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Tutorial

Prior information, sampling distributions,
and the curse of dimensionality

Andrew Curtis∗ and Anthony Lomax‡

ABSTRACT

This tutorial addresses geometrical issues that concern
the specification of high-dimensional sampling distribu-
tions in Bayesian inversion. We illustrate that simple,
low-dimensional geometrical concepts that are some-
times used to construct such distributions may become
completely distorted (and even untrue) in higher di-
mensional problems. This has important implications for
Bayesian inversion: if a convenient sampling distribution
is constructed using low dimensional geometrical con-
cepts which cause it to differ from the distribution rep-
resenting our prior information, these differences can
become extremely expensive to correct in higher dimen-
sions. Indeed, they may make a nonlinear inversion com-
putationally intractable when this need not be the case. A
crucial factor in Bayesian inversion is, therefore, whether
one firmly believes in a particular prior distribution. If so,
this distribution may constitute the most efficient sam-
pling distribution, even in cases where it is not straight-
forward to draw samples from that prior distribution.
The sampling artifacts described above then become ir-
relevant since they represent true prior beliefs.

INTRODUCTION

Bayesian inference or inversion to constrain model parame-
ters using measured data consists of two main stages (Tarantola
and Valette, 1982; Tarantola, 1987):

1) Specifying prior information,that is,all information avail-
able from sources independent of the current data, usu-
ally described by a prior probability distribution function.
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2) Updating the prior information with additional informa-
tion gained from current data, the resultant state of infor-
mation usually being described by a posterior probability
distribution function.

Ideally, the second stage requires that we construct a map of
the misfit surface over the portion of model space consistent
with the prior information, where the misfit measures the dif-
ference between the synthetic data predicted by any model
and the observed data. In practical geophysical problems the
number of parameters (dimensionality) is usually high, and
the mapping between models and synthetic data (the forward
function) may be nonlinear. Thus the misfit surface is high di-
mensional and is often complicated with many extrema (e.g.,
Lomax and Snieder, 1995; Sambridge, 1998).

Two approaches to exploring the misfit surface are deter-
ministic or stochastic (pseudorandom) sampling of the por-
tion of the model space consistent with the prior distribution,
and linearized inversion techniques. Linearized inversion of-
ten appears to be computationally efficient because it uses
local, quadratic approximations to the misfit surface to take
steps from an initial model that (generally) improve the data
fit. However, only a single point solution and associated local
uncertainty estimate (based on the local quadratic approxi-
mation) are found. If the choice of initial model was based
upon weak prior information, a local misfit minimum may be
found in multimodal inverse problems. In such situations, no
indication is given that a local rather than global minimum has
been found, and the computational cost of checking this can be
extremely high.

In principal, global sampling techniques do not have these
problems since they allow all parts of model space that might
give good data fits to be sampled and thus provide more com-
plete information about the posteriori uncertainty distribu-
tion (Kirkpatrick et al., 1983; Smith et al., 1992; Lomax and
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Snieder, 1995; Mosegaard and Tarantola, 1995; Vinther and
Mosegaard, 1996; Sambridge, 1998). Sampling methods, how-
ever, are computationally expensive in problems with many
model parameters and weak prior information because a large
volume of model space must be explored. In such situations,
the initial sampling distribution is sometimes also incremen-
tally weighted by the data fit so that the samples gradually
become distributed according to the posteriori distribution
(called importance sampling, see e.g., Lepage, 1978; Mosegaard
and Tarantola, 1995; Sambridge, 1998). Although this sampling
scheme is more efficient in principal, the same portion of model
space must be explored initially (if only to check that parts of
it don’t fit the data).

In practise, we must specify a sampling distribution that re-
spects the prior information, but also makes the inverse prob-
lem tractable. Often the distribution that represents prior in-
formation exactly is difficult to sample directly; a more con-
venient initial sampling distribution is sometimes chosen (e.g.,
uniform, Gaussian, etc.). This sampling distribution may then
be weighted incrementally by data fit. To obtain the formal
posterior probability distribution, one then corrects for any
differences between the initial sampling and the prior distribu-
tions (Lepage, 1978; Sen and Stoffa, 1995).

This tutorial concerns geometrical concepts that might be
used to construct practical sampling distributions when the
number of model parameters M (or model space dimension-
ality) is low (M = 1≤ 3). When applied to high-dimensional
model spaces, these concepts do not always give results that
might be expected, and may make correction for differences
between the sampling and prior distributions very inefficient.
The mathematics included herein is not new; our main objec-
tive is to ensure that the implications of the concepts presented
are more widely appreciated within the inversion community.

