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ABSTRACT:
We present a method to create an internal numerical absorbing boundary within elastic solid media whose properties are

largely unknown and use it to create the first wavefield separation method that retrieves all orders of outgoing elastic

wavefield constituents for real data recorded on a closed free surface. The recorded data are injected into a numerical

finite-difference (FD) simulation along a closed, transparent surface, and the new internal numerical absorbing boundary

condition achieves high attenuation of the ingoing waves radiated from the injection surface. This internal wave absorp-

tion enables the data injection to radiate all outgoing waves for experimental domains that include arbitrary unknown

scatterers in the interior. The injection-absorption-based separation scheme is validated using three-dimensional (3D)

synthetic modeling and a real data experiment acquired using a 3D laser Doppler vibrometer on a granite rock. The

wavefield separation method forms a key component of an elastic immersive wave experimentation laboratory, and the

ability to numerically absorb ingoing scattered energy in an uncharacterized medium while still radiating the true outgo-

ing energy is intriguing and may lead to other development and applications in the future.
VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0012578
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I. INTRODUCTION

Physical modeling in a laboratory often involves the

use of small-scale (analog) models of natural or synthetic

materials and constitutes a primary tool for the study of

mechanical wave propagation in a variety of settings. Until

the late 1970s, physical modeling was used as a proxy for

seismic field experiments to study how recorded seismo-

grams can be interpreted for subsurface geological struc-

tures (Angona, 1960; Brien and Symes, 1971; Hilterman,

1970; Oliver et al., 1954). In the 1980s and 1990s, the

advent of full wavefield numerical modeling enabled simu-

lations [mainly two-dimensional (2D) acoustic and elastic]

to be run on the same scales as seismic field experiments

(Levander, 1990; Marfurt, 1984; Robertsson et al., 1994;

Virieux, 1986), and as a general trend, physical modeling

fell out of favor despite the fact that numerical modeling

requires strong assumptions about the physics of wave prop-

agation that may not hold in the natural world (Mo et al.,
2015).

Since the 2000s there has been a resurgence of physical

modeling research and development due to a wide range of

interest in, amongst others, material anisotropy (Qi et al.,
2015; Tsvankin, 2012; Yang et al., 2016), fracture charac-

terization (King, 2002; Nosjean et al., 2020; Pinto et al.,
2018), noise interferometry (Curtis et al., 2006; Snieder

et al., 2002; Wapenaar et al., 2010), and wave-based

imaging, tomography, and inversion applications (Brenders

and Pratt, 2007; Duan et al., 2017; Fichtner, 2010). These

wave phenomena and associated applications can be chal-

lenging to study using numerical modeling. For example,

attenuation and dispersion in natural materials are

frequency-dependent wave phenomena (Jakobsen and

Chapman, 2009), but using a fully linear (numerical) model

commonly involves the assumption that the medium has an

equal response at different frequencies. Such simplifications

of real-world wave interactions with structures encountered

in materials in the Earth’s subsurface and other environ-

ments can cause problems when trying to replicate mimeti-

cally the data observed in the field or laboratory. As a result,

numerous new laboratories have been developed for physi-

cal experimentation over the past two decades (Arthur et al.,
2012; Bretaudeau et al., 2011; Mikesell and van Wijk, 2011;

Sivaji et al., 2002). A new wave laboratory at ETH Z€urich

adopts a radically different approach aimed at overcoming

such issues by taking full control of the physical boundary

conditions imposed on wavefields, paving the way for com-

plex wave experimentation in real three-dimensional (3D)

volumes (Becker, 2019; B€orsing, 2019).

The internal structure of 3D solid experimental (rock)

volumes can of course be probed using elastic waves, but

the limited accessibility of solids usually only allows wave-

field measurements to be made at their traction-free

surface.1 Processing and interpreting such recordings is

challenging because the data necessarily involve a superpo-

sition of (1) outgoing waves (incident on the free surfacea)Electronic mail: xun.li@erdw.ethz.ch
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from the interior) and (2) their immediate reflection and

mode-conversion at the free surface (i.e., ingoing waves), as

shown in Fig. 1(a). The same challenge exists when process-

ing seismic data acquired at the Earth’s surface, in which

context the solution usually involves decomposing the data

into upgoing (incident) and downgoing (reflected) constitu-

ents. Best practice in seismic data processing suggests that

decomposing free-surface recordings is also an essential

step in the laboratory, and methods for doing so are dis-

cussed in detail below. The free surface also gives rise to

so-called surface-related multiples (copies of the primary

scattered wavefield) as their surface reflections interact with

the interior for a second, third, fourth, … time. Eliminating

such free-surface-related multiples and replacing them with

more meaningful interactions from a virtual exterior that

better represents the context of the sample embedded in

natural or artificial worlds is also a key driver for the ETH

laboratory, as discussed below.

Elastic wavefields can be decomposed using numerical

wavefield injection in time-domain finite-difference (FD)

modeling (Amundsen and Robertsson, 2014; Ravasi and

Curtis, 2013; Robertsson et al., 2015; Vasconcelos, 2013).

The experimental data are first recorded along an array of

densely spaced receivers, and the data are subsequently

injected into a FD simulation as the signatures of a set of

densely distributed multi-component point sources. These

sources are arranged in the same geometry as the receiver

array deployed in the physical experiment and embedded in

an extended numerical model with the same material proper-

ties as the true medium inside the wavefield injection

surface. Figure 1 illustrates this physical data acquisition

and the associated wavefield injection in two dimensions

[Figs. 1(a) and 1(b)]. The FD propagator, running alongside

the wavefield injection, radiates the out- and in-going parts

of the data [rays 1 and 2 in Fig. 1(a)] away from the injec-

tion surface Ssep in their correct propagation directions [rays

1 and 2 in Fig. 1(b)], thereby realizing the separation

(Robertsson et al., 2015).

This methodology works very well for data that are

acquired on a single side of the experimental domain

(Vasmel and Robertsson, 2016). However, for a closed-

aperture recording geometry, it was found that this

injection-based wavefield decomposition does not isolate all

outgoing energy present in the recorded data (Thomsen

et al., 2021): only primary outgoing waves (wave energy

that did not previously interact with the free surface) are iso-

lated. Furthermore, a practical limitation exists with this

approach: the elastic model used in the FD simulation has to

match the (unknown) physical experimental domain inside

the wavefield injection surface Ssep exactly (Thomsen et al.,
2021). As explained below, these limitations can be over-

come using a straightforward strategy: prevent the syntheti-

cally reconstructed ingoing waves from propagating across

the interior such that they do not reach the other sides of the

injection surface.

We propose an internal absorbing boundary condition

(IABC) that cancels the reconstructed ingoing waves [ray

path 2 in Fig. 1(b)] during the FD simulation, affecting the

3D closed-aperture wavefield separation such that all orders

of the outgoing part of free-surface interactions are retrieved

correctly from the recorded data. This IABC is developed

using a combination of active and passive boundaries. The

active boundary cancels the undesired ingoing waves using

a prediction-annihilation scheme, closely related to immer-

sive boundary conditions (Broggini et al., 2017; Li et al.,
2022; van Manen et al., 2015). As the active boundary is

transparent for propagating (and evanescent) waves, it can

be complemented by a passive boundary inside, which is

used for wavefield extrapolation and within which we rely

on damping profiles made from convolutional perfectly

matched layers (C-PMLs) (see Martin and Komatitsch,

2009; Roden and Gedney, 2000). To our knowledge, the

resulting injection-absorption-based separation scheme is

the only scheme that enables all orders of outgoing waves to

be separated for closed-aperture configurations. As dis-

cussed below, using passive absorbing boundaries only

cannot effectively absorb ingoing wave energy due to the

limited number of FD grid points around the edges of the

absorbing region. The IABC is the key enabler of so-called

elastic immersive wave experimentation currently under

development at our ETH laboratory, by which a physical

wave experiment can be immersed into a virtual environ-

ment (Thomsen et al., 2019). The IABC allows the physical

experiment to involve arbitrary medium with unknown

physics in the interior, which is desired in general laboratory

wave applications.

