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S U M M A R Y
The goal of a scientific investigation is to find answers to specific questions. In geosciences, this
is typically achieved by solving an inference or inverse problem and interpreting the solution.
However, the answer obtained is often biased because the solution to an inverse problem
is non-unique and human interpretation is a biased process. Interrogation theory provides a
systematic way to find optimal answers by considering their full uncertainty estimates and by
designing an objective function that defines desirable qualities in the answer. In this study, we
demonstrate interrogation theory by quantifying the size of a particular subsurface structure.
The results show that interrogation theory provides an accurate estimate of the true answer,
which cannot be obtained by direct, subjective interpretation of the solution mean and standard
deviation. This demonstrates the value of interrogation theory. It also shows that fully nonlinear
uncertainty assessments may be critical in order to address real-world scientific problems; this
goes some way towards justifying their computational expense.

Key words: Inverse theory; Probability distributions; Statistical methods; Waveform inver-
sion.

1 I N T RO D U C T I O N

Geoscientists often wish to find answers to specific scientific ques-
tions: How large is a subsurface body? How deeply does lithosphere
subduct? How likely is this volcano to erupt? What method provides
the most accurate results? To answer such questions, background
research is conducted to reveal existing information, and experi-
ments are designed and performed to acquire new data. The answer
to the question is then estimated by interpreting the sum of this
information.

Answering a question therefore requires that we obtain useful
information relevant to the answer from both existing information
(often called the prior information) and new data. The process of
obtaining useful information usually involves solving an inverse or
inference problem (Tarantola 2005). In inversion, one defines a sim-
plified model to represent the physical system, and a relationship
that simulates data from the model, called the forward function.
The inversion then involves finding a model or a family of mod-
els that fit the data to within their uncertainties. For example, to
answer questions about the Earth’s interior scientists often build
subsurface tomographic models from data observed at the surface:
seismic velocity structures are obtained from seismic data, or re-
sistivity structures may be constructed from electromagnetic data.
This involves solving an inverse problem to estimate a subsurface
model or a family of models that are consistent with the data, and
an answer to the question may be interpreted from the solution. We
address such a case herein.

Due to the nonlinear physical relationship between model param-
eters and data, insufficient data coverage and noise in the data, the
inverse problem almost always has non-unique solutions as many
sets of model parameter values fit the data to within their mea-
surement uncertainties. It is therefore important to characterize the
uncertainty of a solution such that the final answer can take into
account the range of possible models.

The tomographic inverse problem is often solved using either
standard optimization or Bayesian inference. In optimization, one
seeks a solution that minimizes a misfit function between the ob-
served data and the data predicted from the parameter values of
a model (Tarantola 2005; Aster et al. 2018). However, since the
method only finds one single set of parameter values, it is diffi-
cult to characterize the uncertainty and hence the information value
of the solution. As a result, the answer inferred from that solu-
tion can be biased. Bayesian inference provides a different way to
solve the inverse problem. In Bayesian inference, one constructs
a probability density function (pdf) that describes the uncertainty
of solutions, called the posterior pdf, by combining the prior in-
formation and the information contained in the data. Statistics or
samples of that distribution are estimated in order to characterize
the solution. Methods used for Bayesian inference include Monte
Carlo sampling (Tarantola & Valette 1982; Mosegaard & Tarantola
1995; Sambridge 1999; Sambridge & Mosegaard 2002; Bodin &
Sambridge 2009; Stuart 2010; Brooks et al. 2011) and variational
inference (Blei et al. 2017; Nawaz & Curtis 2018; Zhang & Curtis
2020a, b; Zhang et al. 2021).
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While many studies have been conducted to solve inverse prob-
lems, few have found answers to specific scientific questions based
on the solutions. In practice, those questions are typically answered
by subjectively interpreting the solution of inverse problems using
either the optimal solution or the mean of the posterior pdf together
with the standard deviation structure. Since these statistics do not
represent the full uncertainty in the solutions, and since human in-
terpretation is a biased process (Polson & Curtis 2010; Bond et al.
2012), the answer obtained in such a way is likely to be biased
and does not take account of the full uncertainty in the Bayesian
solution.