PRIOR INFORMATION

In many practical inverse problems, prior information is
vague. It tends to be of the form, “I know very roughly what val-
ues my parameters will take, and I do not expect them to go out-
side of certain known bounds.” Consider a case where we wish
to constrain a velocity model of the earth by Bayesian inversion
of seismic data. Say the P velocity model m= [m1, . . . ,mM ]T is
parameterized by constant velocities mi in M individual depth
ranges that span the whole depth range of interest. Prior infor-
mation on m may be that we expect each velocity to be some-
where around 5 km/s from studies conducted previously. Also,
we know that previous, reliable studies in the region have never
estimated a velocity outside of the range [4, 6] km/s within the
relevant depth range, and thus we believe that 4 and 6 km/s are
truly velocity bounds.

Such information about the bounds provides what are called
independent linear constraints on each parameter [i.e., con-
straints of the form L j (m)< bj , for some linear functions L j of
each mi independently, where bj are constants]. This should be
distinguished from geophysical problems involving quadratic
(or higher-order) constraints (e.g., energy constraints in poten-
tial field problems). The latter implicitly introduce parameter
correlations and insurmountable problems in higher dimen-
sions (see Backus, 1988, and Scales, 1996, for discussions of
the “curse” of dimensionality). Here, we concentrate on inde-
pendent linear constraints since these are often encountered
in seismological inverse problems.

To solve the inverse problem stochastically, we must build
this prior information into a sampling distribution. Notice that
in this case there is no explicit prior probability distribution;
unless very carefully chosen, any particular choice of sampling
distribution is likely to impose different constraints on the sam-
ple set than are implied by the prior information given above.

We focus on sampling distributions that can be applied to
each parameter independently since these are generally easier
to implement (and hence are more often used) than those with
interparameter dependency. We will consider two sampling
goals that turn out to be difficult to attain in high-dimensional
problems:

1) The sampling should occur across the full parameter
ranges, but should be relatively dense close to the cen-
tral model (5 km/s).

2) The sampling should not be excessive close to, or outside
of, the parameter bounds (4 and 6 km/s).

UNIFORM SAMPLING DISTRIBUTIONS

Unless we have specific information that defines the form of
the prior probability of velocities within the range [4, 6] km/s,
it is often the case that we choose a uniform sampling distri-
bution across this velocity range. This is especially common
when Bayesian inversion will be performed using stochastic
sampling methods because pseudorandom, uniform sampling
is easy to perform. If dimension M = 2, this representation de-
fines a uniform probability over the square in model space
defined by 4≤m1≤ 6, and 4≤m2≤ 6; if dimension M = 3, then
this defines a uniform probability over the corresponding cube
(Figure 1). If the number of dimensions M > 3, then the uni-
form probability is defined over a hypercube. If individual
model parameters have different velocity ranges, then the hy-
percube would become stretched to form a hypercuboid. In
such cases, we assume that parameters can be scaled appropri-
ately to have a common range, after which the discussion and
figures presented here are directly applicable. With this repre-
sentation, we do not place any emphasis on the central point
(5 km/s) on each model parameter axis.

The discussion that follows concerns the nature of this uni-
form distribution as the number of model space dimensions
increases. Let the length of each edge of the square (cube,
henceforth hypercube) be a. Call this the a-hypercube with vol-
ume Va

M =aM in M dimensions. Consider embedding a smaller
hypercube of side length fa where f < 1 (the fa-hypercube,
Figure 1). The ratio of the volume of the fa-hypercube to the
volume of the a-hypercube is

V f a
M

Va
M

= ( f a)M

aM
= f M . (1)

Since f < 1, the ratio in equation 1 tends to zero as M→∞.
This result is important in high-dimensional inverse prob-

lems where the sampling distribution is specified as uniform
within a hypercube, as above. It states, in the velocity problem,
for instance, that as the number of dimensions increases, the hy-
pervolume of our distribution becomes almost completely con-
tained within a thin band close to the hypercubic faces (since
the result is true even for f = 0.99). This clearly contravenes
goal 2.

