a single multi v ariate Gaussian distribution, 
placed in the relati vel y shallow subsurface. 

Fig. 12 compares example posterior probability distributions 
computed for three designs, each optimized for a different inter- 
rogation question. The EIG curves (calculated using a grid of 200 
possible receiver locations) show that both the hypocentre and the 
epicentre design problems favour nearly identical designs with a low 

EIG over the source area and higher EIG at a greater distance from 

the expected sources. If the vertical location (source depth) is to be 
constrained independently of any other parameter, the resulting EIG 

curve and optimal receiver position are entirely different: here re- 
ceiv er positions ov er the source area are preferred, with positions at 
larger distances providing nearly no information. The resulting pos- 
terior probability functions also clearly show the effect of different 
receiver positions. The area of high probability is aligned vertically 
when we focus on the hypo- or epicentre, while it is aligned al- 
most horizontally when we seek the source depth. An information 
tradeof f introduced b y a focus on dif ferent questions is also evi- 
dent since the posterior pdf for the source depth is more spread out 
and, therefore, is less informative than the hypocentre localization 
design, which corresponds to classical experimental design. 

6.2 Amplitude versus offset 

A well-studied problem in nonlinear geophysical optimal design is 
AVO inversion for seismic velocity contrasts (van Den Berg et al. 
2003 , 2005 ; Guest & Curtis 2009 , 2010 , 2011 ). We use this exam- 
ple to compare methods and discuss contrasts with results in the 
source location problem, and to illustrate stochastic one-step design 
optimization and a more realistic interrogation problem. 

The objective of AVO is to determine the seismic properties of 
a buried layer by observing the change in seismic amplitude as a 
function of offset from the source. Fig. 13 depicts the setup which is 
identical to the one in Guest & Curtis ( 2009 ). A Gaussian prior pdf 
with a mean of 3750 m s −1 and a standard deviation of 300 m s −1 is 
assigned to the P -wave velocity α2 in the layer of interest. Further, 
we assume a so-called Poisson medium in which β = c α, where 
c = 1 / 

√ 

3 , no density contrast between the layers, and assign a P - 
wav e v elocity α1 of 2750 m s −1 and thickness of 500 m to the upper 
layer. The top of Fig. 13 shows the resulting reflection coefficients 
for a range of offsets and values for α2 , indicating the nonlinear 
nature of the problem, especially around the critical angle. 

As for the seismic source location example, the different methods 
presented in Section 3 are compared as a function of the number 
of forward samples used (see Fig. 14 ). The only changes compared 
to the seismic source location benchmarks are that less e xpressiv e 
variational families are used for the variational posterior method 
(Gaussian MDN with three layers consisting of 30 nodes in each 
layer, defining 10 Gaussians). The receivers for the optimal two- 
receiver design for the NMC re , variational marginal and variational 
posterior method are located at 1020 and 1160 m offset. 

All variational methods perform substantially better if the NMC re 

method is taken as a baseline. The variational posterior method 
especially performs well in this scenario. If inner loop samples are 
not reused, the NMC method performs poorly, showing no sign of 
conv ergence ev en for 1 × 10 5 total samples. This is likely due to the 
very low sampling density in regions with near vertical R p curves 
leading to near zero probabilities. Even for 1 × 10 5 total samples 
the inner loop of the NMC method contains only 46 samples which 
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Figure 11. Seismic source location problem setup with prior samples (blue contours) and seismic rays (thin black lines) originating from one of the prior 
locations (red star). 

Figure 12. Comparison of optimal one-receiver networks for different in- 
terrogation goals. A high EIG in the top graph of each panel indicates good 
positions for answering the specific questions given in the panel title. The 
bottom graph of each scenario illustrates the geophysical setting and shows 
an example model parameter posterior pdf. The black cross indicates the 
true event location used to generate the datum in each example. 

Figure 13. Schematic illustration of the AVO design problem setup. The 
top figure shows the change in reflection coefficient R p (dimensionless) as a 
function of offset for different P -wave velocities in the lower layer, indicated 
by the different colours. 
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eads to a high variance of the EIG estimate. Around 1 × 10 9 total
amples would be necessary for the NMC method to have the same
umber of inner loop samples as the NMC re method at the point
here it first convergences to a stable design (1 × 10 3 samples).
he EIG value to which all methods converge is slightly lower than

he best design of 1000 random trials due to the use of sequential
onstruction for optimization. Ho wever , for a four-receiver design,
he optimal designs of all but the NMC method outperform the best
andom design by a substantial margin (around 10 per cent). The
alue of experimental design is obvious, considering how much
orse the average random and heuristic designs perform. 

