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S U M M A R Y
Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface
by exploiting information in the recorded seismic waveforms. This is achieved by solving
a highly non-linear and non-unique inverse problem. Bayesian inference is therefore used
to quantify uncertainties in the solution. Variational inference is a method that provides
probabilistic, Bayesian solutions efficiently using optimization. The method has been applied
to 2-D FWI problems to produce full Bayesian posterior distributions. However, due to higher
dimensionality and more expensive computational cost, the performance of the method in
3-D FWI problems remains unknown. We apply three variational inference methods to 3-D
FWI and analyse their performance. Specifically, we apply automatic differential variational
inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD),
to a 3-D FWI problem and compare their results and computational cost. The results show
that ADVI is the most computationally efficient method but systematically underestimates the
uncertainty. The method can therefore be used to provide relatively rapid but approximate
insights into the subsurface together with a lower bound estimate of the uncertainty. SVGD
demands the highest computational cost, and still produces biased results. In contrast, by
including a randomized term in the SVGD dynamics, sSVGD becomes a Markov chain Monte
Carlo method and provides the most accurate results at intermediate computational cost. We
thus conclude that 3-D variational FWI is practically applicable, at least in small problems,
and can be used to image the Earth’s interior and to provide reasonable uncertainty estimates
on those images.
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1 I N T RO D U C T I O N

A wide variety of academic studies and practical applications re-
quire that we interrogate the Earth’s subsurface for answers to
scientific questions. A common approach is to image subsurface
properties in three dimensions using data recorded on the Earth’s
surface, and to interpret those images to address questions of in-
terest. In order to provide well-justified and robust answers to such
interrogation problems, it is necessary to assess the uncertainty in
property estimates (Arnold & Curtis 2018).

Seismic full-waveform inversion (FWI) uses full seismic record-
ings to characterize properties of the Earth’s interior, and can pro-
vide high resolution images of the subsurface (Tarantola 1984, 1988;
Gauthier et al. 1986; Pratt 1999; Tromp et al. 2005; Fichtner et al.
2006; Plessix 2006). The method has been applied at industrial scale
(Virieux & Operto 2009; Prieux et al. 2013; Warner et al. 2013),
regional scale (Chen et al. 2007; Fichtner et al. 2009; Tape et al.
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2009; Chen et al. 2015) and global scale (French & Romanowicz
2014; Bozdağ et al. 2016; Fichtner et al. 2018a; Lei et al. 2020).

Due to the non-linearity of relationships between model parame-
ters and seismic waveforms, insufficient data coverage and noise in
the data, FWI always has non-unique solutions and infinitely many
sets of model parameters fit the data to within their uncertainty. It is
therefore important to quantify uncertainties in the solution in order
to better assess the reliability of inverted models (Tarantola 2005).

FWI problems are traditionally solved using optimization meth-
ods in which one seeks an optimal set of parameter values by
minimizing the difference or misfit between observed data and
model-predicted data. The strong non-linearity and non-uniqueness
of the problem implies that a good starting model is required
to avoid convergence to incorrect solutions (generally alternative
modes or stationary points of the misfit function). Such models
are not always available in practice. To alleviate this requirement
a range of misfit functions that may reduce multimodality have
been proposed (Luo & Schuster 1991; Gee & Jordan 1992; Fichtner
et al. 2008; Brossier et al. 2010; Van Leeuwen & Mulder 2010;
Bozdağ et al. 2011; Métivier et al. 2016; Warner & Guasch 2016;
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Yuan et al. 2020; Sambridge et al. 2022). Nevertheless, none of the
standard methods of solution using any of these misfit functions has
been shown to allow accurate estimates of uncertainty to be made
in realistic FWI problems.

Bayesian inference provides a different way to solve inverse prob-
lems and quantify uncertainties. The method uses Bayes’ theorem to
update a prior probability density function (pdf) with new informa-
tion from the data to construct a so-called posterior probability den-
sity function. The prior pdf describes information available about
the parameters of interest prior to the inversion (independently of
the current data set), while the posterior pdf describes the resultant
state of information after combining information in the prior pdf
with information in the current data. In principle, Bayesian infer-
ence provides accurate estimates of uncertainty.

Markov chain Monte Carlo (McMC) is one method to character-
ize the posterior pdf which has been used widely in many fields. In
McMC one constructs a set (chain) of successive samples generated
from the posterior pdf by taking a structured random walk in param-
eter space (e.g. Brooks et al. 2011); those samples can thereafter be
used to infer the values of useful statistics of that pdf (mean, stan-
dard deviation, etc.). The Metropolis–Hastings algorithm is one
such method (Metropolis & Ulam 1949; Hastings 1970) and has
been applied to many applications in geophysics, including grav-
ity inversion (Mosegaard & Tarantola 1995; Bosch et al. 2006;
Rossi 2017), vertical seismic profile inversion (Malinverno et al.
2000), surface wave dispersion inversion (Bodin et al. 2012; Shen
et al. 2012; Young et al. 2013; Galetti et al. 2017; Zhang et al.
2018b), electrical resistivity inversion (Malinverno 2002; Galetti &
Curtis 2018), electromagnetic inversion (Minsley 2011; Ray et al.
2013; Blatter et al. 2019), traveltime tomography (Bodin & Sam-
bridge 2009; Galetti et al. 2015, 2017) and more recently FWI
(Ray et al. 2017; Sen & Biswas 2017; Guo et al. 2020). However,
the basic Metropolis–Hastings algorithm becomes computationally
intractable in high dimensional space if the chain is attracted to
individual misfit minima rather than exploring all possible such
minima. To reduce this issue, more advanced McMC methods have
been introduced to geophysics, such as Hamiltonian Monte Carlo
(Duane et al. 1987; Fichtner et al. 2018b; Gebraad et al. 2020; Kotsi
et al. 2020), stochastic Newton McMC (Martin et al. 2012; Zhao &
Sen 2019), Langevin Monte Carlo (Roberts et al. 1996; Siahkoohi
et al. 2020a) and parallel tempering (Hukushima & Nemoto 1996;
Dosso et al. 2012; Sambridge 2013). However, the above studies
mainly address 1-D or 2-D problems because of the high computa-
tional expense of moving to 3-D. Some studies have applied McMC
methods to 3-D inverse problems including body wave traveltime
tomography (Piana Agostinetti et al. 2015; Hawkins & Sambridge
2015; Burdick & Lekić 2017; Zhang et al. 2020b) and surface
wave dispersion inversion (Zhang et al. 2018b, 2020a; Ryberg et al.
2022), but they require enormous computational cost even for small
data sets. Thus, McMC methods are generally considered to be in-
tractable for large data sets and high dimensionality, such as occurs
in 3-D FWI problems.