In Sec. II, we introduce the elastodynamic governing

equations and recapitulate the theory for numerical wave-

field injection of free-surface data. Next, we present the the-

ory for the new elastic IABC and discuss the experimental

setup in detail. In Sec. III, we present wavefield separation

results for 3D synthetic free-surface data with the internal

absorbing boundary activated. Since the results are compli-

cated, even for the simplest case of a fully homogeneous 3D

elastic medium, we employ compressional/shear (P/S)

FIG. 1. (Color online) (a) 2D schematic illustrating the wavefield record-

ings made at the boundary (free surface Sfree) of the experimental domain

(solid gray square). The black star represents an internal source that gener-

ates wave energy in a physical experiment, while the red and blue arrows

denote the incident and reflected waves, respectively. (b) Wavefield injec-

tion of the free-surface data into a FD simulation. The dashed gray square

denotes a wavefield injection surface Ssep. The dashed red arrow (ray path

3) denotes outgoing waves that are reconstructed but that destructively

interfere with the ingoing wavefield (ray path 2).

314 J. Acoust. Soc. Am. 152 (1), July 2022 Li et al.

https://doi.org/10.1121/10.0012578

https://doi.org/10.1121/10.0012578


separation and ray tracing to explain many of the features.

We then present wavefield separation results for the

recorded experimental free-surface data, obtained using the

same methodology. In Sec. IV, we discuss the difficulty of

building such an IABC and the application of the IABC in

elastic immersive wave experimentation before summariz-

ing the conclusions.

II. THEORY AND METHODS

A. Elastodynamic governing equations

Mechanical wave energy propagating through a solid

medium carries information about material properties

within. For an elastic experimental domain, wave propaga-

tion can be described by two coupled first-order differential

equations relating the tensorial stress wavefield sijðx; tÞ and

particle velocity wavefield viðx; tÞ. The equation of motion

follows (Pujol, 2003):

qðxÞ @viðx; tÞ
@t

¼ @sijðx; tÞ
@xj

þ fiðx; tÞ; (1)

where x represents an arbitrary location in a Cartesian coor-

dinate system, t is time, qðxÞ is mass density, and fiðx; tÞ
denotes a distribution of body force density sources.

Einstein’s summation convention applies to repeated sub-

scripts (here, for i, j representing spatial axes x, y, z). The

additional constitutive relation between the stress and parti-

cle velocity wavefields is

@sijðx; tÞ
@t

¼ cijklðxÞ
@vlðx; tÞ
@xk

þ hklðx; tÞ
� �

; (2)

where cijkl is a fourth-rank stiffness tensor containing the

elastic parameters of the experimental domain, and hklðx; tÞ
denotes a distribution of deformation rate density sources.

B. Wavefield separation by wavefield injection

In a physical modeling experiment [i.e., Fig. 1(a)], par-

ticle velocities viðxF; tÞ are recorded at the free surface Sfree

(xF 2 Sfree), which is also the boundary of the experimental

domain. The recorded data viðxF; tÞ can be injected into a

numerical simulation carried out in a time-space (t� x)

domain in which Eqs. (1) and (2) are discretized in space

and solved alternately every half time step (Virieux, 1986).

The injection relies on using the following source term in

the simulation (which is a function of the recorded free-

surface data):

hijðx; tÞ ¼
þ

Ssep

dðx� xSÞviðxS; tÞnj dSðxSÞ; (3)

where the injection surface Ssep [Fig. 1(b)] has the same

geometry as the free surface Sfree enclosing the experimental

domain [Fig. 1(a)], xS denotes a wavefield injection point on

Ssep, hij denotes the deformation rate density source [Eq.

(2)], and dð�Þ denotes the Dirac distribution. Note that no

distribution of body force sources is involved in this source

injection, since their role is to inject signatures of tractions

at the free surface that are known to be zero. The injection

surface Ssep is a transparent surface in the numerical simula-

tion, but its counterpart Sfree is a reflecting boundary in the

physical experiment. Wavefield injection requires the cor-

rect model parameters (i.e., cijkl; q) to be set at the injection

locations (xF on Ssep), matching the physical parameters at

the recording locations (xS on Sfree) in the physical experi-

ment. This wavefield injection radiates the outgoing (inci-

dent) constituents of the recorded data outward and their

ingoing (reflected) constituents inward away from the injec-

tion surface Ssep (the former with opposite polarity), result-

ing in the incident wavefield being retrieved outside the

surface Ssep with opposite polarity. However, wavefield sep-

aration by injection along a closed surface is limited by an

important observation: only the primary incident wavefield

can be reconstructed and propagated away from the wave-

field injection surface Ssep (Thomsen et al., 2021). This can

be understood from the fact that the separated ingoing waves

that propagate across the interior of the numerical domain

destructively interfere with the separated outgoing waves,

injected with opposite polarity, along the other sides of the

numerical wavefield injection surface Ssep, thereby prevent-

ing the reconstruction of the higher-order outgoing waves at

the surface Ssep [e.g., ray path 3 in Fig. 1(b)].

The domain enclosed by the injection surface Ssep in the

numerical simulation has exactly the same size as the experi-

mental domain enclosed by the free surface Sfree. In the

numerical domain, the part of the model outside of the injec-

tion surface must be kept homogeneous with elastic parame-

ters equal to those of the physical background medium to

avoid back-scattering of the separated outgoing energy. The

physical background medium is the embedding medium sur-

rounding the heterogeneities in the experimental volume

(Fokkema and van den Berg, 2013). When the elastic parame-

ters near the free surface are constant, the background parame-

ters are set to these constant near-surface parameters. When

the near-surface elastic parameters vary in space, the back-

ground parameters are set to their average values, and in this

case, one needs to interpolate the model around the injection

locations such that the model is smooth from the laterally

varying near surface to a constant interior and exterior. This

helps to avoid unwanted scattering at the injection surface.

In this paper, we employ a FD simulation that is second-

order accurate in time and space (Virieux, 1986). This FD

method is implemented on staggered velocity and stress grids,

and the wavefield injection along surface Ssep is implemented

with a method of multiple-point sources (MPS) (Li et al.,
2022; Thomsen et al., 2021). In the FD simulation, the grid

spacing is chosen to be 25 points (25 � Dx) per dominant S

wavelength (>20 is a rule of thumb), and the time step Dt sat-

isfies the Courant–Friedrichs–Lewy (CFL) criterion (Igel,

2017). In the numerical simulation, a radiation boundary con-

dition is implemented around the simulation domain using C-

PMLs to absorb the injected, separated outgoing waves

(Komatitsch and Martin, 2007).
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C. IABCs

As explained, the wavefield injection method alone can-

not be used to isolate the full outgoing (incident) wavefield

from the recorded free-surface data because the reconstructed

ingoing waves propagate across the interior of the FD simula-

tion and destructively interfere with the higher-order outgoing

waves on the other sides. In principle, a straightforward solu-

tion is to prevent the propagation of the ingoing waves across

the interior after they are produced at the injection surface Ssep

by using an internal absorbing boundary.

A first attempt to implement such an absorbing bound-

ary could be based on so-called immersive boundary condi-

tions (IBCs) by which (numerical) wavefields can be

actively canceled at the edge or in the interior of a computa-

tional domain by predicting the fields arriving there ahead

of time (van Manen et al., 2015). Figure 2 shows the geome-

try of an internal absorbing boundary that is deployed inside

of a wavefield injection surface Ssep. To cancel the undesired

ingoing waves, we place an array of numerical sources on

the emitting surface Semt, whose signatures are calculated by

extrapolating observed wavefield values from points in

between the surfaces Semt and Ssep. These points form the

(passive) recording surface Srec, as shown in Fig. 2, and

allow us to observe the reconstructed ingoing waves and

extrapolate them to the emitting surface Semt at each time

step of the FD simulation.