.2.1 One-step EIG optimization 

sing variational low er bounds, w e use the AVO experimental de-
ign problem to illustrate the feasibility of SGD design optimization
or geophysical problems (for more information, see Appendix A3 ).

e use the variational posterior method and its gradients with re-
pect to receiver positions to optimize the design ξ , while simultane-
usly fitting parameters φ describing the variational approximator
 p ( m | d , ξ, φ) . Note that this is a slightly different use of SGD: pre-
iously we used SGD to only optimize φ while keeping the design
xed, whereas here we use SGD to simultaneously optimize both φ

art/ggad492_f11.eps
art/ggad492_f12.eps
art/ggad492_f13.eps


1322 D. Strutz and A. Curtis 

Figure 14. Benchmark results from different EIG estimation methods using sequential construction. Shows the EIG for a two-receiver network for an AVO 

design problem. The solid line indicates the mean of 10 independent benchmark runs, while the shaded area indicates the respective minimum and maximum 

values of those runs. The NMC re results are shown in every panel to serve as a benchmark for comparison. On the right, a smoothed histogram of the EIG 

for 1000 randomly selected designs and the EIG of a heuristic design is shown to put the results into context. Details on the setup and methods are in the 
main text. Benchmark results from different EIG estimation and design methods, showing the EIG for a tw o-receiver netw ork for an AVO design problem as a 
function of the number of samples for which the forward function is evaluated. The solid line indicates the mean of 10 independent runs, while the shaded area 
indicates the respective minimum and maximum values of those runs. The mean curve of the NMC re results are shown in every panel to serve as a benchmark 
for comparison. On the right, a smoothed histogram of the EIG for 1000 randomly selected designs and for a heuristic design with receivers at 0.5 and 1.5 km 

is shown to put the results into context. Details on the setup and methods are in the main text. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1309/7492801 by U

niversity of Edinburgh user on 30 January 2024
and ξ at the same time. This approach is the BA-method introduced 
by Barber & Agakov ( 2004 ) and applied to experimental design 
first by Foster et al. ( 2019b ). The variational family is the output of 
a Gaussian MDN with a three-layer neural network of 40 nodes in 
each layer defining 10 Gaussians as output. The design ξ is passed 
as an additional input to potentially strengthen the extrapolation ca- 
pabilities of the variational mapping as proposed by Kleinegesse & 

Gutmann ( 2021 ) for a neural-network-only based EIG l ower bound. 
1 × 10 5 SGA steps with a batch size of one and the optimizer Adam 

(Kingma & Ba 2014 ) were used to find values of ξ and φ which 
maximize the EIG . 

As a first test, we search for an optimal two-receiver design which 
can be benchmarked against a grid search using the NMC re method 
with 1 × 10 4 samples for both inner and outer loops to use as 
few samples as necessary while ensuring a reliable EIG estimate is 
obtained (see Fig. 14 ). 

Since gradient descent algorithms are sensitive to local extrema, 
the initial design choice is important. We therefore ran 100 tri- 
als with random initial offsets (Fig. 15 ) where the EIG at the fi- 
nal design has been calculated using the NMC re method to make 
the results comparable. Most designs using SGA design optimiza- 
tion converge to the maximum EIG of the 200 × 200 grid search 
which is assumed to approximate the global maximum. The de- 
sign calculated by sequential construction selecting locations from 

200 offsets performs slightly worse than the grid search and most 
SGA-optimized designs. In fewer than 20 per cent of cases, one 
receiver gets stuck at the local minimum at zero offset. The R p 

versus offset graph in Fig. 13 clearly shows this local maximum 

since the spread in data increases towards lower offsets from around 
650 m. Due to the boundary at zero offset and the region with small 
gradients up to offsets of around 650 m, it is hard for the SGA 

algorithm to escape this local maximum in EIG . This behaviour can 
be seen in Fig. 15 (a), which shows the change in designs during the 
SGA optimization process. In any case, the SGA-optimized designs 
outperform a heuristic design with equispaced receivers at 750 and 
1250 m, since heuristically it is beneficial to place receivers between 
one and three times the depth of the interface (Guest & Curtis 2009 ). 
Initial designs with receivers at [50 m, 3450 m] (heuristically bad 
initial design) or at [1166 m, 2333 m] (heuristically good initial 
design) show the effects of choosing a reasonable or unreasonable 
initial design choice, where the unreasonable one gets stuck in a 
local maximum while the reasonable one converges towards the 
global maximum. 