Variational inference solves Bayesian inference problems in a
different way: within a predefined family of (simplified) pdfs, the
method seeks an optimal approximation to the posterior pdf by
minimizing the difference between the approximating pdf and the
posterior pdf. A typical metric used to measure this difference is
the Kullback–Leibler (KL) divergence (Kullback & Leibler 1951).
The method therefore solves an optimization problem rather than
a stochastic sampling process as in McMC methods. As a result,
in some classes of problems variational inference may be compu-
tationally more efficient than McMC methods and provide better

scaling to higher dimensionality (Bishop 2006; Blei et al. 2017;
Zhang et al. 2018a). The method can be applied to larger data sets
by dividing the data set into small minibatches and using stochas-
tic and distributed optimization methods (Robbins & Monro 1951;
Kubrusly & Gravier 1973). In addition, the method can usually be
parallelized at the individual sample level which makes the method
even more efficient in real time by taking advantage of modern high
performance computational facilities. By contrast, McMC methods
cannot be parallelized at the sample level since each sample depends
on the previous sample, and cannot use minibatches as these break
the detailed balance condition that is required by common McMC
methods (O’Hagan & Forster 2004).

In variational inference the choice of variational family is im-
portant as it determines the accuracy of the approximation and
the complexity of the optimization problem. A good choice should
be rich enough to approximate complex distributions and simple
enough such that the optimization problem remains solvable. Dif-
ferent choices of variational families lead to a variety of specific
methods. For example, a common choice is to use a mean-field
approximation in which the parameters are assumed to be mutu-
ally independent (Bishop 2006; Blei et al. 2017). In geophysics the
method has been applied to invert for geological facies distributions
using seismic data (Nawaz & Curtis 2018, 2019; Nawaz et al. 2020).
While often leading to highly efficient algorithms, this method usu-
ally requires bespoke mathematical derivations which restricts its
applicability to a limited range of problems. Based on a Gaus-
sian variational family, Kucukelbir et al. (2017) proposed a method
called automatic differential variational inference (ADVI), which
can be applied easily to general problems. For example, the method
has been used to solve seismic travel time tomography (Zhang &
Curtis 2020a) and earthquake slip inversion problems (Zhang &
Chen 2022). A similar method has also been used to solve FWI
problems in medical ultrasound (Bates et al. 2022).

By exploiting the properties of probability transformations, an-
other set of methods has been proposed in which one optimizes a
series of invertible transforms which convert a simple initial distri-
bution to an arbitrary distribution that can approximate the posterior
distribution (Rezende & Mohamed 2015; Tran et al. 2015; Liu &
Wang 2016). Normalizing flow variational inference is one such
method which applies a series of invertible and differential trans-
forms (called flows) to an initial distribution; those flows are then
optimized to produce an improved approximation to the posterior
pdf (Rezende & Mohamed 2015). Normalizing flows have been
demonstrated to be an efficient method in geophysical applications
such as seismic tomography (Zhao et al. 2021) and image denoising
(Siahkoohi et al. 2020b). However, the method becomes inefficient
in very high dimensional space because of the computational cost
required by large and flexible forms of flows. Stein variational gra-
dient descent (SVGD) provides an alternative method that uses a set
of particles (models) to represent the probability distribution. Those
particles are iteratively updated by minimizing the KL-divergence
so that in their final state their density approximates the posterior
pdf (Liu & Wang 2016). The method has been applied to a range of
geophysical applications, including seismic travel time tomography
(Zhang & Curtis 2020a), earthquake location (Smith et al. 2022),
hydrogeological inversion (Ramgraber et al. 2021) and 2-D FWI
(Zhang & Curtis 2020b, 2021). However, none of these studies are
comparable to a typical 3-D FWI problem in terms of dimension-
ality and computational cost, so the property of the method in 3-D
FWI remains unknown.

In this study we explore the properties and efficiency of varia-
tional inference methods in 3-D FWI problems, including ADVI
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and SVGD. In addition, to reduce possible deficiency of SVGD
in higher dimensionality (Ba et al. 2021) we introduce another
method called stochastic SVGD (sSVGD: Gallego & Insua 2018)
and compare the method with ADVI and SVGD. In Section 2, we
first describe the basic concept of variational inference and then
the ADVI, SVGD and sSVGD methods. In Section 3, we apply
the suite of methods to a 3-D FWI problem and compare their
results and computational costs. The aim of this study is to ex-
plore performance of those methods, to assess the computational
requirements and to provide useful information for practitioners.
Our results demonstrate that the 3-D variational FWI is practically
feasible, at least for small problems, and so can be applied to image
the Earth’s subsurface and to provide uncertainty estimates on the
results.

2 M E T H O D S

2.1 Variational inference

Bayesian inference is the process of constructing a posterior proba-
bility density function p(m|dobs) of model parameters m given the
observed data dobs, by updating a prior pdf with new information
contained in the data. According to Bayes’ theorem,

p(m|dobs) = p(dobs|m)p(m)

p(dobs)
, (1)

where p(dobs|m) is the likelihood which describes the probability of
observing data dobs if model m was true, p(m) represents the prior
pdf which describes information that is known independently of the
data, and p(dobs) is a normalization factor called the evidence.