To resolve this issue, Arnold & Curtis (2018) introduced inter-
rogation theory that explicitly brings questions and their space of
possible answers into a single framework, and combines inversion,
inference, design and decision theory to create a systematic way to
find optimal answers. In interrogation theory, data are acquired in
the way that best answers the question, multiple models are designed
and discriminated, parameters of each model can be constrained by
multiple algorithms and optimal answers are found using decision
theory. One might regard interrogation theory as part of a general
inference theory that infers useful information from data. However,
inference theory does not usually consider questions and the space
of possible answers systematically, whereas interrogation theory
clearly states the problem as finding answers to specific questions:
it incorporates decision theoretical concepts to define optimal an-
swers within a class, and design theory to optimize data sets that
discriminate between answers (Arnold & Curtis 2018).

Arnold & Curtis (2018) is a complex paper that introduces inter-
rogation theory in a general way, but does not show how the theory
can be applied in practice. So in this study we demonstrate how to
apply interrogation theory in an example that simulates a practical
scenario in which one wishes to estimate the size of a subsurface
velocity structure observed using seismic full-waveform inversion
(FWI). The aim of this study is (i) to translate the previous paper
(Arnold & Curtis 2018) into easier language for less mathematical
or statistical readers; (ii) to demonstrate a worked example on a
realistic question about a high-dimensional parameter space with
one of the most strongly nonlinear forward functions in geophysics,
to show that the methodology can be used in non-trivial cases; and
(iii) to illustrate that while the overall target question of a scientific
study may sound simple, commonly it breaks down into less easily
answerable subquestions.

In this case, the subquestion concerns how to define, and to dis-
criminate, the boundaries of a low-velocity region with minimal
bias. This is itself an important question that has to our knowledge
seldom been addressed in a Bayesian manner: tomographers often
interpret ‘velocity anomalies’ in an ad hoc way—without ever ac-
tually defining their boundaries. We show that it is necessary to
quantify uncertainty in the seismic velocity structure in order to
construct an unbiased estimate of an anomaly’s boundary. In other
words, without using Bayesian, nonlinear methods, this subquestion
cannot currently be answered.

In the following section, we first review concepts of interrogation
theory. In Section 3, we use the theory to estimate the size of a
subsurface velocity structure obtained using FWI. We solve the
inverse problem using Stein variational gradient descent (SVGD)
to produce the full Bayesian posterior pdf. The size of the velocity
structure is then estimated by interrogating the obtained posterior
pdf. The results show that the estimated size is very close to the
true value, a result that cannot be obtained using only a single best-
fitting velocity structure estimate. This demonstrates that the fully
nonlinear estimates of uncertainty are critical for decision-making

Figure 1. Algorithmic schema of interrogation theory.

in real-world problems, thus in part justifying their computational
expense.

2 OV E RV I E W O F I N T E R RO G AT I O N
T H E O RY

2.1 Interrogation theory

Interrogation theory provides a systematic way to find optimal an-
swers to specific questions. Fig. 1 shows an algorithmic scheme for
the theory. An investigator has prior knowledge B and wishes to
answer a question Q. There is a set of answers A among which a
choice needs to be made. For example, in geophysics scientists may
ask questions about the depth of the Moho or the size of a reservoir,
for which the answer space A will contain a set of real-numbered
values. In other cases, we may want to know whether a specific
geological structure exists, and the answer space will contain only
two values: yes or no.

In order to answer the question, the investigator defines a set of
models M that are relevant to the investigation. Similarly to Arnold
& Curtis (2018), from here on we use the term ‘model’ in a mathe-
matical sense to mean a relationship between the observed data and
the parameters of the model. For example, in FWI we use a model
m ∈ M consisting of parameters θm in parameter space �m which
represent a 3-D seismic velocity structure of the Earth’s interior,
together with the relationship between this velocity structure and
seismic waveforms. The model space M is therefore related to our
prior knowledge B and the question Q. In general, an element or a
set of elements in this space are assumed to provide a sufficiently
accurate description of the state of nature relevant to answering Q.