At the expense of potential convergence towards a local maxi- 
mum, the SGA design optimization requires only 1 × 10 5 forward 
e v aluations compared to the 8 × 10 8 for the grid search and 8 ×
10 6 e v aluations for the sequential construction using the NMC re 

method—resulting in a reduction of computational cost by a factor 
of 8000 and 80, respecti vel y. If repeated computations are stored, 
the reduction in the number of forward evaluations drops to a fac- 
tor of 20 in both cases, but savings would increase if a finer grid 
is used. The actual savings are hard to estimate since calculating 
the EIG using the NMC re method still involves a large number of 
likelihood e v aluations, e ven if the forw ard model e v aluations are 
precomputed. At the same time, the SGA algorithm introduces the 
overhead of calculating the gradients of the MDN for each sample 
using automatic differentiation. The actual reduction depends on 
the computational cost of the forward model, the complexity of the 
v ariational famil y, and the number of samples necessary for getting 
a stable EIG estimate. 

To display the beneficial scaling properties of SGA design opti- 
mization, the AVO experimental design problem was repeated with 
10 receivers and compared to the results of Guest & Curtis ( 2009 ). 
We used a Gaussian MDN with a three-layer neural network of 100 
nodes in each layer defining 20 Gaussians as output. In this case, 
the SGA optimization algorithm was substantially less likely to get 
stuck in local minima and converged to a consistent solution in 
nearly all test runs. The number of SGA steps was increased to 4 
× 10 5 to accommodate the larger number of recei vers. Howe ver, as 
is evident from Fig. 16 , the SGA-optimized design is already very 
close to the final design after around 5 × 10 4 iterations. 

Two different initial conditions were tested as starting points 
for the SGA optimization. First, we used 10 equispaced receivers 
between 50 and 3450 m, which introduces little prior knowledge and 
is only subject to the constraint that receivers should lie between an 
offset of 0 and 3500 m. Second, the initial design are equispaced 
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(a)

(b)

(c)

Figure 15. Summary of the results for the design of a two-receiver network for the AVO problem using SGA design optimization (c). EIG values of designs 
derived using the sequential construction method, a grid search and a heuristic design are given for comparison. All EIG values are calculated using the NMC re 

method. (a) Offsets of the two receivers during the SGA design optimization, where solid lines indicate the receiver starting with the lower offset, and dashed 
lines indicate the one starting with the higher one. Red and blue histograms correspond to the EIG of starting and final designs, respecti vel y. (b) Continuation 
of panel (c) towards the left with a lower resolution. 
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eceivers between 500 and 1500 m, which is a heuristically good
esign, spanning between one and three times the depth of the
nterface. Since this starting design is closer to the final design, the
GA algorithm converges more quickly towards the final design. 
The two SGA designs are compared to their respective initial

esigns and two benchmarks in Fig. 16 . In both cases, but espe-
ially for the equispaced starting design, the EIG (calculated using
he NMC re method for better comparison) has increased substan-
ially. Sequential construction (NMC re method using 200 ∗2 × 10 4 

orw ard e v aluations) is used here as a proxy for an optimal design.
ince the value added by the 10th receiver is less than one per cent
Guest & Curtis 2009 ), the EIG of the sequential design will be very
lose to the global maximum. Both SGA designs perform slightly
orse than the sequential construction design, which is most likely
ue to a combination of bias introduced by the variational approxi-
ation, choices in the learning rate, and small gradients due to the

verdetermined nature of this design problem. 
The resulting designs can also be compared to an optimal de-

ign for the same setup but with a different model parameter prior
df. Instead of a Gaussian, Guest & Curtis ( 2009 ) used a uniform
istribution with upper and lower bounds of 3000 and 4500 m s −1 ,
especti vel y. Using the maximum entropy method, this results in a
esign with an EIG of 2.95, which is better than the heuristic de-
ign but worse than the SGA and sequential construction designs,
hich shows the influence of the prior pdf in experimental design
roblems. Never theless, the design outperfor ms the heuristic design
ven for a different prior pdf. 