Variational inference solves the above Bayesian inference prob-
lem using optimization. The method seeks an optimal approxima-
tion q∗(m) to the posterior pdf p(m|dobs) within a predefined family
of known probability distributions Q = {q(m)} by minimizing the
KL divergence between q(m) and p(m|dobs):

q∗(m) = arg min
q∈Q

KL[q(m)||p(m|dobs)]. (2)

The KL divergence measures the difference between two probability
distributions and can be expressed as:

KL[q(m)||p(m|dobs)] = Eq [logq(m)] − Eq [logp(m|dobs)], (3)

where the expectation is taken with respect to the distribution q(m).
The KL divergence is non-negative and only equals zero when
q(m) = p(m|dobs) (Kullback & Leibler 1951). Expanding the pos-
terior pdf using eq. (1), the KL divergence becomes:

KL[q(m)||p(m|dobs)] = Eq [logq(m)] − Eq [logp(m, dobs)]

+logp(dobs). (4)

The evidence term logp(dobs) is computationally intractable because
it requires evaluation of a high dimensional integral for which the
computation scales exponentially with the number of parameters.
We therefore rearrange eq. (4) to obtain the evidence lower bound
(ELBO):

ELBO[q] = logp(dobs) − KL[q(m)||p(m|dobs)]

= Eq [logp(m, dobs)] − Eq [logq(m)].
(5)

Since the KL divergence is non-negative, the above equation de-
fines a lower bound for the evidence logp(dobs). In addition because
the evidence logp(dobs) is a constant for a given problem, mini-
mizing the KL-divergence is equivalent to maximizing the ELBO.

Consequently, variational inference in eq. (2) can also be expressed
as:

q∗(m) = arg max
q∈Q

ELBO[q(m)]. (6)

In variational inference, the choice of the variational family Q is
important because it determines the accuracy of the approximation
as well as the complexity of the optimization problem. Different
methods can be developed depending on different choices of the
family. In the following sections we describe a set of different
methods: ADVI, SVGD and sSVGD and compare these methods
in the application of 3-D FWI.

2.2 Automatic differential variational inference

ADVI is a variational method based on a Gaussian variational family
(Kucukelbir et al. 2017). Gaussians are defined on the entire set
of real numbers and in reality model parameters often have hard
constrains (for example, seismic velocity is greater than zero), so
in ADVI we first transform those constrained parameters into an
unconstrained space using an invertible transform T : θ = T (m).
In this space the joint probability p(m, dobs) becomes:

p(θ, dobs) = p(m, dobs)|detJT −1 (θ)|, (7)

where JT −1 (θ) is the Jacobian matrix of the inverse of T and | · |
denotes absolute value. Define a Gaussian variational family

q(θ; ζ ) = N (θ|μ, �), (8)

where ζ represents variational parameters, that is the mean vector
μ and the covariance matrix �. Although a full covariance matrix
can be used for small size problems, it becomes computationally
intractable for very high dimensional space (as in 3-D FWI). We
therefore use a factorized (mean-field) Gaussian variational approx-
imation:

q(θ; ζ ) = N (θ|μ, diag(exp(ω)2)) (9)

where we have reparametrized the standard deviation using σ =
exp(ω) to ensure that each parameter of σ is positive. Note that
because we neglect the correlation information between different
parameters, the approximation obtained by minimizing the KL di-
vergence systematically underestimates the marginal variance as
illustrated in Fig. 1(a) (Bishop 2006).

With the above definition the variational problem in eq. (6) can
be written as:

ζ ∗ = arg max
ζ

ELBO[q(θ; ζ )] (10)

= arg max
ζ

Eq

[
logp(T −1(θ), dobs) + log|detJT −1 (θ)|]

−Eq [logq(θ)] .

This optimization problem can be solved by using gradient ascent
methods. As shown in Kucukelbir et al. (2017) the gradients of the
ELBO with respect to μ and ω are:

∇μELBO = EN (η|0,I)

[∇mlogp(m, dobs)∇θ T −1(θ)

+∇θlog|detJT −1 (θ)|] (11)

∇ωELBO = EN (η|0,I)

[
(∇mlogp(m, dobs)∇θT −1(θ)

+∇θlog|detJT −1 (θ)|)ηTdiag(exp(ω))
] + 1, (12)

where η is a random variable generated from a standard Normal
distribution N (0, I). The expectations in the above equations can
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(a) (b) (c)

Figure 1. (a) The posterior distribution (red) obtained using ADVI with a mean-field approximation, and the samples obtained using (b) SVGD and (c) sSVGD
in the case of a bivariate Gaussian distribution (blue). For both SVGD and sSVGD 20 particles are used.

be estimated by Monte Carlo (MC) integration, which in prac-
tice only requires a low number of samples because the optimiza-
tion is usually performed over many iterations so that statistically
the gradients will lead to convergence towards the correct solu-
tion (Kucukelbir et al. 2017). The variational problem in eq. (10)
can therefore be solved by using gradient ascent methods. The fi-
nal approximation q∗(m) is obtained by transforming q∗(θ) back
to the original space. For the transform T, we use a commonly
used logarithmic transform (Team et al. 2016; Zhang & Curtis
2020a)

θi = T (mi ) = log(mi − ai ) − log(bi − mi )

mi = T −1(θi ) = ai + (bi − ai )

1 + exp(−θi )
,

(13)

where mi represents ith parameter in the original constrained space,
θ i is the transformed variable in the unconstrained space, ai and
bi are the lower and upper bound on mi, respectively. Although
ADVI can generate biased results as we discussed above, it has been
demonstrated to be a computationally efficient method compared to
SVGD (Zhang & Curtis 2020a; Zhao et al. 2021). For this reason,
we explore its properties in 3-D FWI problems.

2.3 Stein variational gradient descent

SVGD is a variational method which uses a set of samples (called
particles) whose density represents the approximation pdf q. The
method iteratively updates those particles by minimizing the KL
divergence so that the final set of particles are distributed ac-
cording to the posterior distribution (Liu & Wang 2016). Since
the distribution of a set of particles is in principle entirely flex-
ible, this method can provide more accurate results than ADVI
(Zhang & Curtis 2020a). Define the set of particles as {mi } where
mi is a d-dimensional parameter vector. SVGD uses a smooth
transform T (mi ) = mi + εφ(mi ) to update each particle, where
φ = [φ1, ...,φd ] is a smooth vector function that describes the
perturbation direction and ε is the magnitude of the perturbation.
Assume T is invertible and define qT (m) as the transformed proba-
bility distribution of pdf q(m). The gradient of the KL-divergence
between qT and the posterior pdf p with respect to ε can be computed
as (Liu & Wang 2016):

∇εKL[qT ||p] |ε=0 = −Eq

[
trace

(
Apφ(m)

)]
, (14)

where Ap is the Stein operator defined by Apφ(m) =
∇mlogp(m)φ(m)T + ∇mφ(m). Eq. (14) ensures that by maximiz-
ing the right-hand expectation we obtain the steepest descent di-
rection of the KL-divergence, and consequently the KL divergence
can be minimized by iteratively stepping a small distance in that
direction.

