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S U M M A R Y
Seismic surface wave dispersion inversion is used widely to study the subsurface structure
of the Earth. The dispersion property is usually measured by using frequency–phase velocity
(f–c) analysis of data recorded on a local array of receivers. The apparent phase velocity at
each frequency of the surface waves travelling across the array is that at which the f–c spectrum
has maximum amplitude. However, because of potential contamination by other wave arrivals
or due to complexities in the velocity structure the f–c spectrum often has multiple maxima
at each frequency for each mode. These introduce errors and ambiguity in the picked phase
velocities, and consequently the estimated shear velocity structure can be biased, or may not
account for the full uncertainty in the data. To overcome this issue we introduce a new method
which directly uses the spectrum as the data to be inverted. We achieve this by solving the
inverse problem in a Bayesian framework and define a new likelihood function, the energy
likelihood function, which uses the spectrum energy to define data fit. We apply the new
method to a land data set recorded by a dense receiver array, and compare the results to
those obtained using the traditional method. The results show that the new method produces
more accurate results since they better match independent data from refraction tomography.
This real-data application also shows that it can be applied with relatively little adjustment to
current practice since it uses standard f–c panels to define the likelihood, and efficiently since
it removes the need to pick phase velocities. We therefore conclude that the energy likelihood
function can be a valuable tool for surface wave dispersion inversion in practice.

Key words: Inverse theory; Probability distributions; Surface waves and free oscillations;
Statistical methods.

1 I N T RO D U C T I O N

Seismic surface waves travel along the surface of the Earth while
oscillating over depth ranges that depend on their frequency of
oscillation (Aki & Richards 1980). This in turn makes surface
waves dispersive—different frequencies travel at different speeds,
and these speeds are sensitive to different parts of the Earth. By
measuring speeds at different frequencies this dispersion property
can be used to constrain subsurface structures over different depth
ranges on global scale (Trampert & Woodhouse 1995; Shapiro &
Ritzwoller 2002; Meier et al. 2007a, b), regional scale (Zielhuis &
Nolet 1994; Curtis et al. 1998; Simons et al. 2002; Yao et al. 2006)
and industrial scale (Park et al. 1999; Xia et al. 2003; de Ridder &
Dellinger 2011; Zhang et al. 2020a).

Surface wave dispersion property (phase or group velocities at
different frequencies) can be measured in different ways depending
on different acquisition systems. In the case of a single station
or a sparse receiver array, as is often the case in seismology, the
dispersion property can be measured by using the frequency–time
analysis (FTAN) method (Dziewonski et al. 1969; Levshin et al.

1972; Herrin & Goforth 1977; Russell et al. 1988; Levshin et al.
1992; Ritzwoller & Levshin 1998; Levshin & Ritzwoller 2001;
Bensen et al. 2007). In FTAN one constructs a frequency–time
domain envelope image for each seismic trace by using a set of
narrow bandpass Gaussian filters, and measures the group velocity
using the arrival time of the maximum envelope at each frequency.
The phase velocity can be derived using the phase of the signal at
the time of the maximum envelope plus a phase ambiguity term
(appropriate integer multiple of 2π ) and a source phase term, or by
using an image transformation technique (Yao et al. 2006).

In the case where a dense receiver array is deployed, the phase
velocity can be determined using frequency–phase velocity (f–c)
analysis, in which wavefields recorded by the array are slant stacked
to obtain a f–c spectrum (Park et al. 1998; Xia et al. 2003). The
phase velocity is then determined as the velocity associated with the
highest energy at each frequency in the spectrum. Because different
modes are separated in the f–c domain, the method can also be
applied to determine phase velocities for higher modes. However,
the obtained spectrum may still suffer from mulimodality which can
be caused by multipathing effects (Evernden 1953, 1954), strong
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lateral heterogeneity (Hou et al. 2016), lack of energy in certain
frequencies, or interference of different modes. Consequently, the
velocity associated with the highest energy does not necessarily
represent the most appropriate phase velocity measurement. This
issue can be overcome by imposing additional prior information
to the phase velocity, for example, by forcing the picked phase
velocity dispersion curve to be continuous. Unfortunately, on one
hand such additional constrains are usually achieved by picking the
phase velocity deliberately and manually for each spectrum, which
cannot be applied to large data sets. On the other hand an automatic
procedure can easily introduce errors to the picked phase velocities
because of the complexity of the spectrum.

To overcome the above issues in phase velocity estimation, in this
study we introduce a new method which directly uses the spectrum
as data rather than explicit picks of the phase velocities. The spec-
trum of data has been used in wave-equation dispersion inversion in
the framework of full-waveform inversion (Li et al. 2017). However,
that method is computationally expensive and the problem is solved
using a deterministic method which cannot provide uncertainty es-
timates. To quantify uncertainty we solve the dispersion inversion
problem using Bayesian inference. In Bayesian inference one con-
structs a so-called posterior probability density function (pdf) that
describes the remaining uncertainty of models post inversion, by
combining prior information with the new information contained in
the data as represented by a pdf called the likelihood. The likelihood
function describes the probability of observing data given a specific
model, and is traditionally assumed to be a Gaussian distribution
centred on the picked phase velocities. In this study we propose
a new likelihood function, called the energy likelihood function
which directly uses the spectrum based on the intuition that higher
energy in the spectrum reflects higher probability of observing the
associated phase velocity.