The computational savings in this 10-D design space are substan-
ial. Even when repeated e v aluations are saved, the SGA methods
equire around an order of magnitude fewer forward samples. When
isregarding forward evaluations, the sequential design algorithm
sing the NMC re method requires 200 × 10 EIG e v aluations, each
nvolving 1 × 10 4 2 = 1 × 10 8 likelihood e v aluations. In contrast,
nly 2 × 10 5 –4 × 10 5 forward and MDN e v aluations are required to
alculate the SGA experimental design. The e v aluation of the vari-
tional family could be sped up substantially by using GPUs, which
ill be especially beneficial if more complex variational families
re necessary. 

.3 Interrogation for CO 2 

s introduced in Section 6.1.2 , we will now demonstrate the use
f variational methods for the design of experiments that answer a
ore practically interesting scientific question using AVO data. We

ocus on questions relating to the CO 2 saturation in a subsurface
ayer. The setup of the physical parameters represents a simplified
odel related to the Sleipner field (Dupuy et al. 2017 ; Ghosh &
jha 2020 ). The upper layer is described by its seismic proper-

ies ( P -wave velocity α1 and S -wave velocity β1 ), density ρ1 and
epth d , all with ranges given in Table 1 . For the low er la yer, the
eismic properties are modelled using Gassmann fluid substitution
Gassmann 1951 ; Smith et al. 2003 ), which can be used to calcu-
ate seismic parameters given properties of the drained frame (bulk

odulus K frame , shear modulus G frame , porosity 	 ), mineral grains
bulk modulus K grain , density ρgrain ), brine occupying the pore space
bulk modulus K brine , density ρbrine ) and liquid CO 2 that replaces it
bulk modulus K C O 2 , density ρC O 2 ). Given all of these properties,
nly the saturation S of the pore space by CO 2 is required in order to
alculate the AVO effect, and is assumed to be uniformly distributed
etween 0 and 1. In contrast, all other parameters are assumed to
e distributed according to a Gaussian with means and standard
e viations gi ven in Table 1 . 

We must first calculate the pore fluid density and bulk modulus
n order to apply the Gassmann equation. For this, we use the Voigt
arithmetic) average 

fluid = SρCO 2 + (1 − S) ρbrine , (27) 

K fluid = SK CO 2 + (1 − S) K brine , (28) 

hich gives a (stiff) upper bound on the bulk modulus. In real-
orld applications, a Reuss average or Voigt–Reuss–Hill average
ight be more suitable, but here the focus is on the optimal design

art/ggad492_f15.eps
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Figure 16. Designs (coloured triangles) and EIG values for 10-receiver SGA design optimization for the AVO design problem. If SGA iterations are shown on 
the y -axis, the design and EIG corresponds to the final (uppermost) design. SDG (equispaced) refers to an equispaced design between 0 and 3500 m which is 
optimized using 1 × 10 5 SGA steps, while SGA (heuristic) refers to a heuristically good design with equispaced receivers between 1500 and 2500 m which is 
optimized using 5 × 10 4 SGA steps. The offset axis is limited to a range from 0 to 2500 m, since the receivers for all but the equispaced design are concentrated 
in this area. 

Table 1. Nuisance parameters in the AVO interrogation example. The quoted uncertainties 
correspond to the respective standard deviations. 

Layer Parameter Value Unit 

Upper layer α1 2270 ± 10 m s −1 

β1 854 ± 10 m s −1 

ρ1 2100 ± 10 kg m 

−3 

d 1000 ± 50 m 

Low er la yer K frame 2.56 ± 0.77 GPa 
G frame 8.5 ± 0.3 GPa 

	 0.37 ± 0.02 
K grain 39.3 ± 1.4 GPa 
ρgrain 2664 ± 2.6 kg m 

−3 

K brine 2.31 ± 0.07 GPa 
ρbrine 1030 ± 20 kg m 

−3 

K co2 0.08 ± 0.04 GPa 
ρco2 700 ± 77 kg m 

−3 
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lgorithms rather than on details of the rock physical modelling.
ith the properties of the fluid at hand, the bulk modulus and

ensity of the saturated rock can be modelled using the Gassmann
quation 

K sat = K frame + 

(
1 − K frame 

K grain 

)2 

	 
K fluid 

+ (1 −	 ) 
K grain 

− K frame 
K 2 grain 

, (29) 

sat = 	ρgrain + (1 − 	 ) ρfluid , (30) 

hich can then be used to calculate the P -wav e v elocity of the
ow er la yer. Using Gassmann’s equation, w e implicitly assume that
he shear modulus of the lower layer is independent of the CO 2 

aturation. The seismic properties of the lower layer can now be
alculated as 

2 = 

√ 

K sat + 4 3 G frame 

ρsat 
, (31) 

2 = 

√ 

G frame 
ρsat 

, (32) 

hich can then be used with the properties of the upper layer to
alculate the P -wave reflection coefficient. 