To answer Q, an investigator needs to collect new information,
which involves designing experiments and collecting data. Here, we
use D to denote the design space that contains all possible experi-
mental designs. For each design d ∈ D, there is a data space Yd that
contains all possible observations yd ∈ Yd . After an experiment a
single data set yobs

d will have been collected.
For some questions Q, there may be many different relevant

models in M. For example, to study subsurface Earth structure one
can use seismic data to infer the seismic velocity structure, or use
resistivity data to infer the resistivity structure. There may also be
a variety of rock physics models that relate seismic velocities or
subsurface resistivities to parameters of interest such as porosity or
rock type. However, no matter which models are used, they must
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(a) (b)

Figure 2. (a) The true velocity model. Red stars denote locations of 10 sources. The 200 receivers are equally spaced along the seabed at 0.36 km depth. (b)
The prior distribution of seismic velocity, which is chosen to be a Uniform distribution over an interval of up to 2 km s−1 at each depth. A lower velocity bound
of 1.5 km s−1 is imposed to ensure the velocity is higher than the acoustic velocity in water.

allow us to answer the question Q given the model parameters θm .
Thus, for each model m and the question Q, there exists a target
function T (θm |m, Q) that maps the model parameters θm to a target
space T that is common for all possible models M, and where the
function T summarizes information needed to answer question Q.

To find the optimal answer in the answer space A, we define a
utility function U(a|t, d) that defines the benefit associated with
accepting an answer a given the summarized state of information
t = T (θm |m, Q) and the design d. The utility function is condi-
tioned on d so that the benefits can account for the cost of conduct-
ing the experiment with design d. An optimal answer is found by
maximizing this utility function in the answer space A, and several
analytic results that aid this calculation are given by Arnold & Curtis
(2018).

2.2 Optimal answers and designs

Given a specific experimental design d and the observed data yd ,
the optimal answer to a question Q is found by maximizing the
investigator’s utility function U. In principle, this problem may be
solved by maximizing a utility function U (a|θm, m, yd , d) for an-
swer a ∈ A, parameters θm ∈ �m embedded in model m and data
yd collected under a design d. However, such a utility function
U (a|θm, m, yd , d) is difficult to specify when considering the spec-
trum of different parameters θm of different models m, and different
data yd under different designs d. To resolve this issue, Arnold &
Curtis (2018) introduced the above target space T which is a com-
mon space for all possible models. The utility function can then be
defined on the level of this common space, that is U(a|t, d), which
avoids the need to specify a utility function for every parameter
value of every model in model space.

Define p(θm, m|yd , d) as the Bayesian posterior probability den-
sity function (pdf) for a model m and its parameters θm given the
observed data yd under the design d. According to Bayes theorem,

p(θm, m|yd , d) = p(yd |θm, m, d)p(θm |m)p(m)

p(yd |d)
, (1)

where p(yd |θm, m, d) is the likelihood function of observing data yd

given parameters θm , embodied in a model m and under the design
d. p(θm |m) is the prior pdf of θm associated with a model m and
p(m) is the prior pdf of model m. p(yd |d) is a normalization factor
called the ‘evidence’. The posterior pdf on the left of eq. (1) can be
obtained by Bayesian inference, for example by using Monte Carlo

sampling or variational inference methods. The expected posterior
utility of answers can then be constructed by integrating or summing
over the set of models and over the parameter space of each model:

Up(a|yd , d) =
∑
m∈M

∫
�m

U (a|T (θm |m), d)p(θm, m|yd , d)dθm . (2)

The optimal answer a∗(yd , d) is obtained by maximizing the ex-
pected utility function:

a∗(yd , d) = arg maxa∈AUp(a|yd , d). (3)

The corresponding maximized utility function is U ∗(yd , d) =
Up(a∗|yd , d).

