
1. Introduction
Machine learning (ML) has a long history in statistical signal processing and roots some of its earliest applica-
tions in time series filtering (Kolmogorov, 1939) and geostatistics (Krige, 1951). Despite significant discoveries 
of important methods such as Bayesian inference in the 1960s, some re-discoveries of the methods of backprop-
agation in the 1980s, and the invention of data-driven techniques such as support vector machines and recurrent 
neural networks in the 1990s, ML research and application have experienced multiple cycles of optimism and 
pessimism. The most recent wave of optimism started in the early 2000s when both the amount of openly avail-
able data and computing power grew exponentially. Driven by the “big-data” movement, ML methods such as 
support vector clustering and random forests have become widely accepted. Since the 2010, deep learning, based 
on large artificial neural networks, specifically convolutional neural networks (CNNs), has become the most 
advanced, yet practical ML system that enabled spectacular success in supervised tasks such as image classifica-
tion and speech recognition. In 2016 and 2017, Google's AlphaGo and AlphaGo Zero snatched consistent wins 
from professional human players in the notoriously difficult game of Go, marking one of the highest achieve-
ments of reinforcement learning.

Following each cycle of ML research, the number of ML applications in geosciences has gone through similar 
peaks and troughs, albeit with a time lag of a few years (Dramsch, 2020). While the new era of ML equips geosci-
entists with high-performance computing and open-source software libraries, we face unique challenges specific 
to the domain of solid Earth geoscience. The first challenge arises from the lack of sufficient data and corre-
sponding labels. Unlike many commercial applications, geoscience data can rarely be crowd-sourced and labeled. 
The uncertain nature of geoscience exacerbates this challenge with a lower opportunity to properly benchmark 
the machines with ground truth. The second challenge is rooted in the general “black-box” characteristic of the 
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machines. This decoupling between prediction and understanding undermines the confidence of the geoscientists 
in the learned models, calling for integration between physics-based methods and data-driven methods.

Co-led by four journals: Journal of Geophysical Research: Solid Earth, Geochemistry, Geophysics, Geosystems, 
Earth and Space Sciences, and Tectonics, the special collection on “Machine Learning for Solid Earth Obser-
vation, Modeling, and Understanding” gathers papers that demonstrate the new developments, unprecedented 
capabilities, and novel applications of ML in solid Earth geosciences. In Section 2, we categorize the papers 
according to their geoscience applications and summarize the highlights of these papers in addressing the general 
ML challenges as well as the particular geoscience challenges. In Section 3, we outline the unsolved challenges 
of ML in geosciences and speculate about the future directions the solid Earth community should venture upon 
based on the cornerstones laid down by this special collection.

2. Highlights
2.1. Earthquake Data Applications

The earthquake community is one of the earliest movers in geoscience to capitalize on the recent developments 
in ML, partially due to the exponential increase in digital data volumes, partially due to the increasing number 
of automatic earthquake identification algorithms (Yano & Kano, 2022), and more importantly due to the better 
availability of data labels accumulated through the community earthquake catalogs. Studies presented in the 
special collection bring more details of the seismic waveforms to the attention of the neural network and form the 
basis for the next-generation earthquake detection algorithms that are able to fully mimic an experienced earth-
quake data analyst (Beroza et al., 2021).

Earthquake phase detection has witnessed the most rapid advance as a successful application of ML. Cianetti 
et al. (2021) and Münchmeyer et al. (2022) compare existing deep learning algorithms under different earthquake 
scenarios, with special attention on their generalizability to data beyond the training set and giving end-users 
practical suggestions when applying these models. The sheer improvement in detection efficiency and consist-
ency has resulted in much more detailed maps of seismicity and a corresponding improved understanding of 
earthquakes. In this special collection, multiple studies further improve the robustness and generalizability of 
ML-based earthquake detection. The improvements are achieved by utilizing a vision transformer architecture 
(Saad et al., 2022), by designing cascaded neural networks (Majstorovic et al., 2021), by data augmentation (T. 
Wang et al., 2021) and transfer learning (Lapins et al., 2021), by transforming seismic data into the time-frequency 
domain before detection (Saad et al., 2021), and by incorporating higher abstraction features and latent space 
information over the seismic array (Mosher & Audet, 2020; Z. Xiao et al., 2021; Feng et al., 2022). Baseline 
neural networks are trained using massive labeled datasets with several tens of thousands of data entries, while 
transfer learning reduces this requirement to a few thousand.

