
1.  Introduction
Scientific investigations are usually initiated to answer high-level questions posed by investigators. Answers 
to these questions often lie within low-dimensional spaces: what is the depth of the Moho beneath a particu-
lar location? What is the best location to place a new sensor given locations of preexisting sensors? Can this 
subsurface aquifer be used for carbon storage? The answers to each of these questions are binary (yes/no) or 
low-dimensional (Moho depth or sensor location), yet they may depend on high-dimensional parameter spaces, 
describing the structure of Earth's subsurface for example. We usually seek answers using information that we 
know already - so-called prior information, and to better constrain the answer we collect new data. This involves 
designing an experiment, acquiring new data by experimentation, and interpreting the data to produce new and 
useful information. Finally the question is answered by taking both the prior information and the information 
from new data into account.

More formally, the new data is used to solve a Bayesian inverse problem in which we update the prior informa-
tion with new information from the data, and seek to describe the resultant state of information by a probabil-
ity distribution (Tarantola, 2005). Generally, inversion methods can be divided into two categories: linearized 
and nonlinear methods. The former iteratively approximates the possibly complex and nonlinear model-data 
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Plain Language Summary  This paper shows how to answer specific questions about the subsurface 
using probabilistic tomography. Usually tomographic methods are used to estimate images of the subsurface; 
the “best” images are then interpreted to answer questions of interest. This work shows that by setting up 
a formal target function that allows any image to be interpreted automatically, many samples of possible 
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answer can be constructed. In the real-data examples presented here the subsurface shape of a sedimentary 
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shown to give accurate answers about high resolution structures even given only low resolution tomographic 
images; this suggests that the probabilistic results compensate for the lack of resolution.
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relationship (the forward function) by a linear relationship, after which the inverse problem can be solved by 
minimizing a predefined objective function that measures the misfit between the observed data and synthetic 
data simulated from any given Earth model (Jackson, 1972). This kind of method requires a good initial model to 
avoid converging to local minima. In addition, it is not known how to estimate uncertainty or probability robustly 
from linearized inversion results, which means that we fail to find the solution to the Bayesian inverse problem. 
This in turn introduces bias when we use the results to answer questions of interest.

In contrast to linearized methods, fully nonlinear inversion methods solve the inverse problems under a probabil-
istic framework. They estimate or characterize the full probabilistic inversion results that describe all informa-
tion about model parameters given the data - the so-called posterior probability distribution or density function 
(pdf). Such problems are often solved using Markov chain Monte Carlo (McMC), which generates an ensemble 
of samples of the posterior distribution that fit the observed data to within measured data uncertainties. Many 
different kinds of McMC methods have been introduced for geophysical inversion, for example: Metropolis 
Hastings McMC (MH-McMC; Mosegaard & Tarantola, 1995), reversible jump McMC (Rj-McMC; Bodin & 
Sambridge,  2009; Bodin et  al.,  2012; Galetti et  al.,  2015,  2017; X. Zhang et  al.,  2018), Hamiltonian Monte 
Carlo (HMC) (Fichtner et al., 2019; Fichtner & Simutė, 2018; Gebraad et al., 2020), informed proposal Monte 
Carlo (Khoshkholgh et al., 2021), and so on. All of these methods become very expensive when dealing with 
high-dimensional inference problems due to the curse of dimensionality (Curtis & Lomax, 2001). In an attempt to 
improve the computational efficiency, some approaches have been proposed to solve nonlinear Bayesian inverse 
problems using an optimization framework. These include neural network (NN) inversion (Devilee et al., 1999; 
Earp & Curtis,  2020; Käufl et  al.,  2014,  2016; Meier et  al.,  2007; Siahkoohi, Rizzuti, & Herrmann,  2021; 
Singh et  al.,  2021) and variational inference (Nawaz & Curtis,  2018,  2019; Nawaz et  al.,  2020; Siahkoohi, 
Orozco, et al., 2021; Siahkoohi, Rizzuti, Louboutin, et al., 2021; Zhang & Curtis, 2020a; Zhang et al., 2021; 
Zhao  et al., 2021). However, the relative efficiency of all of the above methods depends on the problem at hand 
(Wolpert & Macready, 1997).

The probabilistic results of the inverse problem can be used to answer questions. For nonlinear inversion, a 
common way to achieve this is to interpret the mean model. For example, if we wish to estimate the size of a 
subsurface structure or feature using Bayesian tomographic inversion results, an intuitive way to proceed is to 
estimate its size using the mean seismic velocity map. However, answering questions using the mean model 
alone can be inaccurate since the mean model is only a single statistic of the posterior distribution and may not 
even represent a model that fits the observed data. In addition, human interpretation is a biased process, which 
sometimes leads to incorrect answers as shown in an example below. Since uncertainty in the result of the inverse 
problem is not considered, we cannot estimate uncertainty in the answers. Indeed, most of the information within 
the posterior distribution is summarily discarded when answering questions in this manner, which is extremely 
wasteful considering the computational cost of Bayesian inversion in nonlinear problems.

To address the above deficiencies, we suggest to answer questions using interrogation theory, a structured frame-
work to design scientific investigations (Arnold & Curtis, 2018). It combines inverse theory, decision theory, and 
the theory of experimental design to optimize scientific investigations so as to find information that best answers 
scientific questions of interest. In this paper, we test one component of interrogation theory on real data, by using 
Bayesian nonlinear inversion results from multiple algorithms and parametrizations to answer a specific type of 
question: what is the size of a near-surface geological body? In our test the result is compared to the answer esti-
mated from surface geological mapping. We then apply the method to assess the volume of a sedimentary basin, 
for which no independent estimate exists.

The rest of this paper is organized as follows. In the next section, we summarize the key components of inter-
rogation theory and how we augment that theory in this paper, and show how optimal answers may be derived 
using Bayesian inversion results. In Section 3, we establish a detailed interrogation procedure using a synthetic 
example which estimates the area of a subsurface low velocity body based on probabilistic tomographic results. 
By using a coarse grid parametrization, we show that human interpretation can be significantly in error, yet in 
the same case the answer provided by interrogation theory remains accurate. In Section 4, we use interrogation 
theory to answer two real-world questions about the East Irish Sea sedimentary basins. Finally, we provide a brief 
discussion about  this work and draw conclusions.
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2.  Theory
2.1.  Bayesian Inverse Theory

Inverse theory is used to estimate the vector model parameter m given some observed data d, as shown in 
Figure 1a. This usually includes solving a forward problem that generates synthetic data corresponding to any 
parameter m using a predefined forward function f(m). The parameter space is then explored to find values that 
match the observed data to within their uncertainties. In a Bayesian framework, the inverse problem is solved in a 
probabilistic way by evaluating the so-called posterior probability density function (pdf) p(m|d)—the probability 
of model parameter m given observed data d—using Bayes' theorem:

𝑝𝑝(𝐦𝐦|𝐝𝐝) =
𝑝𝑝(𝐝𝐝|𝐦𝐦)𝑝𝑝(𝐦𝐦)

𝑝𝑝(𝐝𝐝)
� (1)

Here, p(m) is the prior pdf of model parameter m, that is, the information we know about m prior to the inver-
sion. The conditional probability p(d|m) is the likelihood of observing data d given a particular set of values for 
parameter vector m, and is used to measure how consistent are the sample and the data. In the denominator, p(d) 
is a normalization constant called the evidence.