However, as in IBCs, the wavefield extrapolation relies

on computing the elastic Kirchhoff–Helmholtz integrals,

which involve connecting all FD grid points on the record-

ing surface Srec to all FD grid points on the emitting surface

Semt (which is the surface that actually cancels the wave-

field). Such an extrapolation approach not only cancels the

ingoing wavefield impinging on the emitting surface from a

particular side but also reproduces the same time-evolved

wavefield on the other side (as if the wavefield had actually

transmitted through the region enclosed by Semt). Hence,

this naive approach of using the all-to-all elastic

Kirchhoff–Helmholtz integrals does not achieve any (inter-

nal) absorbing effect for ingoing waves.

To be able to realize an absorbing boundary condition,

we still extrapolate the wavefield measured at the recording

surface Srec (see Fig. 2) to obtain the wavefield quantities

needed for building the active boundary condition at the

emitting surface Semt. However, this extrapolation is slightly

different from that in IBC theory (Li et al., 2022) as we only

extrapolate wavefields from the recording surface Srec to the

nearest face of the emitting surface Semt. To this end, we first

introduce a scaling factor a depending on the locations of

the sources on the emitting surface Semt and the receivers on

the recording surface Srec,

aðxrec; xemtÞ ¼
0 if gðxemtÞ � ðxemt � xrecÞ � 0

1 if gðxemtÞ � ðxemt � xrecÞ < 0;

(
(4)

where the operator � represents the dot product of two vec-

tors: g (the normal of Semt) and xemt � xrec (a vector pointing

from a recording point on the recording surface Srec to a

source point on the emitting surface Semt). Incorporating this

scaling factor a into the extrapolation integrals allows only

the ingoing wavefield on the same side to be extrapolated,2

while the transmitted waves that go through the region

enclosed by Semt are not extrapolated to the other sides of

Semt, which gives

viðxemtÞ ¼
þ

Srec

aðxrec; xemtÞ �sklðxrecÞ � Cv;f
i;k ðxemt j xrecÞ

h
�vkðxrecÞ � Cv;h

i;klðxemt j xrecÞ
i
ml dSðxrecÞ (5)

and

FIG. 2. (Color online) 2D schematic of an elastic IABC. The dashed gray, blue, and magenta squares represent the wavefield injection surface Ssep, recording

surface Srec, and emitting surface Semt, which are each separated by one full FD grid point (Dx). The domain enclosed by Semt is fully occupied by C-PMLs

with directionally separated convolutional profiles (i.e., dx and dy for x and y directions, respectively). The outward-pointing vectors n, m, and g denote the

normals of the surfaces Ssep, Srec, and Semt. (b) 3D schematic of the IABC. The purple cube denotes the interior C-PML region.
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sijðxemtÞ ¼
þ

Srec

aðxrec; xemtÞ �sklðxrecÞ � Cs;f
ij;kðxemt j xrecÞ

h
�vkðxrecÞ � Cs;h

ij;klðxemt j xrecÞ�ml dSðxrecÞ; (6)

where the time variable t is omitted, ml is the normal vector

component of the recording surface Srec, the Green’s func-

tions (GFs) C are pre-computed prior to performing the FD

simulation (for wavefield separation) and are associated with

a homogeneous free-space3 model whose elastic parameters

are equal to those of the numerical medium between the

emitting and recording surfaces when performing the separa-

tion. Without inserting this factor a in the wavefield extrapo-

lation integrals, or when setting a to a constant value of one,

Eqs. (5) and (6) will act exactly as the extrapolation integrals

used in IBCs. Figure 3 illustrates the principle of defining the

factor a at the upper left corner of the recording and emitting

surfaces (in 2D), and the situation for corners, edges, and

faces in 3D follows the same principle.

The GFs used in the wavefield extrapolation integrals

[Eqs. (5) and (6)] are computed in a homogeneous medium

using the same time-domain FD method as used for wave-

field separation. To apply them in conjunction with the FD

simulation, Eqs. (5) and (6) need to be discretized in space

and time [refer to Li et al. (2022) for details]. In a 3D simu-

lation, computing the extrapolation integrals at each time

step (of the simulation) is computationally intensive and

highly limited by the memory resources available for storing

the pre-computed time-domain GFs, which connect a mas-

sive number of grid points across the recording surface Srec

(i.e., one receiver at every FD grid point) to a massive num-

ber of grid points across the emitting surface Semt (i.e., one

source at every FD grid point). However, the definition of

the factor a in Eq. (4) means that �5/6 (for a cube in 3D) of

these GFs do not need to be computed or stored for evaluat-

ing Eqs. (5) and (6) during the FD simulation. Also, since

the GFs are associated with a homogeneous model, transla-

tional invariance can be exploited to further compress them,

saving both computational cost and memory, as described in

detail in Appendix A.

This active, absorbing boundary provides an effective

solution to the problem caused by the ingoing waves in the

wavefield separation for almost all of the propagating

waves. After terminating the propagation of these waves in

the FD simulation, all the incident (outgoing) parts of the

second- and higher-order interactions with the free surface

will no longer be canceled by destructive interference and

will be radiated away from the wavefield injection surface

Ssep. Hence, the outgoing part of all orders of free-surface

interactions can be retrieved outside the surface Ssep. Also,

accurate estimation of the physical model parameters in the

deeper interior of the experimental domain is no longer

required for the wavefield separation because the ingoing

waves can no longer propagate inside the closed injection

surface Ssep, except in the small region between Ssep and

Semt, which are typically chosen to be only two (full) FD

grid points apart (2 � Dx). Note that the elastic parameters at

the surface of the experimental volume are still needed

because the numerical elastic parameters at the injection

surface Ssep in the FD simulation must be identical to physi-

cal elastic parameters there.

In practice, we found that the scheme shown in Fig. 3

for defining the factor a is problematic for wave energy that

travels toward the sharp corners and edges (in 3D) of the

emitting surface Semt because the wave path associated with

a corner or edge (e.g., the black arrow in Fig. 3) cannot be

clearly judged to be impinging (a ¼ 1) or transmissive

(a ¼ 0). In practice, we set a ¼ 1 for any wave energy prop-

agating toward the corners and edges of the emitting surface

Semt, which results in minor artefacts in the FD simulation

(we also tried a ¼ 0 for this case, which resulted in more

artefacts). These artefacts consist of diffracted waves origi-

nating at the corners and edges of the emitting surface Semt,

due to (1) the sharp transition between canceling impinging

waves (a ¼ 1) and not producing transmitted waves (a ¼ 0)

on the emitting surface Semt and (2) an abrupt end to each

side of the recording surface Srec (namely the limited aper-

ture of the recorded wavefields for wavefield extrapolation).

To mitigate such artefacts, we add C-PML layers inside

the emitting surface Semt such that the artefacts can be fur-

ther attenuated when they propagate inside. These layers

consist of the damping profiles (e.g., dx and dy shown in

Fig. 2) made from C-PMLs (Komatitsch and Martin, 2007).

Compared to the classical C-PML profiles used to attenuate

outgoing waves and providing the effect of external absorb-

ing boundary conditions, the C-PML profiles incorporated

inside of the emitting surface Semt are spatially reflected

through each normal direction of Semt such that the incorpo-

rated absorbing layers can attenuate ingoing waves. The

modified C-PML profiles are shown in Appendix B. Figure

2 shows the geometry of the whole IABC, which includes

the active boundary on the surface Semt and the passive

boundaries inside Semt, both of which are used jointly for the

wavefield separation of the synthetic and laboratory free-

surface data. In Sec. II D, we briefly introduce the setup for

3D elastic wave experimentation, before presenting the syn-

thetic and real data results.