Seismicity classification is a more challenging step in the earthquake monitoring workflow as fewer labeled data 
are available, and more uncertainty exists in current manually labeled datasets. Therefore, earthquake seismol-
ogists appeal to semi-supervised methods (Linville, 2022) and unsupervised ML methods, which do not require 
manual labels and are often better generalized. Zhu, McBrearty, et al. (2022) proposes a new earthquake phase 
association algorithm based on a Bayesian Gaussian Mixture model to aggregate picked seismic phases into indi-
vidual seismic events. This process is essentially an unsupervised clustering process, based on the maximum like-
lihood criterion to determine the earthquake source parameters. In a subsequent paper (Zhu, Tai, et al., 2022), the 
authors further develop an end-to-end architecture for joint phase picking and association. Jenkins II et al. (2021) 
adapts a random forest classifier to separate the background seismicity and the aftershocks in existing earthquake 
catalogs. Steinmann et  al.  (2022) proposes a hierarchical clustering strategy to classify noise and seismicity 
based on the deep scattering spectrum of the seismic data. Aden-Antoniow et al. (2022) compresses the seismic 
information into a low-dimensional latent space using an autoencoder before these latent vectors are clustered to 
identify seismicity from different sources.

While natural earthquake data carry a tremendous amount of information about the physical Earth, inverting for 
such information is extremely challenging due to the multitude of complexities in the natural environment. In 
the controlled laboratory setting, on the other hand, accurate labels of the physical system are generated at the 
same time as the laboratory earthquakes. Fieseler et al. (2022) apply an unsupervised sparse regression model to 
classify acoustic emission signals related to different cracking mechanisms and suggest using the differences in 
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the reconstruction accuracy as an indicator for classification. By focusing the attention of the neural networks on 
specific features, fracture loading mode (Z. Song et al., 2022) and fracture saturation (Nolte & Pyrak-Nolte, 2022) 
are successfully inferred from the laboratory earthquakes. Similarly, although the deterministic prediction of 
time-to-failure in natural environments remains elusive, a couple of studies (Jasperson et al., 2021; Shreedharan 
et  al.,  2021) show that ML has the ability to predict time-to-failure and the stress state from the laboratory 
earthquake data. J.-T. Lin et  al.  (2021) demonstrates that deep neural networks trained by simulated ground 
deformation data have the potential to provide accurate early warnings for large earthquakes, particularly when 
the regional tectonic setting is well understood and data are abundant. Nonetheless, the application of such meth-
ods to tectonic faults in natural environments requires rigorous tests of the generalizability of the proposed ML 
approaches.

2.2. Geophysical Data Processing and Image Interpretation

Geophysical data contain various types of images where ML algorithms have demonstrated remarkable success. 
H. Xiao et al. (2021) perform a straightforward application of image classification to identify weather phenomena 
from natural images and establish a database for future weather studies. Zhou et al. (2022) follow the conven-
tional feature engineering and prediction workflow to extract outlying motions from satellite images and achieve 
accurate identification of landslide location almost 1  year in advance. Granat et  al.  (2021) utilize clustering 
methods on global navigation satellite system data to identify major faults in California. Graw et al. (2021) utilize 
the random forest regressor to interpolate for a global marine sediment density map from measurements at a 
few sparsely distributed locations. You et al. (2021) train a generative adversarial network to compress complex 
two-dimensional digital rock images into one-dimensional latent space vectors and exploit the linearity of these 
vectors to interpolate between the two-dimensional images for a complete three-dimensional rock structure. 
These self-supervised ML methods bring unprecedented high-resolution images that are impossible or expensive 
to obtain to the geophysical disciplines.