McMC is often used to solve Bayesian inference problems by sampling from the posterior distribution directly, 
yet it is often highly, if not impossible, expensive to sample it with representative density due to the curse of 
dimensionality (Curtis & Lomax, 2001). As an alternative, variational inference solves Bayesian inversion using 
an optimization framework by seeking the best approximation to the posterior distribution. This can be accom-
plished by minimizing the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) between the approxi-
mated (so-called variational) distribution and the posterior distribution (Bishop, 2006; Blei et al., 2017; C. Zhang 
et al., 2018; Nawaz & Curtis, 2018, 2019; Nawaz et al., 2020; Siahkoohi, Rizzuti, & Herrmann, 2021; Siahkoohi, 
Rizzuti, Louboutin, et al., 2021; Zhang & Curtis, 2020a; Zhang et al., 2021; Zhao et al., 2021). In this work we 
combine results from both Monte Carlo and variational algorithms C.

2.2.  Interrogation Theory

2.2.1.  Fundamentals

Figure 1b outlines the key components of an interrogation problem, and a more detailed algorithmic flow chart is 
illustrated in Figure 2. Rather than focusing on the model parameter m in an inverse problem, interrogation theory 

Figure 1.  Comparison between inverse theory and interrogation theory. (a) Inverse theory: given observed data d, we 
estimate model parameter m. This is accomplished by evaluating the data match between the observed data and synthetic 
data simulated by solving a forward problem f(m). (b) Interrogation theory: given a scientific question or a set of questions 
Q, we wish to find the optimal answer a*. Forward, design, inverse, and decision problems are solved together to maximize 
information about the answer to question Q, rather than about parameter m. In addition, in this paper the effect of different 
computational algorithms C for solving these problems is considered to reduce the bias of the final answer.
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orientates all theory around a scientific question Q and corresponding opti-
mal answer a*, which usually lies in a low-dimensional space 𝐴𝐴 𝔸𝔸 . For exam-
ple, geoscientists may be interested in the volume of a particular subsurface 
reservoir; the answer to this question would be a (one-dimensional) positive 
number. For other cases we may pose a binary question such as: is there a 
geothermal plume beneath this area? The answer would be yes or no. Since 
low-dimensional answers often lie within high-dimensional model parame-
ters, which are constrained by high-dimensional data, it is hard to interpret 
data and answer questions directly. Interrogation theory provides a system-
atic way to investigate optimal answers to those questions.

As illustrated in Figure 2, at the beginning of an interrogation problem, inves-
tigators pose a question Q of interest given some background knowledge B. 
To answer this question, we first define a space of forward models 𝐴𝐴 𝔽𝔽 (𝕄𝕄) in 
which all of the forward functions are deemed relevant to the question Q. 
Each element f(m) maps parameter space into corresponding data space, and 
has a prior density functional p(f(m)) which states the probability that this 
specific forward function f(m) would accurately represent the parameter-data 
relationship. The set of forward models satisfies: 𝐴𝐴

∑
𝒇𝒇∈𝔽𝔽

𝑝𝑝(𝒇𝒇 (𝐦𝐦)) = 1 , assum-
ing that the space of forward function is discrete. For each forward model, 
we define the corresponding model parameter m and its prior probability 
distribution p(m|f(m)) such that ∫m p(m|f(m))dm = 1 where the integration is 
over the entire parameter space. For example, assume we are facing a seismic 
tomography related project. In this project, we use the following two forward 
functions to map subsurface velocity structure m into corresponding first 
arrival travel time data d between sources and receivers: ray tracing (f1(m)—
Julian & Gubbins, 1977) and the fast marching method (f2(m)—Rawlinson 
& Sambridge,  2004). Since the former may fail to find the shortest travel 
time (the correct raypath) and is not robust for complex velocity structures, 
whereas the latter is capable of predicting travel times accurately in complex 
media, we assign prior probability density for these two forward functions 
as p(f1(m)) = 0.2 and p(f2(m)) = 0.8, respectively. For both forward func-
tions, we use the same Uniform distribution to define our prior information 
on model parameter m.

To answer question Q, we usually need some additional information, which is obtained by collecting new data. 
Given a set of forward models f(m), an experimental design problem is solved to select the optimal design Ed to 
acquire data, selected from the space of designs 𝐴𝐴 𝔼𝔼𝑑𝑑 . The difference between the design problem mentioned here 
and traditional experimental design problems (e.g., Maurer et al., 2010) is that the former finds a design that is 
chosen to provide the most relevant information to answer question Q, whereas the latter finds a design that best 
constrains model parameter m. After implementing the experiment, the recorded data is used to update informa-
tion about model parameter m by solving an inverse problem, after which we can answer question Q.

Usually a variety of different computational algorithms can be used to solve forward, design, and inverse prob-
lems. These may provide significantly different solutions. For example, Zhao et al. (2021) illustrated that differ-
ent results were obtained when solving the same Bayesian tomographic problem with four different inversion 
algorithms. Choosing any one of those results is likely to bias any inferred answer to question Q. To reduce bias 
in the optimal answer, in this paper we account for uncertainties due to the variety of computational algorithms 

𝐴𝐴 𝐴𝐴 ∈ ℂ (where 𝐴𝐴 ℂ is a space that contains all possible algorithms that might solve the inverse problem at hand), 
augmenting the original interrogation framework outlined in Arnold and Curtis (2018).