FIG. 3. (Color online) Two-dimensional schematic illustrating the scaling

factor a used in Eqs. (5) and (6). The blue dot represents a receiver, while

the magenta dot represents a source. The green arrow shows a case where

a ¼ 1, and the red arrow shows a case where a ¼ 0. The black arrow shows

the case where a cannot be defined. Otherwise, key as in Fig. 2.
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D. 3D seismic wave experimentation

The experimental setup used to study 3D elastic wave

propagation in solids is shown in Fig. 4(a) (Masfara et al.,
2020; Thomsen et al., 2021, 2019). A scanning laser Doppler

vibrometer (LDV) is used to acquire the three-component

particle velocity vector across all accessible surfaces of a tar-

get object (Blum et al., 2010; Pouet et al., 2012; Zaccherini

et al., 2020), in this case a cubic granitic block. The LDV

system provides high-fidelity wavefield measurements with

a broadband frequency response; in particular, the measure-

ment is non-contact, avoiding receiver coupling issues

(Scruby and Drain, 1990). A single, highly repeatable piezo-

electric source is placed inside the rock and excites elastic

wave energy in the experiments. To deploy this source, a ver-

tical borehole was drilled in the bottom face of the rock and

subsequently refilled using segments of the core and epoxy

resin (Sikadur-42 HE). For the LDV measurements, patches

of reflective tape of 1 cm in diameter, as shown in Fig. 4(a),

upper inset, are used on the surface to enhance the reflection

of laser light, which increases the signal-to-noise ratio

(Gasparetti and Revel, 1999; Hasanian and Lissenden,

2017). The patches are evenly spaced 2 cm apart.

The excellent repeatability of the piezoelectric source

allows the physical experiment to be repeated many times,

setting up the same propagating wavefield in the rock over a

long period of time (e.g., days). This allows the LDV system

to acquire the particle velocities at the densely sampled set of

points with high data quality: for each measurement point, the

same physical experiment is repeated 400 times, and the

recorded signals are averaged to improve the signal-to-noise

ratio. The time interval tLDV between two consecutive experi-

ments is set to tLDV ¼ 60 ms, which is long enough for the

wave energy to be dissipated to the background noise level at

the end of each individual measurement. The tri-axial LDV

head can be programmatically moved by the robotic arm for

multi-position acquisitions such that all the measurement

points on the rock’s surface Sfree can be reached. The fully

automated data acquisition of 5020 scan points (i.e., 15 060

seismograms) takes around 64 h. Figures 4(b)–4(d) show the

recorded wavefield at the surface of the rock, and Fig. 4(e)

shows one example of the (averaged) recorded particle veloci-

ties at a single measurement point on the rock.

In Table I, we summarize the configuration of the

experimental domain, the medium properties of the granite

rock, and the parameters of the LDV-based wavefield mea-

surement in the laboratory. In the wave propagation experi-

ments, the piezoelectric source placed inside the rock

volume exerts an upward-pointing force (along the z direc-

tion) with the source signature corresponding to a Ricker

wavelet with peak frequency fp ¼ 20 kHz. A bandpass filter

between 2 and 45 kHz was applied to each trace of the

recorded seismic signals.

We assume that the granite rock is an isotropic, elastic

medium (which is a good approximation everywhere except

at the refilled hole). In this case, the stiffness tensor cijkl in

Eq. (2) can be replaced by the Lam�e parameters k and l
via cijklðxÞ ¼ kðxÞdijdkl þ lðxÞðdikdjl þ djkdilÞ, where d is

Kronecker delta. The Lam�e parameters k and l are related

to the compressional and shear wave velocities VP and VS

(in Table I) via VPðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kðxÞ þ 2lðxÞ�=qðxÞ

p
and VSðxÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðxÞ=qðxÞ

p
. Note that the interior numerical model used

FIG. 4. (Color online) (a) Seismic wave experimentation setup, including a

three-headed Polytec (Baden-W€urttemberg, Germany) PSV-500 3D scanning

LDV and a fully automated robotic arm installed on a rail that can move the

LDV scanheads. (b)–(d) Particle velocity wavefield in the z direction [i.e., z in

the Cartesian coordinate as shown in (a)] recorded only at the surface of the

rock at different experimental times t. (e) Recorded three-component particle

velocities (vx, vy, and vz) at the laser point of (a).

TABLE I. Specifications for the physical experiment and numerical simulation.

Physical experiment

Parameter Definition Value

VP Compressional velocity 3855 m/s

VS Shear velocity 2525 m/s

q0 Mass density 2644 kg=m3

Rx, Ry, Rz Length, width, and height 0.573 m

ðxsrc; ysrc; zsrcÞ Position of source (0.255, 0.207,

0.18) m

Dm Distance between points 2 cm

dtLDV LDV time sampling 4� 10�6 s

tLDV Data time length 60 ms

Numerical simulation

Parameter Definition Value

fp Peak frequency of Ricker wavelet 20 kHz

Dx; Dy; Dz FD grid size in x, y, z directions 0:50 cm

Dt Time step of FD/SEM simulation 6.95 �10�7 s

tmax Time length of FD/SEM simulation 0.5 ms
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for wavefield separation in practice also does not include

any inhomogeneities because the exact shape and properties

of such inhomogeneities are generally unknown. Instead,

the wave velocity and density models used in the wavefield

separation are all kept homogeneous with constant values

equal to those of the granite medium.4

III. RESULTS

A. Synthetic data

We first show the wavefield injection of the free-surface

data obtained from a synthetic wave propagation experi-

ment, without using the IABC. This synthetic experiment is

simulated with the spectral element modeling (SEM) soft-

ware SALVUS (Afanasiev et al., 2019) and resembles the

physical experiment carried out in the laboratory (Fig. 4).

The model used in the synthetic experiment is set to be

homogeneous with the same dimensions as the rock volume,

and the elastic parameters of the model are set equal to those

of the granite rock (Table I). In the synthetic experiment, a

body force is excited along the z direction (i.e., an fz source)

at the same location as the piezoelectric source in the physi-

cal experiment, and the source signature corresponds to a

Ricker wavelet with peak frequency fp ¼ 20 kHz. Figure 5

shows the resulting elastic wavefield in the synthetic experi-

ment. The fz source causes both P and S waves that propa-

gate with different velocities; these waves are reflected at

the free surface of the simulation domain, generating (sec-

ondary) reflected and mode-converted waves.

In this 3D numerical experiment, we record the mod-

eled three-component particle velocity vector seismograms

at a dense set of points across the six planar faces of the free

surface that also bounds the simulation domain. For wave-

field decomposition, the recorded data are injected into an

enlarged 3D numerical domain in which a time-domain FD

propagator is running simultaneously with the wavefield

injection as described in detail in Sec. II B. The model used

in this FD simulation is fully homogeneous, with the elastic

parameters exactly matching those used in the synthetic

experiment. The parameters of the FD model are given in

Table I.

Figure 6 shows the wavefield injection of the synthetic

free-surface data. The corresponding movie is Mm. 1. The

wavefield injection on transparent surface Ssep radiates the

incident wavefield constituents of the recorded data outward

from Ssep, while the reflected, ingoing wavefield constituents

are reconstructed inside of Ssep. As discussed in Sec. II B,

the reconstructed outgoing waves that propagate outside of

the injection surface Ssep consist of only the first-order con-

stituents of the recorded free-surface data, including only

the primary P and S components (first P and first S) (with

the former being separated earlier and propagating faster

than the latter).

Mm. 1. FD simulation for separating the free-surface data

acquired in the synthetic experiment (Fig. 5). This is a

file of type “mov” (2.9 MB).