If the investigator wishes to find the best experimental design,
the solution can be obtained similarly by maximizing the utility
function in the design space. First, the expected utility for each
design d can be obtained by integrating over the data space:

U ∗(d) =
∫
Yd

U ∗(yd , d)p(yd |d)dyd , (4)

where p(yd |d) represents the probability of observing data yd under
the design d. This distribution corresponds to the evidence in Bayes
theorem and is obtained by integrating over the model space and
over the parameter space of each model:

p(yd |d) =
∑
m∈M

∫
�m

p(yd |θm, m, d)p(θm |m)p(m)dθm . (5)

The best experimental design is then obtained by maximizing the
utility in eq. (4):

d∗ = arg maxd∈DU ∗(d). (6)

We now define the utility function U(a|t, d). The utility function
should be defined based on our knowledge of the question, and to
represent desirable qualities in the answer (Arnold & Curtis 2018).
In the simplest case, we can assume that the target space and the
answer space are identical, that is our question is to estimate the
summarized state t = T (θm |m). In this case, we might define the
utility function as

U (a|t, d) = U (a|t) = −(t − a)2, (7)

where in the first equality we have neglected the cost of conducting
the experiment with design d. This utility is maximized when the
answer a equals to the true state t. Arnold & Curtis (2018) showed
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Figure 3. The (a) average misfit and (b) average magnitude of gradients of data with respect to parameters. Both (a) and (b) are averaged across all particles
and are plotted as a function of iterations.

that in this case the optimal answer is

a∗(yd , d) = E[T |yd , d] =
∑
m∈M

∫
�m

T (θm |m)p(θm, m|yd , d)dθm,

(8)

which states that the optimal answer is the posterior mean of the
summarized state T. Using different utility functions in eq. (7), or
answering different types of question (e.g., categorical questions),
results in different forms for the optimal answer in eq. (8).

3 R E S U LT S

We demonstrate the method by interrogating the size of a subsurface
structure. Such questions appear frequently, such as where we wish
to estimate the size of a subsurface ore body, or of a reservoir for
carbon capture and storage, or to estimate the size of a volcanic
magma chamber. In order to answer this question we choose to use
seismic FWI to estimate the subsurface seismic velocity structure,
and we infer the size of a subsurface structure as defined by velocity
anomalies. We use a part of the Marmousi model (Martin et al.
2006) as the true velocity structure to demonstrate the method, and
simulate 10 sources at 20 m depth in the water layer with 200 equally
spaced receivers at a depth of 360 m across the horizontal extent
of the seabed (Fig. 2a). This acquisition geometry may not be the
optimal design, but it represents geometries that occur in reality
where we have fixed seismometers and wish to answer specific
scientific questions about the Earth’s interior.

The model is discretized in space using a regular 200 × 120
grid of constant-velocity cells; the set of cell velocities constitutes
parameters θ . The model’s relationship to data is a full-waveform
simulation from each source to all receivers through velocity struc-
ture θ . The prior pdf of the velocity is assumed to be a uniform
distribution at each depth with an interval up to 2 km s−1 wide,
centred on a 1-D velocity model. To ensure that the rock velocity
is higher than the acoustic velocity in water, we also imposed an
additional lower bound of 1.5 km s−1 (Fig. 2b). We generate two

waveform data sets using Ricker wavelets with dominant frequen-
cies of 4 and 10 Hz, respectively, so that the information gained from
low-frequency data and high-frequency data can be compared. To
obtain the posterior distribution of the velocity, we use SVGD to
solve the inverse problem. SVGD is a variational inference method
that optimizes a set of samples of parameter space (called particles)
to minimize the difference between the pdf represented by their
distribution and the true posterior pdf (Liu & Wang 2016; Zhang
& Curtis 2020b). For each data set inversion, we used 600 particles
that are initially generated from the prior pdf and are then updated
for 600 iterations until both the average misfit and the magnitude
of gradients of data with respect to parameters averaged across all
particles cease to decrease (Fig. 3). More details of the inversion
procedure can be found in Zhang & Curtis (2021a). Here, we focus
on the dark-blue triangular structure around X = 3.2 km and Z =
1.0 km (see red box in Fig. 2a).