We qualitati vel y compare optimized two station designs for dif-
erent design aims and a heuristic design with two receivers equally
paced between one and three times the interface depth (1000 m) at
ffsets of 1666 and 2333 m. In addition to the heuristic design, we
alculated the design optimized to constrain all parameters given
n Table 1 and the CO 2 saturation using the NMC re method as a
aseline for comparison. Sequential construction is used for this
nd all design optimizations in this subsection. To focus only on
O 2 saturation, we can see all parameters in Table 1 as nuisance
arameters. With the variational posterior method (with the same
DN as earlier in this section), we can now derive a design that

s optimal for estimating the CO 2 saturation alone, with the re-
ulting design shown in Fig. 17 . This design differs substantially
rom the heuristic design and the design constraining all model
arameters. Since we have the mapping T 

−1 (the Gassmann equa-
ion including nuisance parameters) available in this case, it would
e possible to use extended (and computationally more e xpensiv e)
ersions of both the NMC re and variational marginal method for
his interrogation design problem. This approach is not al wa ys
ossible if the scientific question is also a function of the CO 2 

aturation. 
For some applications, the exact value of the CO 2 saturation might

ot be of interest, but a key question is whether the saturation value
s above or below a certain threshold. Changing the variational
amily of the variational posterior method to a neural network,
aking data as input, and predicting the probability of exceeding
he threshold makes it possible to design experiments optimally
uited for estimating whether the CO 2 saturation is above or below
 certain threshold. The last layer of the neural network is a sigmoid
unction, which is used to predict the probability of exceeding the
hreshold. The results of such an optimization for a threshold of 0.1
nd 0.9 are shown in Fig. 17 . The resulting designs are in a similar
egion as the one designed to constrain the value of the saturation,
ut de viate considerabl y to either focus on a more specific offset
threshold 0.1) or be spread further apart (threshold 0.9). 

 D I S C U S S I O N  

ecent works have shown the need for approximations in exper-
mental design methods for fully nonlinear experimental design
rob lems. Those appro ximations come in the form of linearized and
aplace methods which both assume that the forward model can be
locally) approximated by a linear model (e.g. Wilkinson et al. 2006 ;
ong et al. 2015 ; Maurer et al. 2017 ; Carlon et al. 2020 ; Krampe
t al. 2021 ), surrogates which approximate the forward model but
ut no constraints on model parameter prior or posterior pdf’s (e.g.
uan & Marzouk 2013 ; Qiang et al. 2022 ; Wu et al. 2022 ), and

unctional approximations of the evidence, the posterior pdf or the
utual information between data and model parameters (e.g. Coles
 Curtis 2011b ; Kleinegesse & Gutmann 2018 ; Foster et al. 2019a ;
leinegesse & Gutmann 2020 ). In this work, we focused on varia-

ional methods which assume that the evidence or posterior pdf can
e described suf ficientl y well by a closed-form variational approx-
mator. They do not require any modification to either the forward
roblem or the prior information on the model parameters, which
akes them attractive for general-purpose applications. 
While functional approximations introduce additional complex-

ty compared to straightforward double-loop Monte Carlo estima-
ors such as the NMC method, they have significant advantages,
specially since the NMC method with reused samples, while work-
ng well in the presented examples, can perform suboptimal when
ompared to methods using functional approximations (Englezou
t al. 2022 ). Most importantly, the y allow the design of e xperiments
est suited to answer any scientific or applied question, provided
 mapping from model space to the rele v ant target space can be
efined. While this is important in its own right, the typical low
imensionality of the target space could allow experimental design
ethods to scale to substantially larger problems than currently