We define a utility function U(a), which quantifies the net benefits of accepting any particular answer a. The 
utility is defined such that the optimal answer a* that maximizes the utility function is the one that best satisfies 
whatever properties we require of our answer (Chaloner & Verdinelli, 1995): �∗ = argmax

�∈�
�(�) . Figure 2 shows 

two approaches to construct the utility function. In the first, we combine all of the information provided in the 
components of interrogation problems described above, to define a highly structured utility function: U(a|m, 

Figure 2.  Algorithmic flow chart for interrogation theory. Given background 
knowledge B and a scientific question Q, we define forward model f(m), 
the corresponding parameter m, and experimental design Ed to collect new 
data d. An inverse problem is solved to update the model parameter m using 
the acquired data d. In this paper, we solve inverse problems with different 
inversion algorithms �∈ℂ and combine these results to reduce the bias that 
may occur from choosing one specific algorithm. A utility function U is 
constructed and further maximized to obtain the optimal answer a*. The blue 
dashed lines show one way to define the utility function by combining all of 
the above elements directly, which is usually hard to achieve in reality. Instead, 
we introduce a target space 𝐴𝐴 𝕋𝕋  and define a target function T(m|f(m), C, Q) to 
simplify the utility function U(a|t, Ed), as shown by the red lines.
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f(m), d, Ed, C) as illustrated by dashed blue lines in Figure 2. Note that this utility function is conditioned on the 
data d and experimental design Ed to account for the cost of conducting the experiment given a specific design or 
to allow the data to provide some components of answer a directly (Arnold & Curtis, 2018). However, the investi-
gator may in general have no means of constructing a utility function of such structure and complexity. Moreover, 
even when agreeing to a utility function with such a high dimensional set of independent variables, an investigator 
cannot generally be expected to appreciate all of the consequences of choosing a specific functional form (Curtis 
& Lomax, 2001). Also, there is no straightforward way to maximize this utility function over the usually discrete 
choices of forward functions and algorithms under consideration. As an alternative, Arnold and Curtis (2018) 
introduced a target space 𝐴𝐴 𝕋𝕋  which is determined by question Q such that Q can be answered directly in 𝐴𝐴 𝕋𝕋  . The 
target space should be the same for all forward functions f(m) and algorithms C. A target function T(m|f(m), C, 
Q) is defined to convert the model parameter m into a target value t. Based on this, a new utility function can be 
expressed as U(a|t, Ed) which has a much simpler form since it is only conditioned on target value t and design 
Ed. Usually this is expected to be easier to maximize (shown by red lines in Figure 2).

As an example of a target function, below we will address the question Q, “What is the volume of a subsurface 
body?” We wish to answer this question using seismic tomographic results. The target function T(m|f(m), C, Q) 
is defined to transform the model parameter m—the subsurface velocity structure in this case—into the corre-
sponding volume of the subsurface body of interest. Thus, the target function maps a high-dimensional parameter 
space into a low-dimensional target space, eliminating nuisance parameters and retaining only information that 
is essential to represent the answer to the question. For more details about interrogation theory and these compo-
nents, we refer readers to Arnold and Curtis (2018).

2.2.2.  The Optimal Answer

In this paper, we use the same utility function defined in Arnold and Curtis (2018)—a negative squared error 
function:

�(�|�, ��) = �(�|�) = −(� − �)2� (2)

in which t is assumed to be the true summarized state of nature in the target space. The utility function in Equa-
tion 2 is maximized when the estimated answer a is equal to (or is as close as possible to) state t. This results in 
an analytical solution of the optimal answer a*: the posterior mean of T(m|f(m), C, Q) averaged over all m, f(m), 
and C:

�∗ = � [� (�|�(�), �,�)|�, ��]

=
∑

� (�),�
∫� � (�|�(�), �,�)�(�,�(�), �|�, ��) ��

=
∑

� (�),�
�(�,�(�)) ∫� �(�|�(�), �,�)�(�|�(�), �, ��, �) ��

=
∑

� (�),�
�(�(�))�(�|�(�)) ∫� �(�|�(�), �,�)�(�|�(�), �, ��, �) ��

� (3)

where p(m|f(m), d, Ed, C) is the probability of model parameter m given a specific forward function f(m), 
observed data d, design Ed and algorithm C, describing the posterior distribution of model parameter m in Bayes-
ian inversion. Integration in the third line ∫mT(m|f(m), C, Q)p(m|f(m), d, Ed, C) dm calculates the optimal answer 
given a specific forward model f(m) and computational algorithm C (denoted as 𝐴𝐴 𝐴𝐴

∗

𝒇𝒇 (𝐦𝐦),𝐶𝐶
 below). The third line 

of Equation 3 holds based on the assumption that forward model f(m) and algorithm C are usually independent 
of design Ed and observed data d. Then, term �(�,�(�)) = �(�(�))� (�|�(�)) describes the joint probability 
density of forward function f(m) and algorithm C, where p(C|f(m)) is the prior probability that a specific algo-
rithm C will find the correct solution given that forward function f(m) does adequately describe the forward 
physics. Note that C and f(m) are not necessarily independent of each other since some forward functions may 
preclude the use of different algorithms. For example, we would prefer to use Monte Carlo sampling method if 
the forward function can be solved cheaply, since the algorithm provides an unbiased approximation of the true 
solution of a Bayesian inversion problem only as the number of samples becomes large. Therefore we would not 
consider this algorithm when the forward function is incredibly expensive (e.g., a full waveform simulator that 
solves the 3D wave equation). Equation 3 states that the final optimal answer a* is a weighted sum of 𝐴𝐴 𝐴𝐴

∗

𝒇𝒇 (𝐦𝐦),𝐶𝐶
 

over all of the models and algorithms considered. This can be understood intuitively: by considering the effect 
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of different forward models and algorithms, we reduce the bias due to subjective choices and so obtain a more 
robust interrogation result.

To conclude, Equation 3 answers question Q by interrogating the Bayesian inversion results. It also shows that a 
design Ed that provides optimal answers to question Q would potentially be very different from one designed to 
maximize information in the posterior distribution p(m|f(m), d, Ed, C) as has been performed in previous research 
on geophysical optimal design (e.g., Bloem et al., 2020; Guest & Curtis, 2009; van Den Berg et al., 2003).

3.  Implementation
3.1.  Problem Statement

Interrogation theory described above can be used to answer many types of real-world questions. In this paper, we 
provide a specific application to answer volume-related (3D), area-related (2D), or other shape-related questions 
about a body or medium of interest using fully nonlinear tomographic results. This kind of question appears 
frequently in both academia and industry where we wish to interpret some geological phenomena from geophys-
ical imaging results, such as to estimate the size of a subsurface body, the volume of a reservoir, or the depth of a 
particular feature such as the Moho under a specific location.

In this section, we use a 2D synthetic example to establish an interrogation procedure for estimating the area of a 
2D subsurface body. Figure 3a shows the true velocity model used in this example: a circular low velocity anom-
aly of 1 km/s is discretized on a grid size of 0.1 km, and located at the center of the model, and its surrounding 
area has a high velocity value of 2 km/s. White triangles display the location of 16 receivers (equivalently 16 
virtual sources) to collect traveltime data. Given only seismic travel time data from waves that traverse this veloc-
ity model, we pose a scientific question: what is the area of the low velocity anomaly?