Figs 4(a) and (c) show the posterior mean obtained using the
low-frequency data and high-frequency data, respectively. In both
results there is a low-velocity anomaly of which we wish to estimate
the size. In order to do this, we first define a ‘low velocity’ by using
a threshold: any cell whose velocity is smaller than the threshold
is defined as a low velocity. Although the threshold may be chosen
based only on the mean model, this procedure does not account for
uncertainty in the velocity structure and hence is likely to introduce
bias to the estimate of anomaly size unless properly chosen. For
example, Fig. 4 (e) shows the marginal distributions of velocity
in cells at X = 3.29 km across the vertical extent of the velocity
anomaly (pink line in Fig. 4a). While the pixels at depth of 0.90 and
0.92 km are highly likely to be within the low-velocity anomaly,
the pixels at depth of 0.86 and 0.98 km clearly do not belong to
this anomaly. In comparison, it is difficult to discriminate whether
or not the pixels at depths of 0.88, 0.94 and 0.96 km belong to the
anomaly. This makes it difficult to choose an appropriate threshold
with which the velocity anomaly can be defined. To resolve this
issue, we select a set of points that are extremely likely to belong to
the anomaly since their velocities are low in almost all particles (red
stars in Figs 4a and c) and another set of points that are highly likely
to be outside of the anomaly (black crosses in Figs 4a and c), each
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(a) (b)

(d)(c)

(e)

Figure 4. (a) Mean and (b) a random posterior particle (sample) obtained using the low-frequency data. (c) Mean and (d) a random posterior particle obtained
using the high-frequency data. Red stars and black crosses denote locations that most likely have low velocity and high velocity, respectively. The red dashed
box shows the region where interrogation is performed. White pluses in (b) and (d) show continuous low-velocity anomalies found for each particle. (e)
Marginal distributions at X = 3.29 km and at regular intervals across the depth range from 0.86 to 0.98 km (pink dashed line in panel a) obtained using the
low-frequency data.

chosen using only the clearest results from single-cell marginal
distributions. We then calculate the posterior cumulative density
function (CDF) of the two sets of points, one accumulated in the
positive and the other in the negative Vp direction, and plot them
against each other. Figs 5(a) and (b) show the CDF plots obtained
using the low-frequency data and high-frequency data, respectively.
We define the velocity value where the two CDFs have the same
probability as the threshold, because by definition of the CDF the
probability that the velocity of those points within the anomaly
are lower than this value equals the probability that the velocity of
those points outside the anomaly are higher than this value. This
velocity threshold therefore discriminates low from high velocities
with minimal bias. For the low- and high-frequency examples in
this study, the above procedure results in the thresholds 1.778 and
1.745 km s−1, respectively.

We now define a low-velocity anomaly as a continuous area
whose velocity is smaller than the above threshold. Because of
uncertainty in the posterior velocities (e.g. see Figs 4b and d), there
can be many such low-velocity anomalies in a posterior velocity
structure. To restrict ourselves to the main low-velocity anomalies
observed in the mean velocity structure, for each posterior particle

we focus only on the largest continuous low-velocity anomaly within
the area of interest (red box in Figs 4a and c). For example, Figs 4(b)
and (d) show examples of such low-velocity anomalies that are
denoted by white pluses. The size of each anomaly can then be
computed, and in this study we simply use the number of interior
pixels as the anomaly size. The above procedure of thresholding
and counting pixels constitutes our target function T (θm |m).

Figs 5(c) and (d) show the distributions of the target function
T (θm |m) (the anomaly size) obtained using the low-frequency data
and high-frequency data, respectively. According to eq. (8), the
optimal answers are the mean of these distributions, which are
denoted by dashed red lines in Figs 5(c) and (d). For comparison, the
true size is denoted with black lines. The distribution of the anomaly
size obtained using low-frequency data is wider than that obtained
using high-frequency data, and the optimal answer obtained using
only low-frequency data also has a larger error. This demonstrates
quantitatively and probabilistically that by using high-frequency
data we can obtain more accurate answers to specific scientific
questions. In Figs 5(c) and (d), we also show the answers obtained
by following the usual procedure of interpreting only the mean
(green dotted line) and median (pink dashed–dotted line) velocity
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(a) (b)