As explained previously, the wavefield injection on the

closed aperture Ssep cannot be used to isolate all the outgo-

ing constituents from the recorded free-surface data.

Instead, Fig. 6 only demonstrates how to retrieve the first-

order incident wavefield constituents from the data. In

Appendix C, we show how this first-order wavefield

retrieval relies on using the true elastic model, which has to

exactly match the physical experimental domain inside the

injection surface Ssep in the FD simulation. However, in

almost all cases of interest in laboratory experimentation,

this is not realizable.

We now demonstrate the IABC methodology using the

synthetic free-surface data generated on the homogeneous

interior domain. Figure 7 shows the wavefield separation of

the homogeneous free-surface data when using the IABC

inside of the injection surface Ssep. The corresponding movie

is Mm. 2. In this case, the ingoing waves reconstructed on

the injection surface Ssep are almost completely annihilated

as they cross the emitting surface Semt propagating inward,

and as expected, the volume enclosed by Semt shows almost

FIG. 5. (Color online) Snapshots of the elastic wavefield (i.e., vertical parti-

cle velocity vz) in a 3D synthetic wave propagation experiment with the

homogeneous interior. The left plot (in each panel) shows the wavefield

observed at the free surface of the cubic simulation domain (gray cube) at

different times t¼ 0.17, 0.20, and 0.23 ms. The right plot shows a 2D slice

of the interior wavefield on the x-z plane (red square) that goes through the

location of the source (black star) in the experiment.
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no wave energy compared to the exterior. Any remaining

ingoing wave energy is further attenuated by the C-PMLs

inside. Simultaneously with the IABC absorbing the

unwanted ingoing waves, all orders of outgoing waves are

reconstructed and successfully radiated away from the injec-

tion surface Ssep (compare to Fig. 6, where the IABC is not

used).

Mm. 2. FD simulation for separating the synthetic free-

surface data with the IABC applied. This is a file of

type “mov” (3.1 MB).

Figures 8 and 9 show the separated P and S wavefield

constituents by taking the divergence-free and curl-free

parts of the data (Robertsson et al., 2015; Yan and Sava,

2008). Superimposed, we show wave fronts computed from

ray paths of the primary and secondary wave energy that

propagates in the corresponding homogeneous synthetic

experiment (Fig. 5, i.e., with the free surface present),

accounting for the exact location of the interior source with

respect to the six free surfaces in the 3D volume (Virieux

and Farra, 1991). Note that these wave fronts are calculated

only from the geometry of the experiment and thus only rep-

resent the kinematics of the wavefields (e.g., arrival times)

without containing information about the wave dynamics

(e.g., amplitudes).

Overall, there is a very good agreement between the

wavefield separation results and the ray tracing. However,

some marked wave fronts in Fig. 8 do not appear to corre-

spond to matching separated arrivals outside the injection

surface Ssep; for example, on the x-y plane (first column), the

separated primary P wavefield is barely visible. This is

because in the synthetic experiment, a directional body force

source in the z direction is used ( fz) [resembling the piezo-

electric source in the laboratory experiment], and this is dif-

ferent from the omnidirectional source assumed when

calculating ray paths using the ray-tracing technique. Also,

the wavefield quantity shown (vertical particle velocity vz)

is directional, giving rise to the characteristic radiation pat-

terns of the separated wavefield (e.g., the separated primary

S wave) as observed in Fig. 9.

B. Experimental data

Next, the wavefield separation methods demonstrated in

Sec. III A are applied to the free-surface data acquired in the

laboratory [shown in Figs. 4(b)–4(d)]. For densely spaced

FIG. 6. (Color online) Snapshots of the FD simulation in which the free-

surface data acquired in the synthetic experiment (Fig. 5) are injected for

wavefield separation. The first row shows three 2D planes (light purple

squares) that cut through the 3D simulation domain and on which the FD

wavefield (vz) is shown in the following rows. The gray cube (in 3D) and

dashed gray square (in 2D) both represent the wavefield injection surface

Ssep. The corresponding movie is Mm. 1.

FIG. 7. (Color online) Snapshots of the FD simulations used for separating

the synthetic free-surface data with the IABC applied. The dark purple cube

denotes the interior C-PML region, and the dashed purple square denotes

the outer boundary of the C-PMLs. The corresponding movie is Mm. 2.
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wavefield injection along the surface Ssep in the FD simula-

tion, the experimental data acquired at a spatial sampling of

2 cm (i.e., the interval between the reflective patches) are

interpolated to the FD grid sampling Dx ¼ 0:50 cm and also

to the FD time sampling Dt. We assume that the near-

surface elastic parameters of the rock are constant and the

same as those of the background medium. To obtain

the required P- and S-wave velocities corresponding to the

background rock medium, the wavefield injection method

without an IABC can be used as explained in detail in

Appendix D. Note that in our laboratory, data cannot be

acquired over a small area of the rock’s surface due to its

contact with the posts of the stand on which it rests. We

chose not to carry out any numerical wavefield injection for

these missing-data regions in the FD simulations. See

Appendix E for a detailed illustration of the influence due to

this choice.

Figure 10 shows the resulting wavefield injection of the

experimental data along the transparent, closed surface Ssep,

without the internal absorbing boundary. The corresponding

movie is Mm. 3. As discussed in Sec. II D, the employed FD

model consists of a homogeneous domain, with the material

properties estimated by the procedure described above due

to the fact that the exact properties and dimensions of the

refilled hole are unknown. Despite the fact that we have

used a method to optimize the P and S wave velocity

estimates, Fig. 10 still shows a lot of unexpected events

emerging from the wavefield injection surface Ssep at later

times (especially at t¼ 0.32 and 0.38 ms), following the

FIG. 8. (Color online) Separated outgoing P-wave constituents (vout
z;P) from

the synthetic free-surface data. Key as in Fig. 7. The magenta dots overlay-

ing the 2D slice wavefields denote the wave front of the primary outgoing P

wave (first P), while the cyan dots denote the secondary P waves (second P).

FIG. 9. (Color online) Separated outgoing S-wave constituents (vout
z;S ) from

the synthetic free-surface data. The black dots denote the wave front of the

primary outgoing S wave (first S), while the green dots denote the second-

ary S waves (second S).

FIG. 10. (Color online) Snapshots of the FD simulation in which the free-

surface data acquired in the laboratory [Figs. 4(b)–4(d)] are injected for

wavefield separation. Key as in Fig. 6. The corresponding movie is Mm. 3.
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reconstruction of the primary outgoing P- and S-waves.

These “leaked waves” are caused by the inaccurate elastic

model used in the FD simulation, which cannot precisely

match the physical model of the actual experimental domain

in the laboratory. Also, some of the artefacts could stem

from ignoring the attenuation of the elastic waves within the

granite medium, which is difficult to account for in the FD

model used for wavefield injection.

Mm. 3. FD simulation for separating the free-surface data

acquired in the laboratory. This is a file of type “mov”

(3.8 MB).