3.2.  Interrogation Procedure

Table 1 summarizes some key elements defined for this interrogation problem. We use the fast marching method 
(FMM) to represent the model-data relationship. Since this is the only forward model considered in this example, 
it has a prior probability p(f(m)) = 1. The corresponding model parameter m is the subsurface seismic velocity 
structure using a regularly gridded parametrization, and a Uniform prior distribution is used for the velocity in 
each cell. To answer the question, we use an experimental design (i.e., source and receiver locations) that contains 
16 receivers placed in a circular shape with a radius of 4 km around the low velocity area, as shown by the white 
triangles in Figure 3a, such that the collected data provides relevant information about the low velocity anomaly. 
These receivers are also treated as sources, to emulate the use of standard inter-receiver interferometry to provide 
source to receiver traveltimes (Curtis et al., 2006; Shapiro et al., 2005). Given the collected traveltime data, we 
solve a Bayesian inference problem to estimate the posterior distribution of the model parameter m. We use 
four different algorithms to perform nonlinear Bayesian tomographic inversion: automatic differential variational 
inference (ADVI; Kucukelbir et al., 2017), normalizing flows (Rezende & Mohamed, 2015), Stein variational 
gradient descent (SVGD; Liu & Wang, 2016), and MH-McMC (Hastings, 1970; Metropolis et al., 1953; Metrop-
olis & Ulam, 1949); each algorithm is described in Zhao et al. (2021), and the corresponding inversion results 

Figure 3.  (a) True velocity model used for the 2D synthetic example. (b) A random sample drawn from the posterior distribution of Metropolis Hastings Markov chain 
Monte Carlo. (c) The same sample in (b) after applying the mask defined in the main text. (d) The retained low velocity pixels after comparing the velocity of every 
pixel in (c) with the optimal threshold value. (e) Black crosses mark the largest spatially continuous low velocity body in (d). The target function calculates the area of 
this body.
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are shown in Figures 4a–4d. The top row of Figure 4 shows the (pixelated) mean velocity maps from the above 
four methods, while the bottom row shows the corresponding standard deviation maps. In this paper we will not 
focus on comparing the four inversion results as details about this inversion and a corresponding discussion can 
be found in Zhao et al. (2021). They concluded that (at least for seismic tomography problems that use FMM as 
the forward function f(m)) ADVI provides an accurate mean velocity model but a biased uncertainty estimation, 
and the other three methods give similar and accurate mean and uncertainty maps (the same conclusion can be 
reached by comparing Figure 4a to Figures 4b–4d). We wish to include the results from ADVI when we deter-
mine the optimal answer to the question since this method is relatively efficient and robust (in the sense that the 
result is highly repeatable), and the mean tends to be accurate in previous tests so it clearly provides information 
at relatively low computational cost. We downweight the contribution of this algorithm because of the bias 
expected in its uncertainty estimates by assigning it a relatively low prior probability: p(C|f(m)) = 0.1. For the 
other three algorithms, we assign equal prior values p(C|f(m)) = 0.3.

Based on the above elements, we define a target function that maps a posterior sample in high-dimensional 
parameter space into the area of the central low velocity anomaly in low-dimensional answer space. From the 
inversion results in Figures 4a–4d, the low velocity anomaly of interest is located close to the center of the model. 

Symbol Meaning Description

Q Question What is the area of the low velocity anomaly?

f(m) Forward model Fast marching method

m Parameter Pixelated velocity structure with a Uniform prior pdf

Ed Design Source and receiver station locations

d Data Source to receiver traveltimes

C Algorithms ADVI, Normalizing flows, SVGD and MH-McMC

T(m) Target function Transform m into area of low velocity anomaly

U(a|t) Utility function −(a − t) 2

a* Optimal answer �[� (�|� (�), �,�)|�, �� ] 

Note. ADVI, automatic differential variational inference; MH-McMC, Metropolis Hastings Markov chain Monte Carlo; 
SVGD, Stein variational gradient descent.

Table 1 
Key Interrogation Elements Defined for the Synthetic Test

Figure 4.  (a–d) Pixel-by-Pixel mean (top row) and standard deviation (bottom row) maps of the posterior distributions obtained using automatic differential variational 
inference (ADVI), normalizing flows, Stein variational gradient descent (SVGD), and Metropolis Hastings Markov chain Monte Carlo (MH-McMC). (e) The 
corresponding maps of MH-McMC in (d) after applying the mask introduced in the main text: only the remaining pixels are considered when estimating the area of the 
low velocity anomaly. White triangles in (a–d) illustrate the receiver (and source) locations of the experimental design. Red crosses and black stars in each figure denote 
the selected pixels used to define the threshold value to discriminate of low and high velocities.
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Even though there might be some low velocity anomalies far from the central region, we assume that they have 
no relation with the central anomaly in which we are interested since they will be on or outside of the circular 
array of receivers. To encode this prior assumption, we introduce a mask to confine the region used to calculate 
the target function. Figure 4e illustrates the effect of the mask, which displays the mean and uncertainty maps of 
MH-McMC after applying the mask. The area outside of this mask is discarded, and only the remaining velocity 
pixels are retained to calculate the low velocity area. Thus the target function of each posterior sample T(m|f(m), 
C, Q) becomes: the area of the low velocity anomaly inside the mask.

Figure 3b shows a posterior sample drawn from the inversion results of MH-McMC, and Figure 3c shows the 
same sample after applying the defined mask. One way to calculate the target function of this posterior sample is 
to sum up all of the area of low velocity pixels. This highlights a sub-question that must be answered in order to 
proceed: “what is the best threshold to discriminate low velocity from high velocity pixels with minimal bias?” If 
we could estimate such an optimal threshold value, we could classify each pixel as low or high velocity and hence 
calculate the target function value.

We define a data-driven way to obtain such a threshold value. First, we pick some pixels that are most likely to 
be high (and low) velocity cells from the four inversion results. Ideally, these pixels should have higher (lower) 
mean velocity values relative to the mean, and low uncertainties, as denoted by the red crosses (black stars) in 
Figure 4. A threshold value estimated from such pixels should represent high and low velocity information better 
than a value estimated using other, more ambiguous pixels, thus introducing minimal bias.