ossible. 
Another significant advantage is the straightforward application

f SGD design optimization using EIG lower bounds (variational
osterior method in this study) if gradients with respect to the design
arameters are available. While this is also possible using NMC
r Laplace methods, they need a significant number of inner loop
amples (Goda et al. 2020 ) or require an estimation of the maximum
 posteriori estimate (Carlon et al. 2020 ), respecti vel y, at each
radient descent step. The Laplace method can be seen as a special
ase of the variational posterior method in which the variational
amily is replaced by a multivariate Gaussian derived using the
essian matrix of the linearized forward problem. Therefore, they

hould introduce a similar bias as incurred when using a well-trained
DN predicting one Gaussian with a full covariance matrix. The

ame goes for the consistent extensions of both methods, the VNMC
variational NMC) method of Foster et al. ( 2019a ) and the Laplace-
ased importance sampling estimator of Carlon et al. ( 2020 ) and
nglezou et al. ( 2022 ). Unlike the variational methods, the Laplace-
ased methods are inherently restricted to a Gaussian posterior
df. 

The D N method performs well in the benchmarks presented in
his paper. It shows the advantages of using a variational family
hich can be fit easily and whose information content can be e v alu-

ted anal yticall y. Extending the method to be applicable for (some)
nterrogation design problems could benefit large-scale geophysical
pplications. It would provide a cheap and robust method that can
e applied to many applications. If an inverse mapping of the target
unction exists or can be approximated, the variational marginal-
ikelihood method of Foster et al. ( 2019a ) can be used to extend the
 N method to a subclass of interro gation problems. Howe ver, as has
een demonstrated, the D N method can lead to non-optimal designs
f the assumption of Gaussian evidence is violated substantially. For
omplex high-dimensional problems, deciding whether a problem is
ll-suited for the D N method will be dif ficult. Howe ver, special care
hould be taken if the prior is multimodal or if the forward function
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Figure 17. Offsets for two receiver designs for the AVO interrogation example. The heuristic design is chosen without optimization the other four designs are 
optimal designs for different scientific questions. 
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is known to show strong nonlinearity. Never theless, apar t from in 
extreme cases, there is reason to believe that D N design will provide 
at least abov e-av erage (compared to randomly selected) designs, at 
substantially reduced cost compared to most other design methods, 
and it is the only method that can produce robust designs using of 
the order of 10–100 forward evaluations. 

Specifying variational mappings is a non-trivial task, and care 
needs to be taken to provide a suf ficientl y expressi ve yet computa- 
tionally tractable one. Some of those problems could be alleviated 
using lower bounds on the EIG solely parametrized by neural net- 
works (Kleinegesse & Gutmann 2021 ; Guo et al. 2021 ). Those have 
the same advantages as the variational posterior method but are eas- 
ier to specify and can be constructed to be consistent (converge to 
the true EIG given enough samples) and with low variance (Guo 
et al. 2021 ), making them well suited for SGD design optimiza- 
tion. They are promising candidates for large-scale interrogation 
experimental design problems. 

This paper aims to introduce the framework of variational ex- 
perimental design methods clearly and intuiti vel y and appl y the 
methods to non-trivial geophysical applications. Consequently, the 
examples are both relati vel y small in scope and involve some ap- 
pro ximations, w hich hinder their applications in their current form. 
The seismic source location example was calculated for the 2-D 

case, but extending it to three dimensions would be straightforward. 
The two-layer case of the AVO example, on the other hand, is rare to 
find in practical applications, and often, the interface of interest is 
buried under a complex overburden. In this case, a very good knowl- 
edge of the background velocities would be required to accurately 
model the reflectivity of the interface of interest. The reflectivity 
of seismic waves is nevertheless an important practical problem, 
and the simplified example chosen allows us to demonstrate the ex- 
perimental design methods in a complex nonlinear physical setting 
while taking the first step towards the application of those methods 
to practical, real-world design problems. 

While the dimensionalities of the presented scenarios are de- 
liberatel y small, v ariational methods and other functional approxi- 
mations offer one way of scaling Bayesian experimental design to 
higher dimensions. Exactly how this scaling works is hard to say cur- 
rentl y. Howe ver, for problems where solving even one probabilistic 
inverse problem is challenging (e.g. full-waveform inversion), fully 
solving the experimental design problem will be even harder. For- 
tunately, it is often not required to solve the experimental design 
prob lem w holl y accuratel y to get results better than a heuristic 
would provide. 

While some results shown here could have been derived qualita- 
ti vel y using physical intuition, calculating the exact design requires a 
quantitati ve frame work, as discussed in this paper. This is especiall y 
true for complex 3-D scenarios involving many receivers, complex 
priors, noise distributions and physical models, where heuristics 
and intuition break down. 