The optimal φ∗ that maximize the expectation in eq. (14) can be
found by using kernel functions. Say x, y ∈ X and define a mapping
ψ from X to a space where an inner product 〈, 〉 is defined (called a
Hilbert space); a kernel is a function that satisfies k(x, y) = 〈ψ(x),
ψ(y)〉. Assume a kernel k(m′, m), the optimal φ∗ can be expressed
as (Liu & Wang 2016):

φ∗ ∝ E{m′∼q}[Apk(m′, m)]. (15)

Since we use particles {mi } to represent q, the expectation can
be approximated using the particles mean. The KL divergence
can therefore be minimized by iteratively applying the transform
T (m) = m + εφ∗(m) to a set of initial particles {m0

i }:

φ∗
l (m) = 1

n

n∑
j=1

[
k(ml

j , m)∇ml
j
logp(ml

j |dobs) + ∇ml
j
k(ml

j , m)
]

ml+1
i = ml

i + εlφ∗
l (ml

i ) (16)

where l denotes the lth iterations, n is the number of particles and
εl is the step size. If the step size {εl} is sufficiently small then the
transform T is invertible, and the process converges to the posterior
pdf asymptotically as the number of particles tends to infinity.

For the kernel function we use a commonly used radial basis
function (RBF)

k(m, m′) = exp

[
−‖m − m′‖2

2h2

]
, (17)

where h is a scale factor which intuitively controls the interac-
tion intensity between different particles based on their distances
apart. As suggested by several studies (Liu & Wang 2016; Zhang
& Curtis 2020a, b), we choose h to be d̃/

√
2logn where d̃ is the

median of pairwise distances between all particles. This choice
ensures that the contribution from each particle mi ’s own gra-
dient is balanced by the influence from all other particles as∑

j �=i k(mi , m j ) ≈ nexp(− 1
2h2 d̃2) = 1. Note that for the RBF ker-

nel, the second term of φ∗ in eq. (16) becomes
∑

j
m−m j

σ 2 k(m j , m)
which drives the particle m away from its neighbouring particles
when the kernel takes high values. This second term therefore acts
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as a repulsive force which prevents the particles from collapsing to
a single mode, whereas the first term consists of kernel weighted
gradients which drives the particles towards high probability areas.
An example of the particles obtained using SVGD in the case of a
bivariate Gaussian distribution is shown in Fig. 1(b).

In Geophysics, SVGD has been demonstrated to be an efficient
method for a rang of applications (Zhang & Curtis 2020a, b, 2021;
Ramgraber et al. 2021; Zhao et al. 2021; Smith et al. 2022; Ahmed
et al. 2022). In this study, we explore its applicability in 3-D FWI.
As in previous studies (Zhang & Curtis 2020b; Zhang et al. 2021),
in order to handle hard constraints of seismic velocity, we transform
seismic velocity into an unconstrained space using eq. (13) and per-
form SVGD in that space. The final seismic velocities are obtained
by transforming the particles back to the original space.

2.4 Stochastic SVGD

Although SVGD has been applied to many different applications
(Gong et al. 2019; Zhang & Curtis 2020a, b; Pinder et al. 2020),
the method can provide biased results and is known to underesti-
mate variance for high dimensional problems because of the finite
number of particles and the practical limitation of computational
cost (Ba et al. 2021). In order to further improve accuracy of the
method, efforts have been made to bridge the gap between varia-
tional inference and McMC methods. sSVGD is one such algorithm
which turns SVGD into a Markov chain by adding a Gaussian noise
term to the dynamics (Gallego & Insua 2018). By doing this one can
start collecting many samples that represent the posterior pdf after
a burn-in period instead of having to use a large number of particle
from the beginning. In addition, the method guarantees asymptotic
convergence to the posterior pdf as the number of iterations tends
to infinity, which standard SVGD with a finite number of particles
cannot achieve.

To introduce the sSVGD algorithm, we start from a stochastic
differential equation (SDE):

dz = f(z)dt +
√

2D(z)dW(t), (18)

where f(z) is called the drift, W(t) is a Wiener process, and D(z)
is a positive semidefinite diffusion matrix. Generally all continuous
Markov processes can be expressed as a SDE of the above form.
If we denote the posterior distribution as p(z), Ma et al. (2015)
proposed a SDE that converges to the distribution p(z)

f(z) = [D(z) + Q(z)] ∇logp(z) + �(z), (19)

where Q(z) is a skew-symmetric curl matrix, and �i (z) =∑d
j=1

∂

∂z j
(Di j (z) + Qi j (z)) is a correction term which amends the

bias.
If we discretize eq. (18) with eq. (19) using the Euler–Maruyama

discretization, we obtain a practical algorithm:

zt+1 = zt + εt [(D (zt ) + Q(zt )) ∇logp(zt ) + �(zt )]

+N (0, 2εt D(zt )), (20)

where N (0, 2εt D(zt )) represents a Gaussian distribution. The gra-
dient ∇logp(zt ) can be computed using full data, or Uniformly ran-
domly selected minibatch data subsets which results in a stochastic
gradient. In either case the above process converges to the posterior
distribution asymptotically as εt → 0 and t → ∞ (Ma et al. 2015).
Matrix D(z) and Q(z) can be adjusted to obtain faster convergence
to the posterior distribution. For example, by setting D = I and
Q = 0 one obtains the stochastic gradient Langevin dynamics algo-
rithm (Welling & Teh 2011). If we augment the state space z with

a moment term x to obtain an augmented space z = (z, x), and set

D = 0 and Q =
(

0 −I
I 0

)
, the stochastic Hamiltonian Monte Carlo

(HMC) method can be derived (Chen et al. 2014).
For the set of particles {mi } defined in the above section we

can construct an augmented space z = (m1, m2, ..., mn) ∈ Rnd by
concatenating n particles, and use eq. (20) to obtain a valid sampler
that runs multiple (n) interacted chains:

zt+1 = zt + εt [(D(zt ) + Q(zt ))∇logp(zt ) + �(zt )]

+N (0, 2εt D(zt )), (21)

where D, Q ∈ Rnd×nd and ∇logp, � ∈ Rnd . Define a matrix K

K = 1

n

⎡
⎢⎣

k(m1, m1)Id×d . . . k(m1, mn)Id×d

...
. . .