Finally, Fig. 11 shows the wavefield separation of the

experimental data using the wavefield injection method in

conjunction with the proposed IABC. The corresponding

movie is Mm. 4. Again, the IABC enables the reconstruction

of the higher-order outgoing waves at the injection surface

Ssep, compared to not using the IABC as in Fig. 10. Further,

taking the wavefield separation of the synthetic counterpart

as a reference (comparing to both the arrival times and radi-

ation characteristics of the waves as shown in Fig. 7 and

also in Fig. 6), we can clearly identify the primary outgoing

P wave that is separated at an early time of the simulation

(t ¼ 0:23 ms) in Fig. 11, especially above the top face of the

injection surface Ssep. The wavefield injection across the

bottom face of Ssep also separates the primary P wave that

has propagated through the refilled hole (i.e., hole-related P)

in the physical experiment. This separated transmitted wave

energy also contains shear modes (i.e., hole-related S) in the

form of a ringing tail with significantly larger amplitude

compared to other separated wavefield components. Our

interpretation is that the ringing tail represents the imprint of

the (complex) interaction of the primary outgoing elastic

waves, as emitted by the source, with the epoxy in the

refilled hole. The large amplitudes of the downgoing waves

reconstructed across the bottom face are thus most likely

due to the fact that the epoxy used to refill the hole is softer

than the granite rock (the exact properties of the epoxy are

unknown) and therefore that the piezoelectric source embed-

ded in the epoxy emits more energy to its compliant back

side (i.e., into the epoxy) than into the less compliant front

side (i.e., into the rock). At later times t ¼ 0:32 and 0.38 ms

(third and fourth rows of Fig. 11), the primary outgoing S-

wave energy (first S) is also reconstructed and separated, as

can be identified from the shear-wave radiation pattern (due

to the direction of the fz source and the particular elastic

wavefield quantity vz shown), mirroring the synthetic results

shown in Fig. 7. Also, in Fig. 11, secondary outgoing S

waves (second S), instead of leaked artefacts can clearly be

identified once they are radiated outside of the injection sur-

face Ssep at later times (t ¼ 0:32 and 0.38 ms).

Mm. 4. FD simulation for separating the laboratory free-

surface data with the IABC applied. This is a file of

type “mov” (3.4 MB).

We tried to simulate a hole-like anomaly in the syn-

thetic experiments and assessed the influence of not know-

ing the anomaly on the wavefield separation. We found that

such a small-sized elastic anomaly on its own is not enough

to account for all the hole-related imprints as observed in

Fig. 11, and, in particular, such a model does not explain the

significantly higher amplitudes observed on the bottom face

across the refilled hole. This leads us to believe that there

could be some non-linearity involved—a hypothesis that has

been further supported by the observation of strong harmon-

ics in the spectra of individual measurements at the top sur-

face of the refilled hole (at the bottom face of the rock cube)

(Guyer and Johnson, 2009).

Different FD simulations have been presented to dem-

onstrate the IABC methodology in wavefield separation,

corresponding to synthetic or experimental free-surface

data. Figure 12 further compares these separated outgoing

wavefields as obtained along lines just above the top face of

the wavefield injection surface Ssep. Without using the IABC

in the wavefield separation, the wave energy radiating out-

side the top surface Ssep differs significantly from its syn-

thetic counterpart, suggesting that the first-order wavefield

separation can be problematic due to its requirement that we

know the interior medium properties. The use of the IABC

is key for the wavefield separation such that the “leaked”

FIG. 11. (Color online) Snapshots of separating the experimental free-

surface data with the IABC applied. Key as in Fig. 7. The corresponding

movie is Mm. 4.
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artefacts outside of the injection surface Ssep are removed

and that all higher-order incident wavefields are correctly

separated.

IV. DISCUSSION

An effective IABC is much more difficult to construct

compared to the more conventional absorbing boundary

condition (ABC) for external boundaries used for attenuat-

ing outgoing waves in numerical modeling. Among the

external ABCs, using passive absorbing layers (e.g., C-

PMLs) (see Komatitsch and Martin, 2007) is more popular

than using active wavefield cancellation (e.g., exact nonre-

flecting boundaries; see Givoli and Cohen, 1995). However,

for an internal ABC, incorporating the passive layers (i.e.,

C-PMLs) only inside the wavefield injection surface Ssep

does not work well for attenuating inward-propagating

waves. This is because the number of FD grid points around

the corners and edges of the interior domain is naturally lim-

ited compared to those in the exterior domain, and in that

case, waves cannot be effectively attenuated using passive

techniques. This problem can be almost overcome using an

active absorbing boundary such as described in this paper.

The only (minor) issue remaining is related to the geometry

of the IABC, involving injection, recording, and emitting

surfaces that are each separated by a single FD grid point

(for second-order accurate implementations), as illustrated

in Fig. 3. In this case, not all ingoing waves can be sup-

pressed by the active boundary condition as some waves can

still travel through the corners of this two-grid space to the

other side of the injection surface Ssep.

The application of the current methods to elastic

immersive wave experimentation forms the main motivation

for this work. In immersive experimentation, a physical

experiment is immersed into a numerical, virtual environ-

ment by spanning densely spaced sources at the boundary of

the experimental domain. These sources can emit waves

such that the outward-propagating waves in the physical

experiment are canceled while the physical-to-virtual inter-

action can be synthesized at the free surface enclosing the

experimental domain. To cancel unwanted boundary reflec-

tions at the free surface of a solid object (rock cube), the

source signatures or voltages needed for these boundary

sources controlling the physical boundary condition of the

experimental domain correspond to the normal tractions of

the primary outgoing waves only, which can be obtained

using wavefield injection of the free-surface data (Thomsen

et al., 2021). However, although the primary wavefield can

be isolated using the wavefield injection method on its own,

this isolation relies entirely on knowledge of the interior

property map of the target object, which is generally

unavailable. In contrast, the proposed IABC methodology

allows wavefield separation without knowing any informa-

tion about the interior of the object, while all of the outgoing

parts of the wavefields in the free-surface data, including

those that have interacted with the free surface multiple

times (higher-order interactions), will be separated. In this

case, using the IABC for elastic immersive wave experimen-

tation would further require the separation of first-order

component from the separated outgoing wavefields through,

e.g., a windowing approach. Hence, the IABC provides a

practical way to build elastic immersive experiments using

the free-surface recorded data only. The development of

immersive experiments is ongoing work in our laboratory.

Finally, many of the problems associated with wave-

field separation of the real experimental free-surface data

arose from the desire to place a physical source inside the

solid target object. Drilling a hole to install such a source

inside will unavoidably destroy or cause some damage to

the object under study. A more effective solution could

involve creating a virtual source inside the rock volume by

projecting elastic waves from the free surface of the solid

experimental domain. These waves can be generated using

arrays of piezoelectric sources placed on the free-surface

boundary such that the emitted wavefields can focus at a sin-

gle point inside the rock to act as a virtual source. Such a

method has been explored in acoustic time-reversal experi-

ments (Derode et al., 1995).

V. CONCLUSION

We propose an IABC for wavefield separation of exper-

imental data recorded on the closed free surface surrounding

FIG. 12. (Color online) Comparison of the separated outgoing wavefields

along a linear array of receivers placed above the wavefield injection cube

Ssep in the FD simulations. The separated wavefields shown in graphs (b)–(e)

are normalized in amplitude regarding the primary outgoing P wave (first P).
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an object. In a FD simulation, injecting data from such an

experiment along a closed, transparent surface results in

ingoing and outgoing wavefield constituents of the data radi-

ating in their respective correct directions. However, for a

closed surface, the separated ingoing waves propagating in

the numerical domain cause a problem as they travel to the

other sides of the closed wavefield injection surface and

destructively interfere with the data injection itself. This

interference prevents the separation of higher-order outgo-

ing wavefield constituents from the recorded data. To solve

this problem, internal absorbing boundaries are placed

inside the wavefield injection surface to prevent the propa-

gation of the problematic ingoing waves in the FD simula-

tion such that all orders of outgoing waves can be

reconstructed and separated at the injection surface. The

separated outgoing wavefields were validated on synthetic

data by kinematically tracing the wave fronts of P and S

components that represent the first- and second-order inter-

actions with the free surface.

For the LDV experiments carried out for a cube of gran-

ite rock, the IABC is applied to decompose the experimental

data in a homogeneous FD model whose P and S velocities

are found using the wavefield injection method. Using the

IABCs allows all orders of outgoing wavefields to be

retrieved from the data. In particular, these wavefield con-

stituents contain the imprint of the refilled hole inside the

rock, which generates strong-amplitude waves with a ring-

ing tail and preferentially more S-wave energy than P-wave

energy due to the soft epoxy used to fill the hole.