This result is in direct contrast with our perceptions from
one-, two-, and three-dimensional model spaces that we might
“visualize” in our minds. In one dimension, for instance, if we
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collect a large set of random Monte Carlo samples according
to a uniform distribution, we perceive that we are likely to ob-
tain good coverage over the whole range of models within the
bounds, including those models near the point centrally located
between the bounds. Thus, even if we expect that the velocity
model might be roughly centrally located between the bounds,
we may choose to use a uniform sampling distribution to avoid
the possibility of any incorrect bias towards centrally located
models. This choice may seem reasonable if our expectations
are not sufficiently precise to be represented by any particular
distribution [see Scales and Snieder (1997) for a discussion of

FIG. 1. Two- and three-dimensional model space where each model parameter lies within the range [4, 6] km/s.
The inner square and cube have half the edge length of the outer ones [ f = 1/2 in Equation (1)].

FIG. 2. Example 10-dimensional random models sampled uniformly from the velocity a-hypercube (a= 2, top
left), the inner fa-hypercube ( f = 1/2) (top right), close to the center of one of the a-hypercubic faces (bottom
left), and their projections onto the first two dimensions (bottom right).

how “reasonable” this is!]. However, if we apply the same phi-
losophy to high-dimensional model spaces, the results above
show that samples from a uniform distribution in a hypercube
will almost never lie close to the central model. Thus, a uniform
sampling distribution in high-dimensional model spaces does
not even approximately satisfy either of goals 1 or 2.

The character of typical velocity models sampled from a uni-
form distribution within a 10-dimensional hypercube and its
fa-hypercube where f = 1/2 are shown in Figure 2 (top left
and top right, respectively). Models sampled from either hy-
percube typically include dramatic variations from parameter
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to parameter, but those from the fa-hypercube are very much
more localized around the central model (see also the lower
right plot). The mathematics above states that there are very
many more models “like” that shown top left than “like” those
shown top right.

This is illustrated explicitly in Figure 3 in which uniform
probability density functions inside a-hypercubes of increas-
ing dimensionality were sampled and the proportion of sam-
ples that lay within the fa-hypercube ( f = 1/2) is plotted. This
decreases dramatically as dimensionality increases; the reduc-
tion is significant even in only a few dimensions. Practical in-
verse problems may include hundreds of dimensions. Hence,
if we are interested in satisfying goal 1, for example, then
very many samples may be required to obtain even a single
sample from the central portion of the model space in which
we are most interested. Correction of the sampling distribu-
tion to reflect the prior information would therefore be fairly
inefficient.

The reason that so many models lie outside of the fa-
hypercube is that even a single model parameter lying further
than fa from the mean value causes this to be true (e.g., Figure 2,
lower left and lower right). One way to sample models that
are more likely to lie in the fa-hypercube is therefore to sam-
ple smooth models. To illustrate this, we use the first-order
measure

s= 1
M

M∑
i=2

|mi −mi−1| (2)

(normalised by the number of dimensions M) to measure
model smoothness. In Figure 3, we also plot the proportion of
“smooth” models (s< 0.25) that lie within the fa-hypercube.
Smoothing certainly increases the proportion of models within

FIG. 3. Proportion of models randomly and uniformly sampled
from a-hypercubic model spaces similar to those in Figure 1
that lie within the fa-hypercube ( f = 1/2, solid), plotted as a
function of dimension. The dashed line shows the proportion
of smooth models that lie within the fa-hypercube, where a
smoothing threshold of s< 0.25 was used in equation (2).

this region, but this criterion is clearly insufficient to stop the
vast majority of models lying outside of it as the number of
dimensions increases.

The above discussion shows that, as the dimensionality of
the model space increases, the choice of sampling distribution
becomes more and more important. Ultimately the cost of eval-
uating the data fit offered by any particular model always limits
the number of stochastic samples that may be taken. Hence,
in high-dimensional model spaces where some information is
available about the “most likely” region of model space, the
specification of very narrow or nonuniform sampling distribu-
tions that sample this region efficiently becomes crucial to the
computational tractibility of Bayesian inference and inversion.

GAUSSIAN SAMPLING DISTRIBUTIONS

One way to accomplish the requirement of centrally-
concentrated sampling is to sample according to a Gaussian
probability distribution in each model parameter (defined
by a mean model and variance or uncertainty around the
mean). The resulting joint distribution of all model param-
eters is also a multidimensional Gaussian distribution. This
approach is especially common in linearized Bayesian inver-
sions since formal theory exists to update a Gaussian prior with
information from data with Gaussian uncertainties to obtain
a Gaussian probability distribution as the linearized inverse
problem solution (e.g., Tarantola and Valette, 1982). Clearly,
in one-dimensional problems, the prior information then im-
plies that the bulk of the prior probability mass (the area, vol-
ume, hypervolume beneath the distribution function) is located
around the mean or central model. Hence, if a random Monte
Carlo sample was taken from the Gaussian distribution, most
of the samples would end up in some neighborhood of the
mean.