...
k(mn, m1)Id×d . . . k(mn, mn)Id×d

⎤
⎥⎦, (22)

where k(mi , m j ) is a kernel function and Id×d is an identity ma-
trix. According to the definition of kernel functions, the matrix K
is positive definite (Gallego & Insua 2018). The standard SVGD
algorithm in eq. (16) can now be expressed in matrix form as

zt+1 = zt + εt [K∇logp(zt ) + ∇ · K] (23)

which shows that SVGD can be regarded as a special case of eq. (21)
with DK = K, QK = 0 and no noise term. By including the noise
term, we construct a stochastic gradient McMC method with SVGD
gradients, which we call stochastic SVGD:

zt+1 = zt + εt [K∇logp(zt ) + ∇ · K] + N (0, 2εt K). (24)

According to the discussion above, this process converges to the
posterior distribution p(z) = ∏n

i=1 p(mi |dobs) asymptotically. Note
that when the number of particles is large enough, the noise term
would be tiny according to eq. (22). Consequently in such case the
method produces the same results as standard SVGD.

In order to use eq. (24) to sample the posterior distribution, we
need to draw samples from the Gaussian distribution N (0, 2εt K).
This requires computing the lower triangular Cholesky decompo-
sition of the nd × nd matrix K, which can be computationally
expensive. To compute the noise term efficiently, we define a block-
diagonal matrix DK

DK = 1

n

⎡
⎢⎣

K
. . .

K

⎤
⎥⎦ , (25)

where K is a n × n matrix with Ki j = k(mi , m j ). Note that with
this definition, DK can be constructed from K using DK = PKPT
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where P is a permutation matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

. . .
1

1
1

. . .
1

. . .
. . .

. . .
. . .

1
1

. . .
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

The action of this permutation matrix on a vector z rearranges the
order of the vector from the basis where the particles are listed se-
quentially to that where the first coordinates of all particles are listed,
then the second, etc. The noise term η can therefore be generated
using

η ∼ N (0, 2εt K)

∼
√

2εt P
TPN (0, K)

∼
√

2εt P
T N (0, DK)

∼
√

2εt P
TLDK N (0, I),

(27)

where LDK is the lower triangular Cholesky decomposition of matrix
DK. Given that DK is a block-diagonal matrix, decomposition LDK

can be calculated easily as we only need to calculate the lower
triangular Cholesky decomposition of matrix K. Since in practice
the number of particles n is usually modest, evaluating the noise
term is computationally negligible. We can now use eq. (24) to
generate samples from the posterior distribution. An example of the
samples obtained using sSVGD in the case of a bivariate Gaussian
distribution is shown in Fig. 1c.

3 R E S U LT S

We apply the above suite of methods to an acoustic 3-D FWI prob-
lem. The true model is chosen to be a part of the 3-D overthrust
model (Fig. 2a, Aminzadeh 1997), which is discretized using a reg-
ular 101 × 101 × 63 grid of cells with 50 m spacing. We deploy
81 sources (red dots in Fig. 2a) and 10 201 receivers (yellow dots
in Fig. 2a) at the surface with regular spacings of 500 and 50 m, re-
spectively. The waveform data are calculated using the time-domain
finite difference method with a 2–10 Hz Ormsby wavelet (Ryan
1994). Gradients of the likelihood function with respect to veloci-
ties are computed using the adjoint method (Tarantola 1988; Tromp
et al. 2005; Fichtner et al. 2006; Plessix 2006; Liu & Gu 2012).

We represent available prior information by a Uniform distribu-
tion over an interval width of 2.5 km s–1 at each depth (Fig. 2b).
Fig. 3 shows a set of cross sections (Y = 1 km, 2.5 km and 4 km)
of the true model and an example model generated from the prior
distribution. For the likelihood function we assume that a Gaus-
sian distribution with a diagonal covariance matrix can be used to
represent uncertainties on the waveform data:

p(dobs|m) ∝ exp

[
−1

2

∑
i

(
dobs

i − di (m)

σi

)2
]

, (28)

where i denotes the index of time samples and σ i is the standard
deviation of that data point. In this study we set σ i to be 2 per-
cent of the median of the maximum amplitude of each seismic
trace.

For ADVI we set the initial Gaussian distribution in the uncon-
strained space to be a standard Normal distribution N (θ|0, I), and
update the distribution using the ADAM algorithm (Kingma & Ba
2014) for 1000 iterations after which point the average misfit across
Monte Carlo samples ceases to decrease. To reduce the computa-
tional cost, we compute the gradients in eqs (11) and (12) using
minibatch data from 36 sources which are randomly selected from
the total of 81 sources. At each iteration the gradients are calculated
using four Monte Carlo samples. The final Gaussian distribution
is transformed back to the original space, from which we generate
2000 samples to visualize the results.

For SVGD we generate 400 particles from the prior distribution
(an example is shown in Fig. 3), and transform them to an un-
constrained space using eq. (13). Those particles are then updated
using eq. (15) for 1000 iterations after which point the average misfit
across particles ceases to decrease. Similarly to above the gradients
in eq. (15) are calculated using minibatch data from 36 sources. The
final particles are transformed back to the original space.

For sSVGD we start from 20 particles that are generated from the
prior distribution, and transform them to the unconstrained space as
in SVGD. Those particles are then updated (sampled) using eq. (24)
for 4000 iterations with a burn-in period of 2000. To reduce the
memory and storage cost, we only retain every fourth sample after
the burn-in period. This results in a total of 10 000 samples, which
are transformed back to the original space to calculate statistics of
the estimated posterior pdf. At each iteration the gradients are also
calculated using minibatch data from 36 sources.