This development of internal absorbing boundary con-

ditions demonstrates the significance of leveraging the

power of numerical modeling for physical modeling, espe-

cially for processing data acquired in a laboratory.
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APPENDIX A: TRANSLATION INVARIANCE

A significant challenge for implementing an elastic

IABC in time-domain FD simulations is the computational

and memory storage cost of updating the active boundary

condition, which is non-local in both time and space

(Broggini et al., 2017; van Manen et al., 2020). The compu-

tation of the wavefield extrapolation integrals [Eqs. (5) and (6)]

is carried out at each time step of the FD simulation, and the

GFs needed are pre-computed prior to performing the simula-

tion. In the FD simulation, the source and recording positions

of these GFs correspond to each grid point on the recording sur-

face Srec and each grid point on the emitting surface Semt, and

these elastodynamic GFs involve multi-component source and

receiver fields. Hence, memory cost of storing these (3D) GFs

is estimated as Nemt � Nrec � Nt � 6 � 6 � 4, where Nemt represents

the number of sources (for canceling unwanted ingoing

waves) on Semt; Nrec represents the number of recording

points on Srec, Nt represents total time steps of the FD simu-

lation, the first number 6 is assigned for the six types of

source fields (including body force source fx; fy; fz and three-

component normally oriented deformation rate vector

source) of the GFs, the second number 6 is assigned for the

six types of receiver fields (including particle velocity

vx; vy; vz, and three-component normal traction vector) of the

GFs, and the number 4 is assigned for the 4-byte (4B) mem-

ory occupied by a single-point floating number.

A simple estimation of memory storage cost required in

the FD simulation can be made from the parameters given in

Table I. We obtain the number of FD grid points across the

recording surface Srec, Nrec ¼ 77 976 (recording points); the

number of FD grid points across the emitting surface Semt,

Nemt ¼ 75 264 (sources); and the time step, Nt ¼ 720 (corre-

sponding to tmax ¼ 0:5 ms). This results in the (dynamic)

memory required for storing the GFs, �600 TB, which goes

far beyond the memory capacity of a personal laptop (typi-

cally 8–64 GB) or even on a single compute node of a super-

computer (64 GB to 4 TB). Even if the message passing

interface (MPI) technology can be used to run the FD simu-

lation across multiple compute nodes, the 3D numerical

simulation performed for wavefield separation would

require �9500 nodes, each of which, for example, has 64

GB of dynamic memory on the ETH Euler cluster.

However, in the theory for the active boundary condi-

tion in the IABC, the following two facts can be relied on to

reduce the memory storage cost of GFs:

(1) The GFs used in Eqs. (5) and (6) are associated with a

free-space homogeneous model. The computed GF is

invariant to the source and receiver locations of the GF

for constant source-receiver offsets (along x, y, and z
directions).

(2) For a 3D cube, around 5/6 of the GFs do not need to be

computed and stored due to the scaling factor a in Eq.

(4). These GFs are set to zero (by multiplying a) so that

transmitted waves across the emitting surface Semt are

not extrapolated.

Point (1) is associated with the so-called translation

invariance of the GFs (van Manen et al., 2020), which can

be used to compute and store the GFs for each source-

receiver offset rather than for each source and receiver loca-

tion. Point (2) means that memory storage cost can be
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further reduced by a factor of 5/6. These homogeneous GFs

can be compressed without a loss in accuracy when they are

used to compute the wavefield extrapolation integrals. After

applying this compression, the memory cost for storing the

GFs is reduced to �84 GB (from �600 TB).

APPENDIX B: C-PMLS

Figure 2 shows the damping layers placed inside the

active boundary Semt in the IABC. These absorbing layers

involve the damping profiles (e.g., dx) made from the C-

PMLs, which are commonly used for external passive

absorbing boundary conditions such that a numerically sim-

ulated wavefield over a finite-size domain can resemble

waves propagating in unbounded media. We refer to

Komatitsch and Martin (2007) for detailed definition and

derivation of C-PMLs, and here, we illustrate how to modify

the original C-PMLs for the IABC.

We first briefly describe the C-PML technique that has

been used for an external absorbing boundary condition.

Wave propagation in a 3D space can be decomposed into

plane wave components that are independently propagating

along x, y, and z directions in a Cartesian coordinate. In this

case, absorbing layers are placed normal to the propagation

direction of each plane wave, for instance, along the x axis

to the positive direction, as shown in Fig. 13, and a damping

profile dxðxÞ is set up to attenuate the incoming waves

impinging on the C-PML region from the regular simulation

domain (Collino and Tsogka, 2001). In this schematic, we

set dxðxÞ ¼ 0 for x < 0 in the regular domain and dxðxÞ > 0

for x > 0 in the C-PML region. Other damping profiles

dyðyÞ and dzðzÞ for the plane waves propagating in the posi-

tive direction follow the same principle. For plane waves

propagating in a negative axis direction, the C-PML region

is still placed outside the regular domain but is aligned in a

reversed profile to the negative direction. The C-PML, when

used in practical FD modeling, will introduce profile param-

eters a and b, both of which were described by a generic

parameter d as in Figs. 2 and 13 (Komatitsch and Martin,

2007).

To absorb ingoing waves toward the interior of the emit-

ting surface Semt, we reverse all (conventional) damping pro-

files including a, b along both positive and negative

directions of each axis (x, y, z) and incorporate the profiles

into the domain enclosed by the surface Semt, as shown in

Fig. 2. Also, to maximize the efficiency of wavefield attenua-

tion using the C-PML layers, each single profile aligned in a

positive or negative direction occupies about half the extent

of the cubic domain enclosed by Semt. Figure 14 shows the

interior C-PML profiles, together with the exterior C-PML

profiles padded around the regular numerical domain to

absorb the separated outgoing waves in the FD simulation.

APPENDIX C: INEXACT MODEL FOR WAVEFIELD
INJECTION

To illustrate the problem of using an inexact FD model

in the injection-based wavefield separation, we place a

cuboid scatterer in the synthetic wave propagation experi-

ment, with the corresponding model shown in Fig. 15(a).

We first inject the free-surface data corresponding to the

FIG. 13. (Color online) Schematic illustrating the one-way PML profile for

attenuating plane waves propagating along the positive x direction. The

dashed purple lines represent the discretized PML layers in a FD domain,

and the corresponding attenuation profile dx is aligned along the normal

direction n of the interface (dotted black line) between the regular simula-

tion domain and PML region.

FIG. 14. (Color online) Interior and exterior C-PML profiles placed in the

3D FD domain. The first row shows the locations of the 2D planes (light

yellow plane) on which the 2D damping profiles ax, az, and ay are displayed

(second row). The cube with dashed red edges denotes the outer boundary

of the regular simulation domain, while the purple cube denotes the interior

C-PML region. In the second row, the yellow part denotes the regular simu-

lation domain, and the dashed red and purple squares correspond to the

outer boundaries of the regular domain and the interior C-PMLs, respec-

tively. The stripes with different colors show the interior and exterior pas-

sive absorbing layers (i.e., C-PMLs). The bottom plot shows the C-PML

parameter ax along the thick black solid line annotated in the left plot of the

second row.
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heterogeneous interior into a homogeneous FD model

that only involves the background medium (the same as in

Fig. 6). Figure 16 (top rows) shows this wavefield separa-

tion, with artefacts appearing to “leak” out of the injection

surface Ssep at later times (t ¼ 0:40 and 0.50 ms) of the FD

simulation. These artefacts are erroneous and contaminate

the primary outgoing P and S wavefields retrieved outside

the injection surface Ssep.