We apply the new method to a land data set recorded by a dense
array and compare the results with those obtained using the tradi-
tional method. The data set consists of raw shot records taken from
a subarea of a nodal land seismic survey that was conducted in a
desert environment (Ourabah & Crosby 2020). This data set offers
ultrahigh trace density with over 180 million traces per km2 on a
12.5 m × 12.5 m receiver grid and a 100 m ×12.5 m source grid.
The increased trace density greatly improves the spatial sampling of
the wavefield, which in turn benefits the recording and analysis of
surface waves. As a part of the depth model building process, refrac-
tion tomography was performed to yield a shallow P-wave velocity
model (Buriola et al. 2021), which is then used here for qualitative
comparison with the shallow S-wave velocity model obtained from
our method.

To solve the Bayesian inference problem, we use the reversible-
jump Markov chain Monte Carlo (rj-McMC) method. The rj-McMC
method is a generalized McMC method which allows a trans-
dimensional inversion to be carried out, meaning that the dimen-
sionality of parameter space (the number of parameters) can vary in
the inversion (Green 1995). Thus the parametrization itself can be
dynamically adapted to the data and to the prior information. The
method has been used to estimate phase or group velocity maps of
the crustal structure (Bodin & Sambridge 2009; Zulfakriza et al.
2014; Galetti et al. 2015; Saygin et al. 2015; Zheng et al. 2017;
Rosalia et al. 2020) and to estimate shear velocity structures of the
crust and upper mantle using surface wave dispersion data (Bodin
et al. 2012; Shen et al. 2012; Young et al. 2013; Galetti et al. 2017;
Killingbeck et al. 2018; Yuan & Bodin 2018; Zhang et al. 2020a;
Hallo et al. 2021).

In the following section, we first perform frequency–phase veloc-
ity analysis for the recorded data to obtain the f–c spectrum around
each geographic location. In Section 3, we introduce the new energy
likelihood function and give an overview of the rj-McMC algorithm.
We then apply the new likelihood function to the obtained spectra to
estimate the shear velocity structure, and compare the results with
those obtained using the traditional method. The results demonstrate
that the new method can generate more accurate results than the tra-
ditional method, and can be applied efficiently to large data sets.
We therefore conclude that the energy likelihood function provides
a valuable tool for surface wave dispersion inversion.

2 S U R FA C E WAV E D I S P E R S I O N
A NA LY S I S

Fig. 1(a) shows the locations of all 100 627 sensors which are de-
ployed in a regular grid with a spacing of approximately 12.5 m in
both directions, and record samples at 250 Hz. In total, 70 261 ac-
tive sources are fired with 100 m spacing in X direction and 12.5 m
spacing in Y direction to generate seismic surface waves (Fig. 1b).
Fig. 1(c) shows an example of a shot gather which mainly contains
surface waves.

To analyse the surface wave dispersion, we performed frequency–
phase velocity (f–c) analysis of the recorded data. For a given ge-
ographic location p, the f–c spectrum Up(c, w) can be computed
using the data recorded by a receiver array around the location:

Up(c, w) =
∫
Cp

e− j w
c x u(x, w)/|u(x, w)|dx

≈
Np∑
i=1

e− j w
c xi u(xi , w)/|u(xi , w)|�x, (1)

where Cp denotes that the integration is performed around the loca-
tion p, x is the source–receiver distance, w is frequency in radian, c
is phase velocity, j = √−1, i is the index of records and Np is the
number of receivers around location p; u(x, w) is the Fourier trans-
form of the wavefield u(x, t). For a given receiver array a larger Np

improves resolution of phase velocity, but reduces spatial resolution.
In this study for a given location p we stack all the records whose re-
ceiver and source locations are, respectively, within 300 and 1500 m
to the location p. These threshold distances are selected such that
the phase velocity dispersion curve can be clearly identified in the
spectrum without increasing the number of records unnecessarily.
This process is repeated for every geographic location on a regular
grid with a 12.5 m spacing in both directions across the survey area.

Fig. 2(a) shows an example spectrum obtained using the above
method (displayed as phase velocity versus period) at one specific
geographic location (red star in Fig. 1a). The spectrum shows three
modes. The phase velocity of the fundamental mode varies from
500 to 800 m s–1 and contains two different branches at periods
shorter than 0.25 s. This multimodality might be caused by effects
described above, or represents two different surface wave modes. To
further understand this, we performed an inversion using one of the
branches (black dots in Fig. 2a) and modelled the first overtone using
the obtained shear velocity profile (see the Appendix). The results
show that the modelled first overtone is close to the mode with ve-
locity higher than 600 m s–1 (Fig. A1). This therefore demonstrates
that the two branches are probably not associated with different
modes. The first overtone mainly appears in the period range from
0.1 to 0.25 s with phase velocities varying from 620 to 1000 m s–1.
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Figure 1. The acquisition system. Panels (a) and (b) show receiver (blue dots) and source (black dots) locations, respectively. The white lines and regions
show locations where no receiver or sources is deployed. The red star is referred to in the text. Panel (c) shows an example of a shot gather, which displays the
waveform data generated by a specific shot and recorded by receivers at different offsets.