3.1 Model comparison

Fig. 4 shows the mean, standard deviation and the relative error
computed using |mmean − mtrue|/σ where σ is the standard devia-
tion, obtained using ADVI, displayed on the same cross sections as
in Fig. 3. In the shallow part (depth Z < 1.5 km) the mean model
shows similar structure to the true model. For example, overthrusted
high velocity structures can be observed clearly in the mean model.
Over the same depth range the standard deviation model shows sim-
ilar features to the mean model. A similar phenomenon has been
observed in a range of previous studies (Gebraad et al. 2020; Zhang
& Curtis 2020b, 2021). At greater depths Z > 1.5 km the mean
model deviates from the true model. This is probably because of
the lower sensitivity caused by the short source–receiver offset of-
fered by our acquisition geometry. This is also supported by high
uncertainties across the same area. The relative error shows that the
deviation of the mean model from the true model is larger than three
standard deviations at depth and on both sides, which suggests that
the uncertainty is clearly underestimated there. This underestima-
tion is likely caused by the mean-field approximation we have used
in ADVI (see Fig. 1a).

Fig. 5 shows the results obtained using SVGD. Overall the re-
sults show similar mean and standard deviation structures to those
obtained using ADVI. For example, the mean model shows sim-
ilar features to the true model in the shallow parts, and deviates
from the true model at greater depths. The standard deviation also
shows similar features to the mean model across the shallow part
and higher uncertainties at greater depths. Note that the magnitude
of the standard deviations is generally higher than those obtained
using ADVI, which again shows the limitation of the mean-field
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Figure 2. (a) True velocity model and acquisition geometry used in this study. Surface sources and receivers are denoted using red and yellow dots respectively.
(b) Prior distribution used in the inversion: a uniform distribution with a width of 2.5 km s–1 at each depth.

(a) (b)

(c) (d)

(f)(e)

Figure 3. The true model (left-hand column) and an initial particle (right-hand column) at cross sections of Y = 1 km (a and b), 2.5 km (c and d) and 4 km (e
and f), respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. The mean (a, d and g), standard deviation (b, e and h) and relative error (c, f and i) obtained using ADVI over the same cross sections as in Fig. 3.
The relative error is computed using |mmean − mtrue|/σ where σ is the standard deviation. Black dashed lines denote the well log locations referred to in the
main text. Red box highlights a volume in which the true velocities are outside of the support (positive probabilities) of the prior distribution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. The mean, standard deviation and relative error obtained using SVGD. Key as in Fig. 4.
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approximation. However, although the relative error is smaller than
those from ADVI, there is still a large part of the model whose
relative error is higher than three standard deviations which sug-
gests that SVGD can also underestimate the uncertainty (Ba et al.
2021). This is probably because we use a small number of particles
(400) to represent a probability distribution in an extremely high
dimensional space (642 663). Consequently for those parts that are
not well constrained by the data which should have a broader pos-
terior distribution, it becomes impossible to represent the posterior
distribution. Although the results can be further improved by us-
ing a larger number of particles (Zhang et al. 2021), this incurs a
significantly higher computational cost.

Fig. 6 shows the results obtained using sSVGD. Ignoring magni-
tudes for the moment, the overall shapes of the mean and standard
deviation models are similar to those obtained using ADVI and
SVGD suggesting that these shapes may be reliable for this spe-
cific problem. Note that the mean model obtained using sSVGD is
more similar to the true model, which may indicate that sSVGD
produced more accurate results than ADVI or SVGD as we have
discussed in Section 2. In addition, the magnitudes of the stan-
dard deviation are much higher than those obtained using ADVI
or SVGD, and the relative error is also significantly smaller. For
most parts the relative error obtained using sSVGD is smaller than
three standard deviations, which is again indicative of the higher
accuracy of sSVGD compared to ADVI or SVGD. Similarly to pre-
vious results, the deeper parts and two sides show larger errors
than the rest of the model because of the lower sensitivity of our
data to those parts. Note that the results obtained using ADVI and
SVGD show smoother structures than those obtained using sSVGD.
This is because in ADVI and SVGD the results are obtained deter-
ministically, whereas sSVGD is a stochastic McMC method which
therefore represents more randomness. A similar phenomenon was
observed by Zhang & Curtis (2020b) when comparing results ob-
tained using SVGD and HMC. We also note that the results can be
further improved by running the sSVGD for longer. In all results,
the shallow standard deviations show lower uncertainties at the lo-
cation of higher velocity anomalies. This is probably because those
high velocity anomalies in a relatively low velocity background
have strong effects on the recorded waveforms, and hence are well
constrained by the data. By contrast, the low velocity anomalies do
not show a similar effect, which is likely because those low velocity
anomalies are not strong enough to have large influences on the
waveforms as the high velocity anomalies do. We note that similar
effects have also been observed in 2-D FWI (Gebraad et al. 2020;
Zhang & Curtis 2021).

In Fig. 7, we show examples of samples (particles) obtained us-
ing each method at the same cross sections as above. Overall the
samples obtained using different methods show similar structures.
For example, the shallow part (Z < 1.5 km) shows similar features
to the true model, whereas the deeper part has more random struc-
tures. Similarly to the mean and standard deviation models, the
sample obtained using SVGD is smoother than that obtained using
sSVGD. There is no correlation between parameters in ADVI, so
the sample obtained using ADVI shows random structures at pixel
scale. Note that there are also small scale structures comprising
clusters of a few pixels in the particles obtained using SVGD and
sSVGD, which may reflect the uncertainty of the problem itself,
or may appear because the methods have not fully converged. We
note that such structures also appear in linearized FWI in cases
when the regularisation applied is weak (Asnaashari et al. 2013),
which suggests that the former explanation is at least partly the
cause.