8  C O N C LU S I O N S  

In this paper, w e ha ve introduced variational experimental design 
methods to Geophysics, we have discussed their potential benefits 
and challenges, and placed them into context amongst linearized and 
other more established methods. We also briefly introduced the use 
of mutual information lower bounds for experimental design. The 
examples were chosen to illustrate the main concepts and encourage 
the use of these methods in geophysical applications. 

We have compared different methods for estimating the value of 
an experiment and show that the naive NMC method is impractical 
for even small-scale geophysical problems due to the large number 
of samples required. In contrast, the variational methods and the 
NMC method with reused inner loop samples perform similarly 
well for both the seismic source location and AVO design problems. 
All three methods can fully account for the effects of nonlinearity 
in the physical process, but which method is preferred depends on 
the problem at hand. 

We have also demonstrated ho w lo wer bounds on the EIG can 
be used to design interrogation experiments, that provide the best 
possib le ans wer to specific questions of interest. We argue that this 
focused approach is more efficient and uses resources better than 
the traditional optimal design if a specific research question is of 
scientific interest. We also show that the optimal design can change 
substantially depending on the question posed. 

Using AVO analysis as an example of a highly nonlinear geophys- 
ical process, we demonstrate the applicability and computational 
saving enabled by deploying stochastic gradient design optimiza- 
tion. This is especially relevant for high-dimensional designs that 
collect a large number of data. Even for e xpensiv e forward prob- 
lems a small number of gradient descent steps can be used to refine 
heuristic designs to a specific problem at hand. 

art/ggad492_f17.eps


Variational BED for geophysical applications 1327 

t  

i  

c  

a

A

T  

h  

N  

e  

&  

(  

i  

u  

p
 

H  

S  

s

D

T  

u  

u

R

A  

A  

 

A  

 

A  

 

 

A  

 

A  

A  

A  

A  

 

B  

 

B  

B  

2

B  

 

 

B  

B
B
B  

 

B  

 

B  

B  

 

C  

 

 

C  

C  

 

C  

C  

C  

 

C  

 

C  

 

C  

C  

C  

C  

C  

 

C  

 

C  

 

C  

 

C  

 

D  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1309/7492801 by U

niversity of Edinburgh user on 30 January 2024
All methods used have been implemented in a Python package 2 

o enable the use of OED for other researchers. Currently, it is
n an early stage and lacks documentation. Still, it will be updated
onsistently over the coming years, and user-friendly documentation
nd tutorials will be added. 

C K N OW L E D G M E N T S  

he implementations of the OED algorithms in this w ork w ould not
ave been possible without extensive use of open-source software.
ot all of them have been included in the respective sections to

ase readability. All the code was written in Python (Van Rossum
 Drake 2011 ), the libraries PyTorch (Paszke et al. 2019 ) and Zuko

Rozet 2023 ) were used to process probability distributions and
mplement the variational families, NumPy (Harris et al. 2020 ) was
sed for general data processing and Matplotlib (Hunter 2007 ) for
lotting. 

This project has received funding from the European Union’s
orizon 2020 research and innov ation pro gramme under the Marie
kłodowska-Curie grant agreement no. 955515—SPIN ITN ( www.
pin-itn.eu ) 

ATA  AVA I L A B I L I T Y  

his study only uses synthetic data. The code to generate the fig-
res in Section 6 is available here: https://github.com/dominik-str
tz/VarBEDfGP 
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Figure A1. Schematic overview of model, data and target space and the 
(probabilistic) functions mapping between them. 
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A P P E N D I X  A :  A DVA N C E D  C O N C E P T S  

We now briefly describe selected implementations of more advanced 
design concepts, using a set of examples that hint at possible useful 
dev elopments in future. The y also reinforce the notion that varia- 
tional and other related methods may be valuable for the design of 
experiments in certain types of geophysical applications. 

A1 Likelihood-free experimental design 

So far, we have assumed that it is possible to e v aluate p( d | m , ξ ) 
pointwise (meaning the likelihood function is explicit or otherwise 
directly computable). This assumption is typically valid in geo- 
physics as the likelihood is often assumed to be a Gaussian distri- 
bution around a mean predicted by the forward model. Ho wever , in 
certain applications, inherent randomness in the forward function 
exists, in which case this is not possible. An example is seismic 
source location in an unknown heterogeneous medium, where the 
randomness is due to the different realizations this medium can take. 
In this case, the likelihood is intractable and must be approximated. 
Typically, this randomness is absorbed in an explicit Gaussian data 
likelihood, but using a likelihood-free approach would allow us to 
explicitly model the effect of this randomness. 