(d)(c)

Figure 5. (a) The cumulative density functions (CDF) of points that are most likely within the low-velocity anomaly accumulated in the positive Vp direction
(blue line) and outside the low-velocity anomaly accumulated in the negative Vp direction (orange line), both obtained using the low-frequency data. (b) Same
as (a) but obtained using the high-frequency data. The red circle denotes the velocity value where the two CDFs have the same value, which is the threshold
that discriminates low from high velocities with minimal bias. Panels (c) and (d) show the distributions of the low-velocity anomaly size obtained using the
low- and high-frequency data, respectively. Red dashed line denotes the optimal answer obtained using interrogation theory (mean of the distribution—eq. 8).
Black line denotes the true size. For comparison, green dotted line and pink dashed-dotted line show the values obtained by directly interpreting the mean and
median velocity structures, respectively, in the case that one had already conducted a nonlinear inversion to obtain the pdfs in panels (a) and (b) and hence had
access to the minimal-bias velocity thresholds.

structures, using the same threshold value. The size obtained using
the mean structure has the largest error, which clearly suggests
that this structure provides less information about our question of
interest. The size obtained using the median velocity structure has
smaller error, probably because in this case the marginal pdfs are
multimodal (Fig. 4e) and in such cases the median may represent the
true structure better than the mean (which may lie between modes).
Nevertheless, in both experiments, neither size is as accurate as
those obtained using interrogation theory. And finally notice that
neither the mean nor the median results could be obtained using
only the single estimate of the velocity structure that best fits the
data, as then the minimal bias threshold could not be identified.

4 D I S C U S S I O N

The computational cost of constructing Bayesian solutions to sci-
entific problems can be high. For example, the above example took
approximately 6704 CPU hours for each data set, which required
74 hr to run using 90 Intel Xeon E5-2630 CPU cores. Particularly
in imaging problems, it is typical to communicate only statistics
of the posterior pdf, often the mean or median, and some measure
of uncertainty such as point-wise standard deviations. This study
highlights the information loss incurred in such communications:
not only are the answers derived above from the mean and median
models relatively inaccurate, but they could not be calculated at all
without additionally having samples of the posterior pdf in order
to estimate an unbiased threshold that discriminates low-velocity

zones. We therefore advocate that methods to communicate the cor-
related structure of the posterior pdf are devised and used in future
scientific communications. For example, one could publish not only
statistics but also all samples of the posterior pdf that are com-
puted as a matter of course by methods such as Monte Carlo and
SVGD; alternatively, one could publish the parameters of solutions
expressed as normalizing flows (Zhao et al. 2021) or invertible
neural networks (Zhang & Curtis 2021b), both of which provide
posterior samples almost for free. This would have the additional
advantage that the same posterior pdf could be interrogated for an-
swers to different questions thereafter. If this approach was widely
adopted, the informational value of estimated posterior pdfs would
increase, offsetting the cost of their computation.

In the above example, we only used one model m, that is a seismic
velocity structure and a forward wavefield simulator, and the distri-
bution of parameter values was estimated using only one method of
FWI. Eq. (8) allows us to use multiple models. For example, differ-
ent parametrizations can be included as different models in eq. (8) to
account for the uncertainty caused by specific parametrizations. To
assess effects caused by different parametrizations, in Appendix A
we show the distribution of the estimated size of the low-velocity
anomaly obtained using a lower dimensional parametrization (a 100
× 60 grid) using the low-frequency data. The results show that the
distribution is wider than that obtained using the denser grid (200
× 120) and the optimal answer is larger than the true answer, which
is probably because the coarser grid imposes additional smooth-
ness to the structure and consequently the size is overestimated.
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The sizes estimated using only the mean and median structures are
very different from each other, which again demonstrates that the
answer obtained using one single model is not sufficient to answer
questions accurately.

Apart from different parametrizations, one could combine differ-
ent properties of the Earth, for example seismic velocity structures
obtained using seismic methods with resistivity structures obtained
using electromagnetic methods to answer the same questions. In
addition, estimates of posterior pdfs obtained using different infer-
ence algorithms may also be combined to answer questions, such
that the uncertainty caused by different algorithms can be taken into
account in the procedure.