To analyse higher order statistics, we calculated the average cor-
relation coefficients for parameter pairs that have the same distance
in the volumes denoted using black boxes in Fig. 7. The results show
that there is no significant correlation between model parameters
obtained using ADVI, whereas correlation can be observed clearly
in the results obtained using either SVGD or sSVGD (Fig. 8). For
pairs of points up to approximately 0.15 km apart, the correlation
coefficients obtained using SVGD are higher in magnitude than
those obtained using sSVGD, reflecting larger spatial correlation
lengths for the results of SVGD than those of sSVGD. For example,
the spatial correlation length for the shallower volume is found to
be 0.17 and 0.12 km for SVGD and sSVGD, respectively (Fig. 8a).
This is also consistent with the observation that particles obtained
using SVGD represent smoother models than those obtained using
sSVGD.

To further analyse the results, we show the marginal distributions
obtained using the suite of methods along four vertical profiles
simulating well logs, whose locations are indicated using black
dashed lines in Figs 4, 5 and 6. The results clearly show that
the marginal distributions obtained using sSVGD are wider than
those obtained using ADVI and SVGD as we have already ob-
served. Across deeper parts (Z > 1.5 km), the true velocity values
lie outside of the high probability area in the results obtained us-
ing ADVI and SVGD (Figs 9a and b), which again demonstrates
that ADVI and SVGD can underestimate uncertainty. In contrast,
sSVGD produces more reasonable uncertainty estimates since they
at least generally include the true model in values with non-zero
uncertainty. Overall the results show lower uncertainty in the shal-
lower part (Z < 1.5 km) and higher uncertainty at the deeper part
as we expect. Note that at the depth of 0.4 km in the third well
log (denoted by a blue arrow), the marginal distributions concen-
trate close to the upper bound of the prior distribution. This is
because the true velocity at this location is higher than the prior
upper bound, which also explains the large relative error in this
area (red box in Fig. 4, 5 and 6). This result provides useful in-
sight into the performance of these methods in real applications as
it is not uncommon to impose inappropriate prior information in
practice.

3.2 Computational cost

In Table 1 we summarize the number of simulations, the number
of CPU cores, and the wall clock time required by each method.
The number of simulations provides a good metric of the over-
all computational cost as for each method the forward and adjoint
simulations are the most time-consuming components of these cal-
culations. Given that all of the methods can be fully parallelized, for
example, the gradient calculation in each method can be performed
independently for each particle (sample), the number of CPU cores
together with the wall clock time provide additional insights into
the computational requirement in practice.

The results show that ADVI is the cheapest method as it only re-
quires 4000 simulations which we performed using 768 CPU cores,
but we have demonstrated above that the method is likely to pro-
duce systematically biased results. However, given that the method
is extremely efficient (only requiring 53.8 hr in real time), ADVI
could still be used to provide a first, relatively rapid insight into
the subsurface structure. In addition, as we have demonstrated in
Fig. 1a, the method can be used to provide a lower bound estimate
of the uncertainty. SVGD appears to be the most expensive method,
which requires 400 000 simulations and takes approximately 23 d
to run using 7680 CPU cores. Because of the limited number of

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/1/546/7031752 by U

niversity of Edinburgh user on 17 M
arch 2023



3-D Bayesian variational FWI 555

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. The mean, standard deviation and relative error obtained using sSVGD. Key as in Fig. 4.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Example particles obtained using ADVI (a, d and g), SVGD (b,e and h) and sSVGD (c, f and i) over the same cross sections as in Fig. 3.

particles the method also provides biased results as we have shown
above, which makes SVGD a less attractive method for 3-D FWI
in practice. In contrast, by adding a noise term to the dynamics of
SVGD, sSVGD can use a small number of particles to generate many

final model samples, which makes the method relatively efficient.
For example, to obtain the above results sSVGD required five times
fewer simulations than SVGD. However, because of the randomness
introduced by the noise term, sSVGD requires more iterations to
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(a) (b)

Figure 8. The average correlation coefficients plotted as a function of distance, calculated from the posterior distributions obtained using the different methods
within the (a) upper and (b) lower volumes shown by black boxes in Fig. 7 (volumes are obtained by extending the area in Fig. 7 by ±250 m in the Y direction).

converge which makes the method only two to three times more
efficient in real time. We note that an increase in efficiency was also
observed in deterministic FWI by introducing stochastic elements,
for example, using stochastic gradient descent (Yang et al. 2018;
van Herwaarden et al. 2020). Given that sSVGD also provides the
most accurate results among the three methods, the method would
be a good choice for practical applications. In addition, since it is
a McMC method the results of sSVGD can always be improved by
performing more iterations, whereas the same method of improve-
ment cannot be used when using ADVI or SVGD.

Note that the above comparison depends on subjective assess-
ments of the point of convergence for each method, so the absolute
computational time may not be entirely accurate. Nevertheless the
comparison at least provides a reasonable insight into the efficiency
of each method. We also note that all of the methods require com-
putation of gradients, which in this study are calculated efficiently
using adjoint methods. For situations in which gradients are ex-
pensive to compute, the above suite of methods may become less
efficient, and in such cases other methods that do not require gradi-
ents may be preferred.

4 D I S C U S S I O N

The primary result of this work is to show that variational methods
(ADVI, SVGD and sSVGD) can be used to solve 3-D Bayesian
FWI problems. For ADVI, we used a mean-field approximation to
reduce the computational cost, which systematically underestimates
the uncertainty. To further improve the results, a full-rank covariance
matrix may be used if sufficient computational resources are avail-
able, or a sparse covariance matrix which only includes correlation
information between neighbouring cells can be implemented. ADVI
minimizes KL[q||p] to estimate the posterior distribution which can
provide a lower bound estimate of the uncertainty in the mean-field
case. On the other hand, methods such as the expectation propaga-
tion (Minka 2013) which minimizes KL[p||q] instead of KL[q||p],
may be used to provide an upper bound estimate of the uncertainty.

We have demonstrated that for 3-D FWI SVGD can provide
biased results because of the limited number of particles. Instead of
increasing the number of particles which may be computationally
intractable, one may try to reduce the dimensionality of the problem.
For example, other parametrizations that require fewer parameters

to represent the model may be used, such as Voronoi cells (Bodin
& Sambridge 2009; Zhang et al. 2018b), wavelet parametrization
(Hawkins & Sambridge 2015), Johnson-Mehl tessellation (Belhadj
et al. 2018), Delaunay and Clough-Tocher parametrizations (Curtis
& Snieder 1997) or discrete cosine transforms (Urozayev et al.
2022). In addition, other SVGD variants which project the high
dimensional parameter space into a lower dimensional space may
be used to improve the results, for example, projected SVGD (Chen
& Ghattas 2020) or sliced SVGD (Gong et al. 2020).