Figure 2. (a) An example spectrum obtained using the f–c analysis at a specific location (red star in Fig. 1a). Black dots and triangles denote the picked
phase velocities for the fundamental mode and the first overtone, respectively, black pluses show the phase velocities associated with the second branch for the
fundamental mode and the black dashed line shows the phase velocity dispersion curve associated with the maximum energy at each period. The white line is
used to separate the two modes. Panel (b) shows the prior information, which is a uniform distribution with an interval up to 1000 m s–1 at each depth. The red
line shows the mean of the prior pdf.

The second overtone has much lower energy compared to the other
two modes, and we discarded this mode in the inversion.

Traditionally for each mode those phase velocities associated
with the peak energy are used as data to constrain the subsurface
shear velocity. However, for those modes that have complex struc-
tures in the spectrum (such as the fundamental mode in Fig. 2a),
it becomes difficult to determine the correct phase velocity dis-
persion curve to use as these may have apparent jumps between

neighbouring periods (e.g. the dashed black line in Fig. 2a). One
way to reduce this issue is to impose continuity or smoothness con-
strains on the dispersion curves. For example, in Fig. 2 the black
dots are determined by forcing the dispersion curve to be smooth.
Unfortunately the picked dispersion curve is then forced to follow
one of the branches at shorter periods (<0.25 s) which does not take
account of the full data information, and consequently the inverted
results do not reflect the full uncertainty in the data. In addition, for
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large data sets the dispersion curves need to be determined automat-
ically which introduces difficulties to balance higher energy against
the smoothness of dispersion curves, and therefore may cause errors
in the estimated phase velocities. Alternatively one may identify and
exclude the specific frequency ranges of complex data in the inver-
sion. However, there is no easy way to achieve this especially when
dispersion curves need to be determined automatically (e.g. Tram-
pert & Woodhouse 1995; van Heijst & Woodhouse 1997; Curtis
et al. 1998; O’Neill & Matsuoka 2005), and valuable information
can be lost in the process. In this study, we therefore automatically
pick one single fundamental dispersion curve for each spectrum
by imposing smoothness constraints (black dots in Fig. 2) when
performing traditional inversions, as is done in many other appli-
cations (Trampert & Woodhouse 1995; van Heijst & Woodhouse
1997; Zhang & Chan 2003; Xia et al. 2004; Grandjean & Bitri
2006; Cercato 2009; Xia 2014; Olafsdottir et al. 2018; Granados
et al. 2019). In the next section, we propose a method which directly
uses the f–c spectrum as data to constrain the subsurface velocity
structure, thus avoiding these issues.

3 S H E A R WAV E V E L O C I T Y I N V E R S I O N

The surface wave dispersion information obtained as above can
be used to constrain the subsurface shear velocity structure, which
involves solving a non-linear and non-unique inverse problem. In
this study, we use Bayesian inference to characterize the fully non-
linear uncertainty of the solution.

3.1 Bayesian inference

In Bayesian inference one constructs a so-called posterior pdf
p(m|dobs) of velocity model m given the observed data dobs, by
combining prior information with new information contained in the
data. According to Bayes’ theorem,

p(m|dobs) = p(dobs|m)p(m)

p(dobs)
, (2)

where p(m) describes the prior information of model m that is
independent of the current data, p(dobs|m) is called the likelihood
which describes the probability of observing dobs if model m was
true and p(dobs) is a normalization factor called the evidence.

The prior information is critical for Bayesian inference. To con-
struct a more informative prior distribution than the commonly-used
Uniform distribution with little or no depth dependence, we first
conduct a set of inversions at multiple geographic locations using a
Uniform prior pdf from 300 to 1500 m s–1, which spans the range
of shear velocities in the upper 500 m according to a variety of
similar studies (Lee & Collett 2008; Mordret et al. 2014; Chmiel
et al. 2019; Zhang et al. 2020a). The average of the mean models
from these inversions are then used as the mean of the prior pdf,
and we construct a Uniform distribution with a width of 1000 m s–1

(larger than four standard deviations obtained from the previous
inversions) at each depth (Fig. 2b). This prior information improves
the depth resolution and constrains the subsurface structure bet-
ter than an identical Uniform distribution across the depth ranges
(Yuan & Bodin 2018). The prior information also avoids numerical
instatility in surface wave dispersion modelling methods which can
significantly bias the results using a variety of common forward
modelling codes (Galetti et al. 2017).

3.2 Energy likelihood function

In traditional methods one often uses a Gaussian distribution for the
likelihood function:

p(dobs|m) = 1√
(2π )k |�| exp

(
−1

2
(dobs − d)T�−1(dobs − d)

)
(3)

where dobs is a real k-dimension data vector which in this case is
the phase velocities picked from the f–c spectrum, d is the model
predicted data vector and � is the data covariance matrix which
usually is set to be a diagonal matrix. Note that this likelihood
function is based on the assumption that data noise has a Guassian
distribution which is not always true in reality.