Figures 5a and 5b show marginal pdfs of the selected low and high velocity pixels, and Figures 5c and 5d display 
the corresponding marginal cumulative density functions (cdfs). Note that the low velocity marginal cdfs in 
Figure 5c are obtained by integrating the low velocity marginal pdfs in Figure 5a from low to high velocity 
(from left to right), whereas the high velocity cdfs in Figure 5d are obtained by integrating the marginal pdfs in 
Figure 5b in the opposite direction (from high to low velocity). We then average the marginal cdfs in Figures 5c 
and 5d and plot the averaged cdf curves in Figure 5e. The red line is the averaged cdf for low velocity pixels, and 
the blue line is that for high velocity pixels, and note that while these curves are close to being mirror images 
of each other this is not generally the case. The crossing point of the two lines is marked by the black dot with a 
velocity value of 1.676 km/s. This value is also illustrated by the dashed black line in each pdf curve in Figures 5a 
and 5b. This point has the property that the probability that the velocities of the selected low velocity pixels (black 
stars in Figure 4) are lower than this value equals the probability that the velocities of the selected high velocity 
pixels (red crosses in Figure 4) are higher than this value. This specific threshold value therefore discriminates 
low from high velocity values with minimal bias.

We compare the velocity value of each pixel in Figure 3c with the optimal threshold, and retain those whose 
velocity value is smaller than the threshold, as shown in Figure 3d. We interpret these pixels as low velocity 
bodies in this sample. Question Q demands the area of a single low velocity anomaly, rather than all of the low 
velocity pixels in Figure 3d. Therefore we add additional prior information that the low velocity anomaly of 
interest should represent a continuous geological body in space. Note that adding this information does not alter 
the original question Q; rather it articulates the question more precisely. The question then becomes what is the 
area of the largest continuous low velocity body inside the mask, which for the sample in question is marked by 
black crosses in Figure 3e (continuity can occur through both laterally and diagonally adjacent pixels). Obviously 
this target function transforms a high-dimensional velocity vector m into a (1-dimensional) scalar value, and 
eliminates nuisance parameters that are less relevant to the question, such that Q can be answered directly in the 
target space 𝐴𝐴 𝕋𝕋  .

For each of the four inversion results we calculate the target function T(m|f(m), C, Q) for every posterior sample, 
and plot the corresponding posterior histograms in Figure 6. Given the negative squared error utility function in 
Equation 2, the optimal answer for each algorithm 𝐴𝐴 𝐴𝐴

∗

𝐶𝐶
 can be expressed as the posterior mean of target function 

T(m|f(m), C, Q) (Equation 3), noted at the top-left corner and denoted by the dashed black line in Figure 6. 
We could further substitute these 4 results, their prior probability values p(C|f(m)), and the prior probability of 
forward function p(f(m)) = 1 into Equation 3 to obtain the final optimal answer: 12.89 km 2; this is very close to 
the true answer (12.56 km 2) which is marked by red lines in Figure 6.

This example illustrates the accuracy of this interrogation procedure. Although the final answer is very close to 
(even slightly less accurate than) the answer obtained from normalizing flows (12.85 km 2), we usually do not 
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Figure 5.  (a) and (b) Marginal probability density functions (pdfs) of low and high velocity marked in Figure 4. Dashed black lines denote the crossing point in (e), 
which is used to classify low and high velocity pixels. (c) and (d) Marginal cumulative density functions (cdfs) obtained by integrating the corresponding pdfs in (a) and 
(b) in opposite directions. (e) Averaged cdf curves for low (red line) and high (blue line) velocity pixels calculated using (c) and (d). Black dot marks the crossing point 
of the two curves, and is the threshold value that discriminates low from high velocities with minimal bias.

Figure 6.  Posterior distributions of the target function for automatic differential variational inference (ADVI), normalizing flows, Stein variational gradient descent 
(SVGD), and Metropolis Hastings Markov chain Monte Carlo (MH-McMC), from left to right, respectively. The posterior mean value of each target function is 
displayed at the top-left corner, and is also marked by the dashed black line in each figure. The true answer to this question (12.56 km 2) is denoted by the red lines.
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know the true answer to our question for reference, and thus have no means to select the answer from one algo-
rithm over any other. On the other hand, by considering the effect of different algorithms and by defining prior 
probabilities that each algorithm will provide the correct solution based on their past performance, we would be 
more confident about the final answer obtained.

Considering the true Earth has infinitely fine structure, whereas in reality we parametrize it with a finite (coarse) 
grid or number of parameters to reduce the dimensionality of our inverse problem, so it is crucial to consider the 
effect of different parametrizations when answering questions. In Supporting Information S1 associated with this 
article, we investigate the effect of interrogations carried out using models with different parametrizations. We 
double the grid size in both directions from 0.5 to 1 km, which decreases the dimensionality of the tomographic 
problem from 441 to 121. The results show that both the posterior histograms and their corresponding mean 
values from the coarser inversion results are quite similar to those obtained from the finer grid parametrization 
in Figure 6. The final answer of the coarser grid parametrization (12.37 km 2) is very close to the true answer 
(12.56 km 2), as well as that estimated from the finer grid parametrization (12.89 km 2).

We thus obtain an accurate answer using interrogation theory using either parametrization. By contrast inter-
preting the mean map alone provides a severely erroneous answer (9  km 2). This makes interrogation theory 
more attractive for answering scientific questions since we obtain an accurate answer to the question even under 
a coarse parametrization, which usually offers orders of magnitudes of computational cost reduction in real 
problems.

4.  Interrogating the East Irish Sea Basins
4.1.  Shear Wave Velocity Inversion of the East Irish Sea Basins

In the second example, we use interrogation theory to answer questions about the East Irish Sea sedimentary 
basins. Figure 7a displays 61 seismometer locations (red triangles) around the British Isles used in this test, all 
of which contain one vertical (Z) and two horizontal (North and East) components to detect ground motion. We 
consider ambient noise data recorded by these stations during 2001–2003, 2006–2007, and in 2010. Nicolson 
et al. (2014) cross-correlated the vertical component of the ambient noise data to estimate inter-receiver travel-
times of Rayleigh waves, and to perform Rayleigh wave tomography of the British Isles. Galetti et al. (2017) used 
two horizontal components to calculate Love wave group velocity maps at different periods. A more detailed 
description about the ambient noise data and data processing can be found in Galetti et al. (2017). Since Love 
waves are dominantly sensitive to the near surface shear velocity structure, we perform shear wave group velocity 
depth inversion of the East Irish Sea basins using the estimated Love wave traveltime measurements between 4 
and 15 s periods, and interrogate the size of those sedimentary basins using the inversion results. Note that the 
receiver network used in this paper may not be the optimal experimental design to provide the most relevant 
information about the Irish Sea basins. However, it represents a common situation in seismology where we have 
fixed legacy designs, which are definitely not optimal for every question being posed, and nevertheless wish to 
find optimal answers to specific questions about the Earth.