By adding a noise term to the dynamics of SVGD, sSVGD be-
comes a McMC method with multiple interactive chains. Note that
this is different from other McMC methods which run multiple
interactive chains such as parallel tempering (Earl & Deem 2005;
Sambridge 2013). In parallel tempering, a set of chains with differ-
ent temperatures are run in parallel, and at each iteration samples
in two randomly selected (or neighbouring) chains are exchanged
with a Metropolis–Hastings criterion. In sSVGD, all Markov chains
interact by using a kernel function and hence no sample exchange
occurs between chains.

Although sSVGD provides more accurate results than ADVI and
SVGD, it also requires more iterations to converge. To improve
efficiency of the method, one might exploit higher order gradient
information, for example, using a Hessian matrix kernel (Wang et al.
2019) or the stochastic Stein variational Newton method (Leviyev
et al. 2022). Since sSVGD is a McMC method, one can further
improve the accuracy of the method by implementing a Metropolis–
Hastings correction step at each iteration (Metropolis & Ulam 1949;
Hastings 1970), though in such cases stochastic minibatches may
not be used because of the detailed balance requirement of the
Metropolis–Hastings step.

Note that for both SVGD and sSVGD, the posterior distribution is
likely to be under sampled given the large dimensionality (642 663)
and the small number of samples (400 and 10 000, respectively).
While the set of samples may not be sufficient to represent the full
posterior distribution, they may at least provide reasonable mean
and (in the case of sSVGD) standard deviation estimates. We also
note that in practice the number of samples is always restricted by
the available computational cost.

In this study we used a Uniform prior distribution. This may cause
posterior pdfs to occur that are more complex than would be the case
if Gaussian or other prior distributions were used that more strongly
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Figure 9. The marginal distributions at four well logs (black dashed line in Figs 4, 5 and 6) obtained using (a) ADVI, (b) SVGD and (c) sSVGD, respectively.
Red lines show the true velocity profiles and white dashed lines show the lower and upper bound of the prior distribution. Blue arrows highlight the interval
(the red box in Fig. 4) in which the true velocities are outside of the support (positive probabilities) of the prior distribution.

focus the solution towards certain regions of parameter space. This
means that our posterior pdf may be harder to explore than would
otherwise be the case. In practice where more knowledge about
the subsurface is available, one can use a more informative prior
distribution. For example, models obtained using fast traveltime to-
mography can be used as prior information for FWI. In addition,
prior regularization or Gaussian processes may be used to produce

smoother models (MacKay 2003; Ray & Myer 2019). Neural net-
works can also be used to encode geological information into prior
distributions (Laloy et al. 2017; Mosser et al. 2020).

For the likelihood function we used Gaussian data uncertainties
with a known, fixed data noise level. In practice this noise level
should be determined from the data, for example, by using the max-
imum likelihood method (Sambridge 2013). It may also be possible
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Table 1. A comparison of computational cost for the three inference
methods.

Method
Number of

simulationsa CPU coresb Wall time (hr)

ADVI 4000 768 53.8
SVGD 400 000 7680 558.7
sSVGD 80 000 3840 220.8
aThis is measured as the number of minibatch simulations.
bThe CPU used in this study is Intel Xeon Platinum.

to estimate the noise level in the inversion process using a hier-
archical Bayesian formulation (Ranganath et al. 2016; Malinverno
& Briggs 2004). We also note that other non-Gaussian likelihood
functions may be used to improve the results given that those likeli-
hood functions are defined to represent the probability distribution
of data uncertainty (Zhang et al. 2023).

In this study, we demonstrated variational inference methods us-
ing the overthrust model. In preparatory tests we inverted for layered
3-D models and found that the computational cost was similar to the
case shown here. This suggests that increases in the true structural
complexity are not necessarily reflected in increased computational
cost. We note, however, that for much stronger heterogeneity the re-
quired computational cost may increase because of the increase in
non-linearity caused by stronger heterogeneity. For computational
efficiency we only applied the methods to a small area with a small
dataset. For large subsurface volumes the number of particles and it-
erations required by the methods may increase significantly because
of the curse of dimensionality (Curtis & Lomax 2001). However,
the scaling of the computational cost is not obvious because while
the cost of forward modelling increases predictably with model or
particle size, these methods sample the posterior probability distri-
bution which is expected to be far more limited in its support than
might be expected from the increased dimensionality of the models.
The cost will therefore depend on the specifics of the data and prior
information available in each case. As a result, the methods may
become computationally intractable for large subsurface volumes
and large datasets. In such cases one may use experimental design
methods (Curtis 2004; Maurer et al. 2010) to select a small part
of the large dataset, and perform inversions using those selected
data. Faster, approximate forward modelling methods may also be
used to improve efficiency of the methods, for example neural net-
work based modelling methods (Sirignano & Spiliopoulos 2018).
We also note that apart from the mean and uncertainty models,
the obtained samples can be used for real-world applications, for
example, providing models for reservoir simulations or answering
specific scientific questions (Arnold & Curtis 2018; Zhang & Curtis
2022; Zhao et al. 2022).

5 C O N C LU S I O N

In this study we applied three different variational inference meth-
ods: ADVI, SVGD and sSVGD to 3-D FWI, and demonstrated
feasibility of using these methods to solve large scale probabilistic
inverse problems. The results show that ADVI with a mean-field
approximation can provide rapid solutions but with systematically
underestimated uncertainty. In practice, the method can therefore
be used to provide a rapid initial estimate of the solution, or to pro-
vide a lower bound estimate of the uncertainty. SVGD appears to
be the most expensive method, but still provides a biased solution
because of the limited number of particles. By contrast, by adding
a noise term in the dynamics of SVGD, sSVGD becomes a Markov

chain Monte Carlo method and provides the most accurate results.
We thus conclude that variational inference methods can be used to
solve real-world 3-D full wave form inversion problems.
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