As discussed above in this study we define a new likelihood func-
tion which directly uses the f–c spectrum as data. In the f–c spectrum
the intensity (energy) at each frequency and each phase velocity is
obtained by stacking the back-propagated signals according to each
specific phase velocity and frequency (eq. 1). Assuming that the sig-
nal consists of surface waves, higher intensity in the spectrum means
that the associated phase velocity is closer to the true phase velocity
of a surface wave mode. Hence the intensity acts as a measure of
the consistency between the associated phase velocity and the true
phase velocity, which can be used as a measure of probability of
observing the specific phase velocity. Based on this observation, we
can directly use the spectrum as data and write a new likelihood
function. Define E as the matrix representing the f–c spectrum and
E(T, c) as the energy at period T = 1/f and phase velocity c, and
assuming that the energy at each value of T and c has exponentially
decaying probability away from the maximum energy value at that
period, the likelihood can be expressed as:

p(E|m) = 1

Z
exp

[
−

∑
i

max(E(Ti , ·)) − E(Ti , ci (m))

σ 2
i

]
, (4)

where Ti is the ith period, max(E(Ti , ·)) is the maximum energy at
period Ti which guarantees that the exponent is negative, ci (m) is the
phase velocity at period Ti predicted using model m, σ i is a scaling
factor and Z is a normalization factor. The normlization factor Z
is calculated numerically by integrating the function in eq. (4) over
the velocity range for each period. The scaling factor σ i is generally
unknown, so we treat it as an additional parameter and estimate it
hierarchically (Malinverno & Briggs 2004). The above likelihood
function takes a similar form as the Boltzmann distribution which
describes the probability that a system will be in a certain state as
a function of that state’s energy (Landau & Lifshitz 2013). In this
case the state is the set of phase velocities at different frequencies,
and the scaling factor σ i acts as the ‘temperature’ which is related
to the noise in the original data. For example, more noise in the data
means the energy in the f–c spectrum is less focused, and hence the
scaling factor will be higher.

For multimodal inversion the energy of the fundamental mode
may dominate the likelihood function in eq. (4) (for example, see
Fig. 2a), and consequently the inverted results can be biased be-
cause models may have apparently larger likelihood values if their
predicted higher modes also fit the fundamental mode energy. We
therefore separate each mode by windowing out other modes. For
example, define E j to be the spectrum of the jth mode after other
modes have been windowed out. Then the likelihood function be-
comes:

p(E|m) = 1

Z
exp

⎡
⎣−

∑
i j

max(E j (Ti , ·)) − E j (Ti , ci (m))

σ 2
i j

⎤
⎦ . (5)
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Figure 3. (a) The true model. (b) The spectrum obtained using eq. (1) by stacking the data simulated from the true model. Black dots show the phase velocities
picked from the spectrum.

Although this requires that we define a window function for each
mode, this process is usually straightforward. For example, the white
dashed line in Fig. 2(a) shows the boundary used to separate the
first two modes; this same line is used for all other spectra across
the survey area since it appeared appropriate for a large number of
spectra examined manually.

3.3 Reversible-jump Markov chain Monte Carlo

We use reversible-jump Markov chain Monte Carlo (rj-McMC) to
generate samples from the posterior pdf. The rj-McMC method
is a generalized version of the Metropolis–Hastings algorithm
(Metropolis & Ulam 1949; Hastings 1970), which allows the num-
ber of model parameters to be variable in the inversion (Green 1995).
Thus the parametrization of the seismic velocity model can itself be
determined by the data and prior information. The method has been
applied in a range of geophysical applications (Malinverno 2002;
Bodin & Sambridge 2009; Dettmer et al. 2010; Minsley 2011; Ray
& Key 2012; Young et al. 2013; Piana Agostinetti et al. 2015; Say-
gin et al. 2015; Galetti et al. 2017; Burdick & Lekić 2017; Biswas
& Sen 2017; Zhu & Gibson 2018; Xiang et al. 2018; Zhang et al.
2020a, b; Estève et al. 2021; Mousavi et al. 2021; Hallo et al. 2021).
In this study, we use the method to solve the surface wave dispersion
inversion problem.

In rj-McMC one constructs a (Markov) chain of samples by per-
turbing the current model m using a proposal distribution q(m′|m)
to generate a new model m′, and by accepting or rejecting this new
model with a probability α(m′|m) called the acceptance ratio:

α(m′|m) = min

[
1,

p(m′)
p(m)

× q(m|m′)
q(m′|m)

× p(dobs|m′)
p(dobs|m)

× |J|
]

, (6)

where J is the Jacobian matrix of transforming m to m′ and is
used to account for any volume changes of parameter space during
jumps between dimensionalities. In our case the Jacobian matrix is
an identity matrix (Bodin & Sambridge 2009).

For surface wave dispersion inversion beneath each geographi-
cal location we use a set of layers to parametrize the subsurface,
which can be changed in different ways within the rj-McMC al-
gorithm (Green 1995; Bodin & Sambridge 2009): adding a new
layer, removing a layer, changing layer positions and changing layer
velocities. There is also another perturbation related to the hyperpa-
rameters of the likelihood function: changing the scaling factor σ ij

in eq. (5) or standard deviation in the Gaussian likelihood function.
After each perturbation of the current model m, the acceptance ratio
α is computed using eq. (6) and is compared with a random number
γ generated from the Uniform distribution on [0,1]. If γ < α the
new model is accepted; otherwise the new model is rejected and the
current model is repeated as a new sample in the chain. This process
guarantees that the generated samples are distributed according to
the posterior pdf if the number of samples tends to infinity (Green
1995).