We use a two-step scheme for the 3D shear wave group velocity depth inversion. In the first step, we perform 
Love wave tomography of the British Isles using inter-receiver traveltime data at different periods of 4, 6, 8, 9, 
10, 11, 12, and 15 s. For each period we perform 2D surface wave tomography, restricting the imaging region to 
within longitude 9°W – 3°E and latitude 48°N – 61°N, and parametrize the velocity model using a regular grid 
of 37 × 40 cells with a spacing of 0.33° in both longitude and latitude directions. The prior distribution is chosen 
to be a uniform distribution, and its lower and upper bounds are chosen according to Galetti et al. (2017). The 
likelihood function is chosen to be a Gaussian distribution, and the traveltime data error of each inter-receiver 
path is estimated from daily cross-correlations (Galetti et al., 2017). Considering the dimensionality of this fully 
nonlinear inverse problem, we only use three variational methods: ADVI, normalizing flows, and SVGD to 
perform tomography at each period; we do not perform MH-McMC, as the results using that algorithm did not 
converge acceptably even after drawing 15 million samples in total with 10 chains using 660 hr of elapsed time 
(Zhao et al., 2021). Previously, Zhao et al. (2021) performed Love wave tomography at 10 s period to compare the 
performance of different algorithms. In this study, we run tomography at all periods and use these tomographic 
results to construct dispersion curves at each geographical location. These curves form the data set that is used to 
drive the depth inversion (more details on the latter are given below).
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Figure 8 shows average velocity maps of the Love wave tomography results using normalizing flows at all of 
the analyzed periods, and Figure 9 shows the corresponding uncertainty results. In order to aid the comparison 
of velocity structures and uncertainties between the various periods, the same color scales are used for all of the 
mean and standard deviation maps in Figures 8 and 9, respectively. Some small structures in Figures 8 and 9 are a 
bit different compared to those from reversible jump McMC in Galetti et al. (2017) (which uses exactly the same 
traveltime data for Love wave group velocity tomography). This is due to different parametrizations used in the 
two studies: Galetti et al. (2017) used a variable parametrization using Voronoi cells to discretize the velocity 
model, whereas we use a fixed regularly-gridded parametrization. Nevertheless, the main features of the mean 
velocity and uncertainty maps show good consistency with the known geology and previous tomographic studies 
of the British Isles (Galetti et al., 2015, 2017; Nicolson et al., 2012, 2014). For example, from the tomographic 
results (especially at smaller periods which usually provide velocity information in the shallow subsurface), we 
observe a low velocity structure beneath the East Irish Sea within longitude 6°W–2°W and latitude 53°N – 55°N, 
marked by the black boxes in Figures 7a, 8, and 9. This low velocity anomaly corresponds to the East Irish sedi-
mentary basins (Galetti et al., 2017).

In the second inversion step we focus on the East Irish Sea basins (inside the black box in Figure 7a) and perform 
dispersion inversion to estimate the 3D shear wave velocity structure at depth using the results from traveltime 

Figure 7.  (a) The locations of 61 seismometers (red triangles) around the British Isles used in this paper to record ambient noise data. The recorded data were cross-
correlated to provide inter-receiver traveltimes of Love waves at different periods of 4, 6, 8, 9, 10, 11, 12, and 15 s (Galetti et al., 2017). We use these data to perform 
shear wave group velocity depth inversion beneath the East Irish Sea within the black box, via a two-step scheme (see main text for details). (b) One dispersion curve 
picked from 2D tomographic inversion results of normalizing flows at the geographical point 4°W, 53.5°N, marked by the blue star in (a). (c) Posterior distribution on 
number of Voronoi cells.
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tomography in the first step. To perform the depth inversion, we construct a data set of group velocity dispersion 
curves from the tomographic results. At each geographic point inside the black box in Figure 7a, a dispersion 
curve can be constructed by taking group velocity values from the 2D mean maps, and uncertainty values from 
the 2D standard deviation maps at each period. For example, Figure 7b shows one dispersion curve picked from 
the 2D tomography results in Figures 8 and 9 at 4°W, 53.5°N, the geographical location marked by the blue star 
in Figure 7a. Given the regular gridded parametrization scheme we used in the first step, we pick 91 dispersion 
curves inside the black box around the East Irish Sea.

Figure 8.  Mean Love wave group velocity maps of the British Isles, interpolated between grid cell locations in the results obtained using normalizing flows at different 
periods between 4 and 15 s. All of the mean maps are plotted using the same velocity range for better comparison, and the corresponding period is shown above each 
map. The black boxes indicate the target region where we pick dispersion curves and perform depth inversion in the second step.
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In order to include lateral spatial correlations in the inversion results, we use the 3D rj-McMC algorithm of X. 
Zhang et al. (2018) to perform dispersion inversion in this step. The method parametrizes the subsurface veloc-
ity model with a 3D Voronoi tessellation, which varies both in shape and number of cells during the inversion. 
For a given 3D velocity model, the forward problem consists of extracting 1D shear velocity profiles over depth 
beneath each geographical point, and calculating a group velocity dispersion curve for that 1D structure using 
a modal approximation (Saito,  1988). Since we obtained different results from the three variational methods 
in the first step, we have three different sets of dispersion curve data for the second step. We therefore perform 
three independent dispersion inversions to examine the effect of using different algorithms and to reduce the 

Figure 9.  Standard deviation maps of the British Isles, interpolated between grid cell locations in the results obtained using normalizing flows at different periods 
between 4 and 15 s, each of which corresponds to one mean velocity map in Figure 8. All of the uncertainty maps are plotted using the same range for better 
comparison, and the corresponding period is shown above each map. The black boxes indicate the target region where we pick dispersion curves and perform depth 
inversion in the second step.
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algorithmic bias imposed on our final answer, similar to the approach taken in the synthetic example. For each 
inversion, the prior distribution is set to be a Uniform distribution on shear velocity in the subsurface between 0.5 
and 6 km/s. The prior pdf on the number of Voronoi cells is selected to be a discrete Uniform distribution between 
20 and 600 to address the complexity of the shear velocity structure beneath the East Irish Sea. The likelihood 
function is set to be a Gaussian distribution around the measured data. We perform each inversion by running 
16 Markov chains with 3 million iterations, discarding the first 1 million samples from each chain as burn-in, 
and only retaining every 200th sample thereafter to calculate statistics of the posterior distribution and to apply 
interrogation theory. After completing the sampling process, we plot the posterior pdf of the number of Voronoi 
cells, as shown in Figure 7c. The posterior distribution on the number of cells is roughly distributed between 100 
and 400, which lies well inside the boundaries of its prior distribution.