For model space methods, this is of no consequence since the 
likelihood is only used to generate data samples and so its value 
need never be evaluated explicitly. Data space methods, on the other 
hand, rely on explicit evaluations of p( d | m , ξ ) . If an average over 
nuisance variables can be used to model the intractable likelihood, 
the NMC method can be used in an extended form (Feng & Marzouk 
2019 ), but in general this will lead to high computational cost in 
practical problems because in this extended form the inner loop 
samples can not be reused. Alternative methods include the use 
of a variational approximation of the likelihood (e.g. Foster et al. 
2019a ; Cheng et al. 2020 ), and several works focus exclusi vel y 
on experimental design algorithms for likelihood-free experimental 
design (Hainy et al. 2014 , 2016 , 2018 ; Kleinegesse & Gutmann 
2018 , 2020 , 2021 ). 

A2 Designing experiments for interrogation problems 

The objective of a scientific investigation is typically to answer a 
specific set of research questions. For experimental design prob- 
lems, we then wish to maximize the information in a target space T 

rather than that described by the posterior distribution over model 
parameter space. The answers usually depend on multiple model 
parameter values m , and as shown in Fig. A1 , a target function 
T ( m | Q ) is defined that maps the values into a target space T 

where a question of interest Q can be answered (Arnold & Curtis 
2018 ). 

Ho wever , incorporating a target space poses challenges for data 
space experimental design methods since the likelihood p( d | t) = ∫ 
M 

p( d | t, m ) p( m ) is typically not available directly, because it 
depends on model parameter values. One approach to estimate 
the likelihood involves conditionally sampling models from the 
prior distribution that map to a specific point in the target space 
T −1 = p( m | t) , and treating the model parameters as nuisance 
variables (Feng & Marzouk 2019 ). For this approach, the inverse 
function T 

−1 must be availab le, w hich is only the case in spe- 
cific scenarios. Even if T 

−1 can be approximated, it would in- 
volve similar challenges as pre viousl y discussed for variational 
methods. 

By contrast, model space techniques enable straightforward 
likelihood-free experimental design (see Appendix A1 ), and allow 

interrogation experiments to be designed without requiring T 

−1 . 
They can therefore be applied for any general interrogation prob- 
lem, for which T or T 

−1 is computable. Only if the mapping T is 
linear is it possible to use linear (Bayesian) experimental design 
methods (Curtis 1999b ; Attia et al. 2018 ; Wu et al. 2021 ) 
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3 Stochastic gradient EIG optimization 

ection 4 presents methods that solve eq. ( 14 ) using search algo-
ithms where EIG calculation and optimization are carried out in
eparate operations. This two-step approach is a standard procedure,
ut it becomes increasingly difficult for higher numbers of design
imensions. Using the variational posterior method, a one-step de-
ign procedure can be constructed in which the parameters of the
 ariational famil y and the design vector are optimized simultane-
usly (Foster et al. 2019b ) using SGD. 

SGD is a widely used optimization algorithm which allows op-
imizations to scale to substantially higher dimensions. The only
estriction for geophysical problems in practice is the need to pro-
ide the gradients of p( d | m , ξ ) with respect to the design. This
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License ( h
permits unrestricted reuse, distribution, and reproduction in any medium, provided
imitation can be challenging for some problems but is readily avail-
ble for problems that are solvable anal yticall y (AVO studies; v an
en Berg et al. 2003 , 2005 ) or when the forward solver can be ex-
ressed in a backwards differentiable form (Ren et al. 2020 ; Smith
t al. 2021 ; Richardson 2022 ). Generall y, an y lower bound on the
IG (see Foster et al. 2019b ; Kleinegesse & Gutmann 2021 , for
xamples) can be straightforw ardl y maximized using SGD for de-
ign optimization if the gradients of p( d | m , ξ ) with respect to the
esign parameters are available or can be approximated. It is more
hallenging to apply upper bounds such as the NMC or variational
arginal method in this one-step approach (Huan & Marzouk 2014 ;

oster et al. 2019b ; Goda et al. 2020 ). 
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