3.4 A synthetic example

To verify the energy likelihood function, we first conduct a syn-
thetic test and compare the results with those obtained using the
traditional method. The true shear velocity model contains five lay-
ers (Fig. 3a), and is used to calculate the phase velocity dispersion
curve using the modal approximation method (Herrmann 2013).
The modelled dispersion curve is then used to generate synthetic
signals in time domain with a 50 Hz sampling rate using a plane
wave approximation method for 200 uniformly spaced sensors with
a 5 m spacing (Park & Miller 2008; Naskar & Kumar 2022). Here
we only generated signals using the fundamental mode and kept
amplitudes the same for different frequencies. We added Gaussian
noise to the signals whose standard deviation is set to be 50 per cent
of the medium of the maximum amplitudes of all sensors. Those
signals are then stacked according to eq. (1) to generate a spectrum
(Fig. 3b) which is used as data for energy likelihood function. The
phase velocities associated with maximum intensity at each period
(black dots in Fig. 3b) are picked as data for the Gaussian likelihood
function. For the inversion we use 21 equally spaced periods from
0.5 to 2.5 s.

The prior pdf of shear velocity is set to be a Uniform distribution
between 300 and 1100 m s–1 and the prior pdf of the number of
layers is chosen to be a Uniform distribution between 3 and 20.
The prior pdf of the scaling factor σ i for the energy likelihood
function is set to be a Uniform distribution between 0.05 and 10, and
the prior pdf of the standard deviation for the Gaussian likelihood
function is a Uniform distribution between 0.3 and 60. We use
Gaussian distributions as the proposal distribution: the width of
the Gaussian distribution for the fixed-dimensional steps (changing
layer positions, changing layer velocities and changing likelihood
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Figure 4. The results obtained using (a) the energy likelihood function and (b) the Gaussian likelihood function. Red and black lines show the mean and true
models, respectively. The grey area shows the standard deviation around the mean model.

hyperparameters) is chosen by trial and error to ensure an acceptance
ratio between 20 and 50 per cent after burn-in period; the width of
the trans-dimensional steps (adding or removing a layer) is selected
to produce the maximum acceptance ratio. For each inversion we
run six chains, and each chain contains 800 000 iterations with a
burn-in period of 300 000 during which all samples are discarded.
After the iteration each chain is thinned (decimated) by a factor of
50, and the remaining samples are used for the subsequent inference.

Figs 4(a) and (b) show the results obtained using the energy like-
lihood function and the Gaussian likelihood function, respectively.
Overall the two results show similar mean and standard deviation
models even though they are obtained using very different likeli-
hood functions. However, due to the difference between the two
likelihood functions there are still slightly different features in the
standard deviation models. We also note that because the actual
noise distribution remains unknown, it is impossible to find the
true posterior pdf. Nevertheless this example demonstrates that the
energy likelihood function is a valid choice in the sense that it
generates similar results to the traditional method.

3.5 A 1-D example

We now apply the above method to the dispersion data in Fig. 2(a)
using both the energy likelihood function and the Gaussian likeli-
hood function and compare their results. We use both the funda-
mental mode and the first overtone with 21 equally spaced periods
from 0.0835 to 0.425 s. The prior pdf of shear velocity is shown
in Fig. 2(b) and the prior pdf of the number of layers is set to be
a discrete Uniform distribution between 2 and 25. For the energy
likelihood function the prior pdf of the scaling factor σ ij is chosen
to be a Uniform distribution between 0.5 and 20, and for the Gaus-
sian likelihood function the prior pdf of the data noise (standard
deviation of the Gaussian distribution) is a Uniform distribution

between 0.05 and 50. The inversions are conducted in the same way
as described in the above section.

Figs 5(a) and (c) show the marginal distributions of shear veloc-
ity obtained using the energy likelihood function and the Gaussian
likelihood function, respectively. The corresponding phase veloc-
ity distributions generated by those posterior samples are shown in
Figs 5(b) and (d), respectively. The shear velocity marginal distri-
bution obtained using the energy likelihood function shows clearly
multimodal distributions in the near surface (<100 m), which are
associated with the two branches in the f–c spectrum (Figs 2a and
5b). In comparison the marginal distribution obtained using the
Gaussian likelihood function shows a unimodal distribution and the
predicted data only fit the single branch on which the phase veloc-
ities were picked. Since we do not know which branch reflects the
most appropriate phase velocity a priori, the shear velocity obtained
using the Gaussian likelihood function is biased and the estimated
uncertainty failed to take account of the full, multimodal uncer-
tainty in the data. In contrast, by directly using the spectrum as data
one can embed all data uncertainty in the likelihood function and
therefore obtain a less biased result. In addition, the phase velocity
distribution of the first overtone obtained using the energy likeli-
hood function (Fig. 5b) fits the picked phase velocity better than
that obtained using the Gaussian likelihood function. This suggests
that there is inconsistency between the picked phase velocities of
the fundamental mode and the first overtone, and therefore further
demonstrates the necessity of including the second branch in the
likelihood function. In the deeper part (>100 m) the velocity ob-
tained using the energy likelihood function increases from 600 m s–1

at 100 m depth to 1500 m s–1 around 220 m and stays almost constant
down to 500 m; whereas the velocity obtained using the Gaussian
likelihood function is around 1200 m s–1 across the whole depth
from 100 to 500 m. This is probably because the picked phase ve-
locities (black dots and triangles in Fig. 2a) are not sensitive to
the deeper part (>200 m), and consequently the shear velocity in
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Figure 5. (a) The shear velocity and (b) the phase velocity marginal posterior distributions obtained using the posterior samples of the energy likelihood
function for the spectrum in Fig. 2(a). The phase velocity distribution is obtained by modelling the phase velocity for all posterior samples. Panels (c) and (d)
show the associated shear velocity and phase velocity marginal distributions obtained by the traditional method of using the picked phase velocities shown by
black dots and triangles in Fig. 2(a). Red dashed lines show the mean velocity profile. White dots, pluses and triangles are associated with the black dots, pluses
and triangles in Fig. 2, respectively.