Considering that each posterior sample is defined using a different 3D Voronoi model parametrization, we first 
project all samples onto a regular grid of pixels. In this test, we define a 3D regular grid with a spacing of 0.33° 
in both latitude and longitude directions and 0.2 km in depth. We then compute the mean group velocity and 
standard deviation maps across the set of retained samples. Figures 10a and 10b show horizontal slices of the 
(pixelated) mean and uncertainty maps of the dispersion inversion results between 2 and 12 km depth, from 
the inversion result using dispersion data from normalizing flows (Figures 8 and 9). The average shear velocity 
increases with depth, and the uncertainty also increases since the resolution of Love wave data is lower in the 
deeper Earth. Again, in Figure 10 we observe similar features compared to those represent by Galetti et al. (2017), 
which proves the credibility of our results.

Figure 10.  3D reversible jump Markov chain Monte Carlo inversion results of shear wave velocity structure constrained by 91 dispersion curves picked from the 2D 
surface wave tomography results obtained using normalizing flows (within the black boxes in Figures 8 and 9). (a) Mean and (b) standard deviation maps of horizontal 
slices between 2 and 12 km depth.



Journal of Geophysical Research: Solid Earth

ZHAO ET AL.

10.1029/2022JB024098

15 of 23

From the mean velocity maps in Figure 10a, we can observe a low velocity structure beneath the East Irish Sea 
down to about 8 km depth, which is interpreted to be the East Irish Sea sedimentary basins in previous studies 
(Galetti et al., 2017; Mellett et al., 2015). Based on the three inversion results, we attempt to answer scientific 
questions about these sedimentary basins using the interrogation procedure tested above.

4.2.  Estimating the Area of the East Irish Sea Basins in the Shallow Subsurface

We first estimate the area of the East Irish Sea sedimentary basins in the shallow subsurface using the top cell of 
the 3D inversion results which extends from surface down to 200 m depth. Figure 11 displays the top cell of the 
three inversion results. From left to right, each column stands for the average velocity (top row) and uncertainty 
(bottom row) maps of the inversion results using dispersion curves picked from 2D tomographic results obtained 
using (a) ADVI, (b) normalizing flows, and (c) SVGD (the three variational methods used in the first step only 
provide different dispersion curves for the second step, and we use the same 3D rj-McMC algorithm for all depth 
inversions in the second step).

The geological structure beneath the Irish Sea can be divided into a number of bedrock basins representing depo-
sitional zones for the bedrock formations. The largest basins are Triassic in age and comprise the East Irish Sea 
basins (around 5°W–3°W and 53.3°N–55°N: Mellett et al., 2015). Thus, we pose a question: what is the area of 
the East Irish Sea basins at this depth? We have a reference answer to this question which is estimated from a 
shallow subsurface geological survey (1.12 × 10 4 km 2 estimated from Mellett et al., 2015) and which enables us 
to validate interrogation theory with real data.

Figure 11.  Mean (top row) and uncertainty (bottom row) maps of the top cell (from 0 to 200 m) of 3D shear wave velocity inversion results using dispersion curve data 
constructed from 2D tomography results obtained using (a) automatic differential variational inference (ADVI), (b) normalizing flows, and (c) Stein variational gradient 
descent (SVGD). In each figure, the black box displays the region where we calculate the area of the sedimentary basins. Black stars and red crosses are used to define 
the best threshold to discriminate low from high velocities with minimal bias.



Journal of Geophysical Research: Solid Earth

ZHAO ET AL.

10.1029/2022JB024098

16 of 23

It is known that sedimentary basins often have lower velocities compared to their surrounding regions, and 
we have reasonably low uncertainties on the velocities of the near surface structure. Our question is therefore 
equivalent to estimating the area of the continuous low velocity body from the horizontal slice of the inversion 
results extending from the surface to 200 m depth. We apply exactly the same procedure as we implemented in 
the synthetic examples above to find the optimal answer. We first define a mask, as marked by the black boxes in 
Figure 11, meaning that we only consider the seismic velocity information inside the mask. The North, East, and 
South boundaries of the mask are determined by the coastline of mainland Britain, whereas the West boundary 
is defined based on the bedrock geology beneath the Irish Sea (Mellett et al., 2015). We select some points that 
are likely to belong to the East Irish Sea sedimentary basins (black stars in Figure 11), and another set of points 
that are highly likely to be outside the basins (red crosses in Figure 11). Given those grid cells, we calculate the 
best velocity threshold that discriminates low from high velocities with minimal bias using the same data-driven 
method as used in the synthetic test.

Similarly, we define our target function T(m|f(m), C, Q) as the area of the largest continuous low velocity body 
inside the mask, and calculate the target function for each posterior sample from each algorithm. Figures 12a–12c 
display the posterior distributions of the target function calculated using the inversion results from ADVI, 
normalizing flows, and SVGD. In each figure, the mean value of the posterior target function (the optimal answer 
considering only each individual algorithm) is denoted by the dashed black line as well as the number below the 
legend, and the reference answer (1.12 × 10 4 km 2 estimated from Mellett et al., 2015) is denoted by the red line 
in each figure.

Given the forward function f(m) used in the second inversion step, we define prior probabilities p(C|f(m)) for 
different algorithms. We assign p(C|f(m)) as 0.30 for ADVI and 0.35 for normalizing flows and SVGD (where 
these different algorithms were used for 2D surface wave tomography). The reason we only downweight ADVI 
slightly is that in this example, the role of these three methods is only to provide different data sets (mean and 
uncertainty values for dispersion curves) used in the second step depth inversion, in which we use the same 
algorithm: 3D rj-McMC. Previous studies (Zhang & Curtis, 2020a; Zhao et al., 2021) and the synthetic examples 
above have shown that ADVI can provide an accurate mean model but a biased uncertainty result; that is the 
dispersion curves (the observed dataset for the second step) constructed by ADVI would have accurate mean 
values but inaccurate data uncertainty estimates. We treat these inaccurate data errors as additional unknowns 
and adjust their values adaptively and hierarchically by a scaling value during 3D Rj-McMC inversion (Bodin 
et al., 2012; Galetti et al., 2017; X. Zhang et al., 2018), so the absolute data uncertainty level of the dispersion 
curves should have a far less effect on inversion results. By using Equation 3, we calculate the final optimal 
answer that considers the effect of different algorithms: 1.22 × 10 4 km 2, which provides reasonable accuracy 
compared to the reference value for this question derived from the geological study (1.12 × 10 4 km 2—Mellett 
et al., 2015).