Consider now a Gaussian distribution in higher dimensional
model spaces. If the probability of any model m under consid-
eration is described by a multivariate Gaussian distribution,
then it depends on the difference r=m− m̄ between the cur-
rent model and the mean (or central) model m̄. The proba-
bility density function in M model dimensions can be written
as,

G(m;C) = 1

[(2π)M |C|] 1
2

exp
(
−1

2
rC−1rT

)
, (3)

where C is a covariance matrix. Depending on the form of C,
this prior distribution can introduce a combination of damping
(models are more probable closer to the central model),
smoothing (smooth models are more probable than rough
models) or roughening (opposite of smoothing) to an inverse
problem (Figure 4). Below we consider mainly damping, but
similar discussions pertain to other cases.

If the covariance matrix has no nonzero off-diagonal ele-
ments (C is a diagonal matrix), it forms a damping distribution.
The magnitudes of the diagonal elements govern the strength
with which each model parameter is biased towards the cen-
tral model. If each model parameter is normalized in propor-
tion to the corresponding diagonal element of C, all diagonal
elements become equal with value σ 2. The Gaussian density
function G(m;C) in M dimensions is then spherically symmet-
ric around the central model and becomes a function only of
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the radius r =‖m− m̄‖ from model m̄ and of the variance σ 2

(Figure 4, left and center):

G(m; σ 2) = 1
(2πσ 2)1/2

exp
(
− r 2

2σ 2

)
. (4)

Despite the fact that a one-dimensional Gaussian distribu-
tion was applied to each coordinate axis independently as in the
uniform case, notice that the resulting multidimensional distri-
bution is not “hypercubic” in nature (Figure 4, center), and
probability is not concentrated close to the hypercubic faces as
it was in the uniform case.

However, notice what happens as the number of dimensions
becomes high: for any fixed σ > 0 (where σ is determined from
prior information), almost every sample will contain one or
more parameters with values outside of the range [4, 6] km/s.
This is true because we select each parameter mi independently
from identical one-dimensional Gaussians G(mi ; σ 2); as the
number of selections (parameters) tends towards infinity, one
or more must lie in the region outside of any fixed, finite pa-
rameter range because the probability is nonzero in this region.
Thus, by using Gaussian sampling distributions we contravene
goal 2.

A method sometimes used to avoid such unwanted parame-
ter values is to truncate the Gaussian distribution. That is, either
parameters that lie outside of the desired range are reselected
until a value within the range is obtained, or the Gausian “tails”

FIG. 4. Uncorrelated Gaussian distributions in one (left) and two (center) dimensions, and a correlated Gaussian
in two dimensions (right). Also shown is a truncated, renormalized Gaussian distribution (left, dashed line).

FIG. 5. Prior distributions in one and two dimensions formed by applying a cosine taper to the edges of the
uniform hypercubic distribution. The gray scale on the right-hand plot represents the probability (black being
most probable). The shaded area in the left plot represents the area A within ε of the bounds refered to in the
text.

outside of the range are simply removed and the remaining part
is renormalised to obtain a sampling distribution such as that
shown in the left plot of Figure 4.

However, notice that there is now a discontinuity in the sam-
pling density at parameter values 4 and 6 km/s. As the number
of dimensions becomes large, almost every model will have a
few parameters with values just inside of this range, whereas
none will have values just outside of it. This may give undue
importance to these values. After all, if no prior studies have
found velocities outside of the range [4, 6] km/s, then neither
have they found velocities outside of [3.9, 6.1] km/s. Is the for-
mer range really so significant compared to the latter? If this
sampling phenomenon is percieved to be a problem, then again
we contravene goal 2.

TAPERED SAMPLING DISTRIBUTIONS

Another possible way to focus sampling on a specific region
of the model space is to apply prior information in the form
of a centrally uniform probability distribution that tapers to
zero at each end of the range of interest of each parameter axis
(henceforth, tapered-uniform distributions, Figure 5, left). In
this way one might hope to reduce the relatively large number
of samples that lie close to the hypercube edges, while still
ensuring that model parameters lie within the specified bounds.