the deeper part are dominated by the prior pdf. In comparison the
energy likelihood function uses all the information contained in the
spectrum and constrains deeper structure better. For example, at pe-
riods longer than 0.22 s phase velocities are not determined for the
first overtone because of its lower energy, whereas the information
is still used in the energy likelihood function to constrain deeper
structures. This can also be observed in the phase velocity distri-
butions predicted from posterior samples (Figs 5b and d), where
the first overtone distribution obtained using the energy likelihood
function at longer periods (>0.22 s) is more similar to the spectrum
than that obtained using the Gaussian likelihood function. Thus,
by directly using the spectrum as data the new energy likelihood
function can use more information in the data and can obtain more
accurate results than the traditional method.

4 3 - D R E S U LT S

To obtain 3-D shear velocity models we perform 1-D inversions to
all of the spectra across the survey area. For each inversion at each

geographic location the inversion is conducted in the same way as
described in the previous section with the same prior pdf. For the
proposal pdf we tune the width of the Gaussian proposal distribu-
tion according to the criteria described above at a few randomly
selected locations, and then use the same proposal pdf for all other
inversions. To compare the results we use both the energy likelihood
function and the Gaussian likelihood function around picked phase
velocities. For each spectrum we automatically determine the phase
velocity from longer periods to shorter periods: at each period the
phase velocity is determined as the local maximum energy point
whose phase velocity is closest to the already picked phase velocity
at the neighbouring period, such that the picked dispersion curve is
as continuous as possible. Alternatively, one may parametrize the
dispersion curves in terms of splines to ensure smoothness (Ek-
ström et al. 1997; Ekström 2011). To ensure the quality of picked
phase velocities, we only determine the phase velocity at frequen-
cies with sufficiently high energy, such that the picked energy is at
least 1.8 times higher than the average energy at each frequency.

Fig. 6 shows the mean and standard deviation models at the depth
of 20, 80, 140 and 200 m obtained using the energy likelihood
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Figure 6. The mean (left-hand panel) and standard deviation (right-hand panel) of shear velocities obtained using the energy likelihood across horizontal slices
at depths 20, 80, 140 and 200 m. Boxes highlight velocity anomalies which are referred to in the text.

function. Among various structures we have highlighted several ve-
locity anomalies using boxes which we will refer to below. Overall
the standard deviation model shows lower uncertainty at the shal-
lower part (20 and 80 m) and higher uncertainty at the deeper part
(140 and 200 m) due to the fact that seismic surface waves are more
sensitive to near surface structure. At all the depths the standard
deviation shows similar features to the mean model, but note that
at 20 m depth higher velocity anomalies are associated with lower
uncertainties, whereas at 140 m depth higher velocity anomalies
correspond to higher uncertainties. This phenomenon has also been
observed previously (Zhang & Curtis 2020b; Gebraad et al. 2020;
Zhang & Curtis 2021a), and the different correlation between ve-
locity anomalies and uncertainties at different depths suggests that
there is a complex, non-linear relationship between seismic velocity
and phase velocity data.

Fig. 7 shows the mean and standard deviation models obtained
using the Gaussian likelihood function at the same depths. Overall
the mean model obtained using the Gaussian likelihood function
shows more small scale variations than that obtained using the
energy likelihood function. This is probably caused by errors in
the picked phase velocities, which is inevitable when the phase
velocities are estimated automatically. At 20 m depth the mean
model shows similar structures to those observed in the previous
results in Fig. 6, for example the northern high velocity anomaly
denoted by black dashed boxes and the low velocity anomalies in
the southeast and northwest. However, the low velocity anomalies
that are denoted by black and red solid line boxes in Fig. 6 are
not present in Fig. 7. Similar to the previous results, at 80 m depth
there are small scale variations in the east, but the low velocity
anomaly denoted by red dashed line box and the high velocity
anomaly next to this low anomaly are not visible. At greater depths
(140 and 200 m) the mean velocity model is significantly different
from the previous results and contains many small scale structures

which probably do not reflect the true geologic structure as the
scale of these structures is smaller than the scale (300 m) used
for stacking which implicitly imposes smoothness to the velocity
structure. This suggests that the traditional method can cause bias
in the inverted velocity structure because of errors in the picked
phase velocity and loss of useful information in the data. However,
we note that there are small-scale structures in both Vs models,
which may reflect the true structure of the subsurface, or may be
caused by the failure of 1-D inversions to represent the true structure
in the presence of substantial lateral heterogeneities. Similarly to
the previous results, the standard deviation model shows similar
features to the mean model, and the uncertainty is lower in shallower
parts.