In this study, we assumed a fixed experimental design that may
not be an optimal design. To better quantify the answer to a sci-
entific question, an optimal experimental design focused on that
question may also be found within the framework of interrogation
theory (Arnold & Curtis 2018). However, this involves calculating
the integration in eq. (5) multiple times in order to find the opti-
mal value in eq. (6), which might be computationally intractable in
practice. In such cases, deterministic methods may be more useful
to find approximately optimal designs (Curtis et al. 2004; Guest &
Curtis 2009; Bloem et al. 2020). The utility function in eq. (2) can
also be used as a criterion for selecting one among a small number
of candidate experimental designs. We also note that there are al-
ready geophysical studies that either vary the design of geophysical
data sets in near-real time (e.g. Wilkinson et al. 2015) or consider
many different model parametrizations (Bodin & Sambridge 2009).
Interrogation theory would allow such designs and models to be
adaptively parametrized to the question and space of answers of
interest, rather than adapting only to the parameters of the model.

In this study, we demonstrated interrogation theory by using a
2-D FWI example. The same idea might be too computationally
expensive to be applied to 3-D FWI. However, the theory can also
be applied to other studies that have been solved using Bayesian
inference. For example, nonlinear traveltime tomography problems
have been solved using the Monte Carlo method in both 2-D (Bodin
& Sambridge 2009) and 3-D (Zhang et al. 2018), so the posterior
distributions obtained in such cases can be interrogated to answer
specific questions.

In reality after a round of interrogation, the investigator may find
that the answer to the question is not sufficiently constrained by the
data. In such cases, another interrogation can be conducted using
an experimental design that is optimized based on the knowledge
obtained in the first interrogation. In addition, the information ob-
tained in the first interrogation can be used as prior information
for subsequent inversions that can significantly reduce the compu-
tational cost (Zhang & Curtis 2021a). This process can be repeated
until a satisfactory answer is found.

5 C O N C LU S I O N S

We used interrogation theory to quantify the size of a subsurface
structure by interrogating the probabilistic results obtained from
Bayesian seismic FWI. The results demonstrated that the size ob-
tained using interrogation theory provides an accurate estimate of
the true size, which cannot be obtained using only one single esti-
mate of the velocity structure. This shows that fully nonlinear un-
certainty estimates are important for answering scientific questions,
partly justifying their additional computational cost. We expect that
the theory can be used to find answers for a range of real-world

scientific questions, in particular for quantitative interpretation of
geophysical inversion results to better understand the Earth.
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A P P E N D I X A : E F F E C T S O F
PA R A M E T R I Z AT I O N

To assess effects of different parametrizations on the answer to
a question, we conduct another inversion using a lower dimen-
sion parametrization (a 100 × 60 grid) using the same low-
frequency data as in Section 3. The forward simulation is per-
formed using the same denser grid (200 × 120) which is interpo-
lated from the coarser grid, and the SVGD is conducted in exactly
the same way as described in Section 3. The obtained particles
are then processed in the same way to estimate the size of the
low-velocity anomaly. To be comparable to the results presented
in Section 3, we display the size as the number of dense grid
pixels.

Fig. A1 shows the obtained mean velocity structure and the as-
sociated size estimate. The distribution of the estimated size is
wider than that obtained using the denser grid and the optimal
answer (red dashed line) is larger than the true answer (black
solid line). This is probably because the coarser grid imposes
extra smoothness on the velocity structure and consequently the
size is overestimated. Similar to the results presented in Sec-
tion 3, the size obtained by directly interpreting the mean struc-
ture (green dashed line) and the median structure (pink dashed
line) are very different from each other, which again suggests that
the answer obtained using only one single velocity structure is not
sufficient.

Figure A1. The (a) mean velocity structure and (b) distribution of the low-velocity anomaly size obtained using a lower dimensional parametrization (a 100
× 60 grid). Lines denote the same value as in Fig. 5.
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