Using this strategy, the joint distribution of all model pa-
rameters consists of a uniform distribution within an inner
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hypercube with probability density tapering to zero along all
boundaries of the outer hypercube (Figure 5, right). If the range
of each parameter is 2a and the taper is applied within the dis-
tance a/2 of both bounds on each coordinate axis, then the in-
ner hypercube has edges of length a. Applying the arguments
in the section above on uniform sampling to the inner hyper-
cube, we infer immediately that as the number of dimensions
increases, samples lying within the inner hypercube will tend to
lie close to the inner hypercubic faces. However, since in this
case the inner hypercube can be made arbitrarily small, this
fact need not contravene goal 1.

As the edge length of the inner hypercube is reduced, the
proportion of samples with parameter values lying within pa-
rameter ranges spanned by the tapers increases. This begs the
question, how concentrated does the sampling close to outer
hypercubic faces become? In fact, as long as there is a nonzero
probability that each parameter lies within distance ε of the
bounds for ε > 0, and such tapers are applied to each parame-
ter independently, then as the number of dimensions increases,
the probability that at least n parameters of any model sample
lie within ε of the bounds tends towards one for any given n.
In some situations, this may be percieved to contravene goal 2.

To overcome this, the form of the taper needs to depend
on the number of dimensions. Say, for example, that for each
model sample we wish to place a limit m on the expected num-
ber of parameter values that lie within ε of the bounds. If the
area under the one-dimensional sampling distribution for each
parameter within ε of the bounds is A (shaded area in Figure 5,
left), then the probability that n parameter values of any partic-
ular model sample fall within ε of the bounds follows a binomial
probability distribution with expected value n̄= A×M where
the model has M dimensions (e.g., Wetherill, 1982). If we wish
to place a limit m on the expected number of samples that
have such extreme values, we must choose a taper such that
area A≤m/M . Hence as M increases, A must be reduced, and
thus the form of the taper must depend on M . Example cosine
tapers that could be used for model spaces with one, two, and
three dimensions are shown in Figure 6.

To summarise, tapered uniform distributions applied to each
parameter independently may be constructed such that they
satisfy goals 1 and 2 respectively if (1) the inner hypercube
is sufficiently small that the faces lie “close enough” to the
central model, and (2) the taper shape is itself a function of the
number of model space dimensions such that the area beneath
the taper used is reduced in line with the condition A≤m/M
given above.

DISCUSSION

The above examples illustrate how geometrical concepts that
often guide the specification of sampling distributions in low-
dimensional problems may produce undesirable distributions
in high-dimensional problems. In complex, nonlinear inverse
problems with large model spaces, carefully selected sampling
distributions may be the only means of creating computation-
ally tractible problems from otherwise insoluble ones. We have
demonstrated that certain rules of thumb, often applied in low-
dimensional problems can lead to massive increases in compu-
tational workload in the inverse problem solution (Figure 3).

For instance, if uniform sampling distributions are used when
a priori we might expect models close to some particular model

to be more likely than those further away, this increase in
computational workload tends to infinity as the number of di-
mensions increases. Prior information is almost never purely
uniform in reality, so it may be better to use other, more
centrally-concentrated distributions.

Gaussian distributions can be used to increase sampling den-
sity close to any given mean model estimate, but produce arti-
facts at parameter bounds that can not be removed by simple
truncation. Tapered-uniform distributions allow sampling to be
centrally concentrated without producing unwanted increases
in sampling density close to the parameter bounds, but only
if the form of the tapers used is chosen as a function of the
number of model parameters.

This tutorial follows on naturally from that of Scales and
Snieder (1997) in which different formalisms for representing
prior information were discussed. Here, we have shown that
whatever formalism is employed, the choice of sampling distri-
bution used to explore possible inverse problem solutions also
becomes very important in high-dimensional problems. A poor
choice may produce unwanted sampling artifacts and even ren-
der problems computationally intractable when this need not
be the case. When constructing such sampling distributions, it is
important to examine mathematically the behavior of the sam-
pling density as the number of dimensions grows. It is not good
to rely on intuition which is derived from the three-dimensional
world in which we live; most of us have no intuition about 10-,
20-, or 100-dimensional spaces at all.

In conclusion, if we firmly believe that our prior probabil-
ity distribution represents our prior information, then this dis-
tribution may form the most efficient sampling distribution,
even in cases where sampling directly from that distribution
may be nontrivial and computationally expensive. Any remain-
ing sampling artifacts such as those described herein, while

FIG. 6. Example symmetrically cosine tapered-uniform distri-
butions where the taper varies with increasing dimensional-
ity (black, one dimension; dashed, two dimensions; gray, three
dimensions).
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interesting, then become irrelevant since they represent true
prior beliefs.
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