To further understand the results we compare the above shear
velocity models with P-wave velocity model (Fig. 8) obtained using
refraction tomography from the same data set (Buriola et al. 2021).
At 20 m depth the Vp model shows similar features to the shear
velocity models. For example, there is a high velocity anomaly in
the east between X = 6000 and 8000 m, which may be related to
the high velocity anomaly (black dashed line box) observed in the
shear velocity models even though they are not at exactly the same
location. Similarly to the shear velocity model obtained using the
energy likelihood function, there is a low velocity anomaly between
X = 2000 and 5000 m in the southeastern direction (black solid
line box) and a low velocity anomaly in the southwestern corner
(red solid line box). This strongly suggests that the new energy
likelihood method is effective since those low velocity anomalies
are not visible in the results obtained using the traditional method
(Fig. 7). Even though at depths of 80 and 140 m the Vp model is
different from both shear velocity models, there are still similarities
between the Vp model and the shear velocity model obtained using
the energy likelihood function. For example, at 80 m depth there is
a low velocity channel in the southeastern direction (denoted by red
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Figure 7. The mean (left-hand panel) and standard deviation (right-hand panel) of shear velocities obtained using the traditional method with picked phase
velocities across horizontal slices at depths 20, 80, 140 and 200 m. Boxes are the same as in Fig. 6.

dashed line boxes) in the west of both models. At 200 m depth the Vp
model shows more similarities to the shear velocity model obtained
using the energy likelihood function: both models show a high
velocity anomaly between X = 2000 and 5000 m in the southeastern
direction across the area (the same location as denoted by the black
solid line box at 20 m depth) and a low velocity channel to the east of
this high velocity anomaly. In the east (X > 4000 m) there are similar
small scale high velocity anomalies in both models. In comparison
the shear velocity model obtained using the traditional method is
very different from the Vp model. To further analyse the similarity
between these models, we computed the structural similarity index
measure (SSIM, Wang et al. 2004) between the two Vs models
and the Vp model. The obtained SSIM values are 0.13 and 0.08
for the models obtained using the energy likelihood function and
the Gaussian likelihood function, respectively. This suggests that
the model obtained using the energy likelihood function is more
similar to the Vp model than the model obtained using the Gaussian
likelihood function. This indicates that the new energy likelihood
function may generate more accurate shear velocity models than the
traditional method.

Fig. 9 shows vertical sections through the different models at Y =
875 m. To further compare these models, in Fig. 9(f) we show the
average velocity profile across the section of each model with the
P-wave velocity converted to shear velocity using a factor of 1.73
(Pickett 1963). In the near surface (<100 m) all three models show a
lower velocity layer (Fig. 9f), although the two shear velocity models
show more complex structures than the P-wave velocity. Between
depths of 100 and 230 m the shear velocity obtained using the en-
ergy likelihood function increases from 600 to 1500 m s–1 which is
consistent with the trend of P-wave velocity, and both models show
a high velocity layer below 200 m. In comparison the shear velocity
obtained using the traditional method is around 1300 m s–1 below
100 m. A similar phenomenon was observed in Section 3 in the 1-D

example, which is caused by the fact that the picked phase velocities
are not sensitive to the deeper structure. For example, the standard
deviation model obtained using the traditional method shows higher
uncertainties (>300 m s–1) below 200 m, whereas that obtained us-
ing the energy likelihood function shows a much lower uncertainty
(<100 m s–1) between 200 and 400 m. In addition, the shear velocity
model obtained using the traditional method shows higher lateral
spatial variations in deeper parts of the section (>200 m) than the
other two models. This further demonstrates the importance of us-
ing all information contained in the spectrum, rather than using
only picked phase velocities. Note that both shear velocity standard
deviation models show higher uncertainties at the layer boundary,
which has been observed previously (Galetti et al. 2015; Zhang
et al. 2018) and reflects the uncertainty of boundary positions.

5 D I S C U S S I O N

The McMC method is generally computationally expensive. For the
above inversion each chain took 0.173 CPU hours using one core
of an Intel Xeon CPU, which results in a total of 1.04 CPU hr for
each geographic location and 107,015.4 CPU hr for all 102 817 in-
versions across the survey area. However, the inversions are fully
parallelizable since the inversion at each geographical location is
independent of other inversions. For example, the above inversion
across the whole survey area took 15 hr using 7200 CPU cores. We
also note that other methods can be used to further improve the com-
putational efficiency, for example, Hamiltonian Monte Carlo (Du-
ane et al. 1987; Fichtner et al. 2018; Kotsi et al. 2020), Langevin
Monte Carlo (Roberts et al. 1996; Siahkoohi et al. 2020), varia-
tional inference (Nawaz & Curtis 2018; Zhang & Curtis 2020a, b;
Zhao et al. 2021; Smith et al. 2022) and neural network inversion
(Meier et al. 2007a, b; Earp et al. 2020; Zhang & Curtis 2021b).
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Figure 8. The P-wave velocity model obtained using refraction tomography across horizontal slices at depths 20, 80, 140 and 200 m. Boxes are the same as in
Fig. 6.

In the above results the phase velocities used for the traditional
method are determined automatically from the f–c spectrum, and
these may contain errors due to the complexity of the f–c spectrum.
We therefore note that the results obtained using the traditional
method may be improved if the phase velocities can be determined
more accurately. However, this usually requires deliberately and
manually picking of a dispersion curve for each spectrum, which
restricts its application to a relatively small number of spectra.
By contrast the new energy likelihood function directly using the
spectrum as data and can easily be applied to larger data sets.