ML has also drastically improved the efficiency of geophysical signal processing and interpretation. Alyaev and 
Elsheikh (2022) use a mixture density deep neural network (NN) to perform fast geophysical log interpretation 
for real-time geosteering. Automatic 2D image fault interpretations are performed on optical and topographic 
images with different resolutions (Mattéo et  al.,  2021), and bathymetry images (Vega-Ramírez et  al.,  2021). 
Gan et al. (2022) propose a generative NN to interpolate earthquake waveforms recorded on irregularly spaced 
stations. B. Li and Li (2021) train a neural network to perform end-to-end interpretation from time-lapse seismic 
images to the presence of CO2 after its geological sequestration. To train the ML algorithms, sufficient manual 
interpretations are used. Compared to the size of the natural image training data sets, the size of the geophysi-
cal  image training data sets is often orders of magnitude smaller. Consequently, the structure and complexity of 
the machines, particularly of the neural networks, optimize at a moderate level to avoid overfitting.

When manually labeled ground truth for geophysical images is not available, synthetic images and corresponding 
labeled solutions are used for large-scale three-dimensional seismic image interpretation (Bi et al., 2021; X. Wu 
et al., 2020), for microseismicity locationing (Q. Zhang et al., 2022), for interferometric synthetic aperture radar 
image processing and denoising (Sun et al., 2020), and for dispersion curve picking (W. Song et al., 2021, 2022). 
These studies demonstrate the encouraging generalizability of supervised neural networks from synthetic data 
to field data, especially when the synthetic data are crafted based on the preliminary knowledge of the field. 
Constructing and augmenting training data using the known physics is also one of the most straightforward 
methods to incorporate physics information into the “black box” of the neural network, making the machines not 
entirely dependent on insufficient, noisy data.

2.3. Geophysical Inversion

This special collection has received the most submissions in the category of geophysical inversion, convention-
ally a highly challenging, ill-posed, and computationally expensive task. Most studies in this category design 
deep neural networks that are capable to capture the complex transformation from the measured data space to the 
desired model parameter space, train these machines using paired models and their corresponding synthetic data, 
and apply the trained machines to field datasets. Applications of such a framework range across the whole spectrum 
of geophysical inverse problems, including surface wave dispersion inversion and tomography (Cai et al., 2022; 
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X. Zhang & Curtis, 2021), seismic-to-petrophysics inversion (Xiong et al., 2021; C. Zou et al., 2021), crustal 
thickness and Vp/Vs estimation from receiver functions (F. Wang et al., 2022), earthquake and microseismicity 
moment tensor inversion (Chen et al., 2022; Steinberg et al., 2021), magnetic, gravity, and ground-penetrating 
radar (GPR) data inversion (R. Huang et al., 2021; Leong & Zhu, 2021; Nurindrawati & Sun, 2020), and thermal 
evolution estimation for Mars (Agarwal et al., 2021). Y. Wu et al. (2022) design a dual loop framework for full 
waveform inversion using reflection data, where the inner loop trains a CNN to update the velocity model from 
the image, and the outer loop updates the training data set based on the results from the inner loop.

It is easy to see the appeal of ML in this challenge. First, it takes advantage of the massive expressivity of 
deep neural networks to represent complex domain transforms. Second, it incorporates the best-known physics 
through the training data sets constructed by accurate simulations and approximated noise. Moreover, once the 
neural networks are properly trained, applications on field data are almost instantaneous. Last but not least, 
the efficiency and the crafted stochastic characteristics of the ML framework help quantify the uncertainties in 
the  inverted models. Nevertheless, such end-to-end ML solutions to geophysical inversion problems still suffer 
from strong skepticism due to the lack of interpretability of the inversion process, the severely limited general-
izability of the trained machines to different field datasets, and the high computational cost in constructing the 
training datasets.