The “leaked” artefacts observed in the first and second

rows of Fig. 16 are caused by the missing cuboid scatterer

that should be included in the model used for the FD simula-

tion. The fourth and fifth rows of Fig. 16 show the wavefield

separation when the interior of the FD model does include the

cuboid scatterer and exactly matches the model used to gener-

ate the free-surface data; in this scenario, the reconstructed

ingoing wavefields inside the injection surface Ssep propagate

exactly as the waves reflected by the free surface in the corre-

sponding synthetic experiment. Hence, these interior-crossing

waves destructively interfere with the outgoing part of the

second- and higher-order free-surface interactions on the

other sides, removing the source of the wave energy

“leaking” out of the injection surface Ssep. Therefore, only

primary outgoing waves are obtained outside the surface Ssep.

Note that some small-amplitude wave energy still comes out

of the injection surface Ssep at later times of the FD simula-

tion, as shown in the fourth row of Fig. 16. These waves are

not artefacts but correspond to the primary outgoing energy

that is multiply scattered by the interior cuboid inhomogene-

ity before arriving at the free surface. However, this multiply

scattered later-arrived primary wave energy cannot be cor-

rectly retrieved in a laboratory when using the wavefield

injection method only, as knowing a true elastic model is nei-

ther practical nor desirable.

APPENDIX D: ESTIMATING ELASTIC WAVE
VELOCITIES

The wavefield injection method can be used to optimize

the numerical model parameters used in the FD simula-

tions—the P and S wave speeds corresponding to the

FIG. 15. (Color online) (a) model for a synthetic wave propagation experiment. The black star represents the body force source fz, while the green block rep-

resents a scatterer with density 661 kg=m3 (¼ 0:25� q0), P-wave velocity 3504 m/s (<VP), and S-wave velocity 3030 m/s (>VS). The solid gray cube repre-

sents the free surface Sfree enclosing the simulation domain. (b) FD model used for wavefield injection. The transparent cube with dashed gray edges denotes

the wavefield injection surface Ssep.

FIG. 16. (Color online) Snapshots of the FD simulation for wavefield sepa-

ration using a homogeneous model (first and second rows) and a true het-

erogeneous model (fourth and fifth rows) that contains the scatterer [the

green block in Fig. 15(b)]. Otherwise, key as in Fig. 6.
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background rock medium. When injecting the free-surface

data in the FD simulation, only the primary incident outgo-

ing P and S waves should radiate away from the wavefield

injection surface Ssep, while all of the reconstructed ingoing

waves should be perfectly confined inside the surface Ssep

without any energy leakage. However, this ideal case

requires that the true elastic model is used inside the wave-

field injection surface Ssep of the FD simulation. If the

numerical model used in the FD simulation is erroneous

compared to the true model, the wavefield separation would

be incorrect. In particular, two observations can be exploited:

(1) the primary P- and S-wave fronts observed on orthogonal

slices will deviate from a purely spherical wave front, or its

circular projections (for an assumed homogeneous, isotropic

medium) if the incorrect velocities are used. Therefore, the

primary propagation velocities can be estimated by maximiz-

ing the circularity of the separated wave fronts. (2) Based on

the fact that wavefield injection should only reconstruct pri-

mary outgoing waves outside of the surface Ssep without sig-

nificant “leaked” energy, we can estimate the velocities by

minimizing the amount of such leaked energy at later times.

Figure 17 illustrates the effects of varying the shear

wave velocity (VS) in the model of the FD simulation when

separating the synthetic homogeneous free-surface data

(Fig. 5), and these effects motivate the two approaches

described above. When varying VS, the wave front of the

separated primary S wave (first S) will be distorted com-

pared to the (perfect) spherical wave front. Varying the P-

wave velocity has a similar effect (not shown here). To illus-

trate the second approach, varying the S-wave velocity has a

significant impact on the number of leaked artefacts outside

the wavefield injection surface Ssep, as shown in Fig. 17.

However, when we applied the first approach (i.e., opti-

mizing the circularity of wave fronts) before decomposing the

experimental data, a significant feature makes a difference:

the wave front of the primary separated (S) wavefield is ellip-

tical, as observed in Fig. 10 (first column). Interestingly, we

found that this ellipticity cannot be reduced by varying the pri-

mary S-wave propagation velocities. The reason for this ellip-

ticity is due to the fact that the piezoelectric source, embedded

inside the rock volume with the surrounding epoxy, has a

finite dimension, i.e., a cuboid with 8 mm in height and 1 cm

in width and length (Li et al., 2019). Hence in our practices of

optimizing the numerical model parameters, the second

approach gave the best results, whose corresponding parame-

ters are used in the wavefield separation of the laboratory free-

surface data (Table I).

APPENDIX E: EFFECT OF MISSING DATA

In the laboratory, the experimental rock volume is

placed on the four posts of a height-adjustable metal frame,

whose junctions with the rock’s surface are unavoidably

masked; LDV measurements in these regions are not possi-

ble, as shown in Fig. 4(a), lower inset. One straightforward

method involves extrapolating the particle velocity wave-

fields to complement the missing data, but the extrapolated

wavefields are not sufficient for wavefield separation at

these missing-data regions (Koene and Robertsson, 2018;

Robertsson et al., 2015). This is because the free-surface

boundary condition involved in the theory of the wavefield

injection technique (Sec. II B) does not hold at these contact

areas, which tightly contact with the rubber at the ends of

the posts. Hence, we chose not to carry out any numerical

wavefield injection at those parts of the wavefield injection

surface, which correspond to the (four) missing-data areas in

the physical experiments. However, these areas are in the

shape of 90	 sectors �7–8 cm in radius; this size is of the

same order of magnitude as the wavelengths of S waves

(�4–12 cm). Hence, our choice will unavoidably result in an

undesired effect in the wavefield decomposition.

To study the effect of not having a full-aperture injec-

tion surface Ssep in the FD simulation, we again carried out

the wavefield decomposition using the synthetic (homoge-

neous) free-surface data with no wavefield injection in these

rubber-masked regions (located as in the laboratory counter-

parts). Figure 18 shows this injection result, which can be

compared to the case when using the complete synthetic

data as in Fig. 6. The error caused by missing the injection

around the lower four corners of the cube Ssep is small

FIG. 17. (Color online) Using different shear wave velocities in the FD

simulation for separating the synthetic homogeneous free-surface data.

These wavefield snapshots correspond to using shear wave velocities VS

¼ 2146 m/s (15% lower than VS ¼ 2525 m/s), VS ¼ 2525 m/s, and VS

¼ 2904 m/s (15% higher than VS ¼ 2525 m/s) in the FD simulations,

respectively.
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compared to the separated primary outgoing P and S waves.

Also, the influence of this error is local in space in the

separated outgoing wavefields observed outside the injection

surface Ssep, with a relatively larger effect close to the no-

data-injection regions and a negligible effect above the top

face of Ssep. Note that using the IABC in the FD simulation

can further absorb the ingoing part of the undesired erroneous

waves caused by not having injection in the rubber-masked

regions.

1A traction-free surface is a physical surface across which normal tractions

are zero. A traction-free surface is a perfect reflector of elastic wave

energy.
2The exceptions are at the corners, where extrapolations from a recording

surface whose normal is pointing in a perpendicular direction are also

included, i.e., a ¼ 1.
3Free-space means that the numerical domain is surrounded by a radiation

boundary condition (in practice, C-PMLs) to “absorb” all outward-

propagating waves in the simulation.
4In the laboratory, the experimental domain—the cubic rock volume

shown in Fig. 4(a)—does contain an inhomogeneity, namely, the cylindri-

cal hole with the piezoelectric source placed at the top, drilled from the

bottom surface into the interior and refilled with epoxy and a leftover sec-

tion (�6:7 cm) of the core. We see the effect of this inhomogeneity in
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