The above method requires that we separate different modes in
the f–c spectrum, which is not always easy since higher modes may
overlap the fundamental mode. In such cases the phase-matched
filter theory may be used to iteratively suppress the effect of inter-
fering overtones (Ekström et al. 1997). Alternatively one can di-
rectly model apparent phase velocities rather than modelling phase
velocities for each mode separately (Tokimatsu et al. 1992; Lai
et al. 2014), in which case the energy likelihood function can still
be used.

In this study, we treated the multimodality that appears in a sur-
face wave mode in the f–c spectra as uncertainties in the data.
This uncertainty is propagated into the posterior distribution using
Bayesian inference. We note that it might also be possible to further

analyse the cause of the multimodality, or use other methods like
the two plane wave approach (Forsyth et al. 2005) to improve the
measurements or interpretation of phase velocities in the presence
of multipathing effects. We performed 1-D inversions using a plane
wave approximation for a 3-D structure, which may cause some bias
in the inverted velocity structure in the presence of strong lateral
heterogeneities as noted in Wielandt (1993). In such cases a 3-D
wave-equation based inversion method could be used in future to
improve the results (Li et al. 2017; Liu et al. 2018).

We performed the surface wave dispersion inversion indepen-
dently at each geographic location, which loses lateral spatial cor-
relations between neighbouring velocities and can cause biases in
the final results (Zhang et al. 2018). For example, there are horizon-
tal discontinuities in the shear velocity mean and standard deviation
models (Fig. 9), which probably do not reflect the real subsurface
structure. To include the lateral spatial correlation and to further
improve the results a 3-D parametrization may be used instead of
the 1-D parametrization, for example, 3-D Voronoi tessellation can
be used in surface wave tomography (Zhang et al. 2020a).

In this study, we used the spectrum obtained by stacking wave-
fields in the f–c domain, which requires a dense receiver array. In
cases where only a sparse array is available, the energy likelihood
can still be used to perform the inversion. For example, one could
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Figure 9. The mean and standard deviation model obtained using the energy likelihood function (a and b) and the traditional method (c and d) along a vertical
section at Y = 875 m. (e) shows the vertical section of the P-wave velocity model obtained using refraction tomography. Panel (f) shows the average shear
velocity profiles across the section obtained using the suite of methods. The P-wave velocity is converted to shear velocity using a Vp/Vs ratio of 1.73.

directly use the spectrum obtained between each source-receiver
or receiver–receiver as the data to conduct phase or group velocity
tomography using earthquake-generated surface waves or ambient
noise data (Cauchie & Saccorotti 2013; Panning et al. 2015; Gaudot
et al. 2021).

6 C O N C LU S I O N

In this study, we introduced a new likelihood function for seismic
surface wave dispersion inversion, called the energy likelihood func-
tion which directly uses the spectrum as data. We applied the new
likelihood function to image the subsurface shear velocity structure
using surface wave data recorded by a dense array, and compared
the results with those obtained using the traditional method. The
results showed that the new likelihood function can take account of
all information contained in the spectrum and produce a less biased
result than that obtained using the traditional method. In addition,
the velocity model obtained using the new likelihood function is
more similar to the P-wave velocity structure than that obtained
using the traditional method. Because the new likelihood function
directly uses the spectrum as data, it requires less effort to apply to
large data sets than the traditional method, since the latter requires
that we determine the phase velocity for each spectrum either manu-
ally or automatically and cannot be applied easily to large data sets.
We thus conclude that the new energy likelihood function provides
a powerful way to conduct surface wave dispersion inversion.
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A P P E N D I X : M O D E VA L I DAT I O N

To understand the two branches that appear at short periods
(<0.25 s) in the f–c spectrum in Fig. 2, and in particular to
test whether the two branches represent two different modes,
we first perform an inversion using the rj-McMC algorithm us-
ing one of the branches as data (black dots in Fig. A1). The
prior pdf of the shear velocity is set to be a Uniform distribu-
tion between 300 and 1500 m s–1. For the likelihood function we
use the traditional Gaussian distribution. The inversion is then
conducted in the same way as described in Section 3.5 with the
same prior pdf for the number of layers and noise hyperparam-
eters and the same proposal pdf. Fig. A1(b) shows the obtained

mean and the marginal distribution of the shear velocity. We then
use the mean shear velocity profile to simulate phase velocities of
the fundamental mode and the first overtone. While the modelled
fundamental-mode phase velocity (black dashed line in Fig. A1a)
fits the data used, the modelled phase velocity of the first overtone
(while line in Fig. A1a) is significantly closer to the mode with
velocity higher than 600 m s–1 (black triangles) than to the other
branch appearing in the fundamental mode. This clearly demon-
strates that the two branches are unlikely to represent two different
modes, and instead represent an effect such as the multipathing of
the seismic energy of the fundamental model or the strong lateral
heterogeneity.

Figure A1. (a) The spectrum obtained using f–c analysis for the location in Fig. 1(b) (red star). Black dots show the picked phase velocities. (b) The marginal
posterior distribution of shear velocities obtained using only the picked phase velocities of the fundamental mode. The red line shows the mean shear velocity
profile. The black dashed line and the white line in (a) show the predicted phase velocities for the fundamental mode and the first overtone, respectively,
modelled using the posterior mean model.
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