A few studies take more cautious steps compared to these end-to-end solutions by integrating ML as part of 
the inversion workflow. Kaur et al. (2021), X. Huang and Alkhalifah (2021), and Rasht-Behesht et al. (2022) 
improve the efficiency of seismic inversion by accelerating the wave-equation simulation process. Chen and 
Saygin (2021) propose to utilize latent-space representation of the seismic data compressed by the convolutional 
autoencoder. Lopez-Alvis et al. (2022) assemble the geological priors using a variational autoencoder to facilitate 
GPR traveltime inversion. While these studies show promising results, significant technological and scientific 
improvements are still in need before ML solutions make groundbreaking contributions to the extremely chal-
lenging geophysical inverse problems.

2.4. Multiphysical and Multi-Disciplinary Information Integration

One of the most exciting aspects of ML methods stems from their capability to capture implicit, complex rela-
tions among data from different physical, chemical, and geological measurements and information from different 
disciplines. Due to the complexity and diversity of geochemistry data, ML-based classification methods are 
proven to be much more efficient and accurate than conventional methods (Qin et al., 2022; S. Zou et al., 2022), 
particularly for large-scale geological processes. However, joint inversion, interpretation, and/or assimilation 
of data and knowledge from multiple disciplines rank among the most challenging tasks in geoscience. These 
are the problems that do not have existing accepted solutions, rely heavily on judgments of highly experienced 
experts, yet could lead to the most profound scientific insights if investigated properly. A few studies explore the 
promise of ML in multi-disciplinary data integration for predicting drought behavior in the Colorado River Basin 
based on various Earth System Models (Talsma et al., 2022), for predicting sea surface variabilities in the South 
China Sea (Shao et al., 2021), for geothermal heat flow prediction from multiple geophysical and geological data-
sets (Lösing & Ebbing, 2021), for identifying volcano's transition from non-eruptive to eruptive states (Manley 
et al., 2021), for understanding the geodynamic history using geochemical data (Jorgenson et al., 2022; X. Lin 
et al., 2022; X. Li & Zhang, 2022; Saha et al., 2021; Thomson et al., 2021; Y. Wang et al., 2021), and for charac-
terizing geodetic signals by their sources (Hu et al., 2021). Albert (2022) uses an unsupervised deep NN structure 
to predict future atmospheric structures from past measurements to enable infrasound propagation modeling. 
These studies, although limited by the availability of data, provide encouraging results that demonstrate the feasi-
bility of formalizing the interdisciplinary knowledge integration process through ML.

3. Remaining Challenges and Roads Ahead
This special collection showcases a wide variety of ML applications in solid Earth geosciences that have 
dramatically improved the efficiency of data processing and interpretation, and in some cases have resulted 
in a better understanding of the underlying physics and geoscience processes. The fundamental challenges of 
ML in geosciences: lack of labeled data, low interpretability of the deep learning networks, as well as limited 
integration between physical understanding and data correlations, remain to be overcome by the concerted efforts 
from generations of geoscientists.
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Some of these challenges, particularly the lack of labeled data, may be addressed by recent trends in ML toward 
foundation models (Bommasani et al., 2021), which are trained on broad data and can be adapted to solve many 
problems using small problem-specific datasets. While foundation models have had great success in applications 
such as natural language processing, how or if they could be applied in geosciences remains to be seen. Such gaps 
between computer science, data science, and geoscience call for greater and deeper interdisciplinary collabora-
tions so that rapid innovations in ML can be capitalized on by the geoscience community to continue pushing the 
boundaries of scientific understanding of our natural world. We anticipate opportunities for new and interesting 
applications of ML in geosciences to continue progressing. With increasing exploration, comparison, and compe-
tition, we as a community will identify the most suitable algorithms for different geoscience goals, and achieve 
better clarity of areas where ML has truly impacted solid Earth geoscience.

Data Availability Statement
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