We note that in Figures 12a–12c, the three posterior target functions span a very broad range (even the entire 
answer space from 0 to 3.0 × 10 4 km 2 that is close to the total area of the defined mask), and the optimal answer 
we obtained also appears to be close to the mean value of the upper and lower bounds of the answer space 
(1.5 × 10 4 km 2). In principle one might argue that this is because the surface wave data used in this example 
(from 4 to 15 s period) are relatively insensitive to the near surface at a depth of up to 200 m; hence the posterior 

Figure 12.  Posterior target functions for the area of the East Irish Sea basins at the shallow subsurface obtained from (a) automatic differential variational inference 
(ADVI), (b) normalizing flows, (c) Stein variational gradient descent (SVGD), and (d) prior distribution, respectively. In each figure, the red line denotes the reference 
answer to this question (1.12 × 10 4 km 2) estimated from surface geology (Mellett et al., 2015), and the dashed black line denotes the mean value of each histogram, 
which is also displayed by the number below the legend.
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samples may not be well constrained by the data, leading to a broadly distrib-
uted set of target function values which happen to have the same mean as the 
true answer. To investigate, we apply the same interrogation procedure using 
the same velocity threshold as above, to 2 million samples drawn from the 
Uniform prior distribution, and display the histogram of the calculated target 
function in Figure 12d. Obviously, the posterior target distributions and the 
optimal answers obtained from the three inversion results in Figures 12a–12c 
are significantly more informative than that estimated from the prior proba-
bility distribution which gives an extremely poor answer for the area of sedi-
ment. This shows that while it is true that the uncertainty on the final answer 
is high, the surface wave data are certainly far more informative than the 
answer that could be obtained from our prior information alone.

Since interrogation theory provides an optimal answer that is close to the 
answer obtained from an entirely different method based on interpreting 
surface geology, we have increased confidence in the result. This example as 
well as the synthetic tests therefore go some way toward validating interro-
gation theory as a practical method to answer scientific questions. In the next 
section, we apply the theory to answer a real-world scientific question where 
we do not know the true answer, and nor do we have any estimate based on 
independent data.

4.3.  Estimating the Volume of the East Irish Sea Basins

We wish to answer a 3D volume-type question about the true Earth: what is the total volume of the offshore 
East Irish Sea sedimentary basins? This type of question may be of interest when performing mass balancing in 
tectonic or basin reconstructions, and questions of similar type arise in applied geoscience when assessing the 
volume of subsurface ore resources or fluid reservoirs. In this example we need to define a 3D mask inside which 
we calculate the volume of the basins. As displayed by the black boxes in Figures 10a and 10b, we define such 
a 3D mask with fixed shape in the depth direction from the surface down to 8 km depth to fully encompass the 
offshore sediments while excluding most of the land. In the horizontal direction, the boundaries of the mask are 
defined based on the coastline of mainland Britain as well as on the inversion results in Figure 10.

The target function of this 3D example should account for the volume of the low velocity bodies inside the mask, 
since sedimentary basins often have relatively lower velocities compared to the surrounding regions. In contrast 
to 2D cases above where we used a fixed threshold to discriminate low from high velocities, we now need 
threshold values that vary with depth to allow for the significant velocity changes that occur between different 
depths due to pressure and temperature increases. We use the following method to obtain such depth-dependent 
threshold values. First, we calculate five independent velocity threshold values at five fixed depths of 0 (surface), 
2, 4, 6, and 8 km respectively, using exactly the same data-driven method as what we did in the 2D examples, and 
the obtained optimal threshold values are displayed by the red dots in Figure 13. We further interpolate between 
these five points to obtain the dashed red line in Figure 13. Each velocity value on this line is used as the opti-
mal depth-dependent threshold that discriminates low from high velocities at the corresponding depth. The blue 
line in Figure 13 shows the average velocity value at different depths from the surface to 8 km. Although these 
two curves are not exactly the same (and there is no reason why they should be), they present a similar feature 
of velocity increasing versus depth, which increases our confidence in the obtained depth-dependent threshold 
curve.

Given the obtained depth-dependent threshold curve, we classify every pixel inside the 3D mask as a low or high 
velocity grid cell, retain low velocity pixels and find the continuous low velocity bodies. In contrast to the 2D 
cases where we treat the largest continuous low velocity body as the target function, we need to consider addi-
tional geological prior information when defining the target function for this 3D question. To illustrate, Figure 14 
presents vertical slices of one posterior sample drawn from the 3D inversion results. The top row shows the depth 
slice at 53.67°N latitude and the bottom row shows the vertical section at 4.33°W longitude. The two depth slices 
of this posterior sample are shown in Figure 14a, and the same slices after applying the 3D mask are displayed in 
Figure 14b. By comparing each velocity value with the depth-dependent threshold curve, we retain low velocity 

Figure 13.  Mean velocity values at different depths from the surface to 8 km 
(blue line) and the optimal depth-dependent threshold curve to discriminate 
low from high velocity values with minimal bias (dashed red line).
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pixels and obtain two continuous low velocity bodies (Figure 14c). Given that we seek to estimate the volume 
of sedimentary basins, and considering that those sedimentary basins are often assumed to exist at least at the 
surface rather than only in deeper parts of the crust, we define the target function as the largest continuous low 
velocity body that starts from the surface (in other words, for each posterior sample we strictly require the low 
velocity body to exist at the surface, otherwise we assign that this sample has zero basin volume). Therefore we 
interpret the upper low velocity body as the sedimentary basins of interest (shown in Figure 14d) and calculate its 
volume as the target function of this posterior sample, even though the lower one is larger.

We calculate this target function for each posterior sample obtained from ADVI, normalizing flows and SVGD, 
and display their posterior target histograms in Figure 15. The mean value of each posterior histogram represents 
the optimal answer estimated from each corresponding algorithm, which is denoted by the black dashed line and 

Figure 14.  Vertical sections of a posterior sample drawn from the inversion results. The top row shows the vertical section at 53.67°N latitude and the bottom row 
shows that at 4.33°W longitude. (a) Two vertical slices of this posterior sample. (b) The same vertical slices as in (a) after applying the 3D mask. (c) Two continuous 
low velocity bodies classified by the depth-dependent threshold curve. (d) The largest continuous low velocity body that starts from surface, whose volume is treated as 
the target function of this posterior sample.

Figure 15.  Posterior target functions for the volume of the East Irish Sea basins obtained from (a) automatic differential variational inference (ADVI), (b) normalizing 
flows, and (c) Stein variational gradient descent (SVGD), respectively. In each figure, the dashed black line denotes the posterior mean value of each algorithm, which 
is also displayed by the number below each legend, and the red line denotes the final estimated answer to this question (1.065 × 10 5 km 3).
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the number below the legend in each figure. We substitute those values and the 3 prior probabilities p(C|f(m)) into 
Equation 3, and obtain the final estimated answer to our question: 1.065 × 10 5 km 3 (the red lines in Figure 15).

5.  Discussion
We used interrogation theory to answer real-world, unanswered scientific questions about the Earth based on 
Bayesian inversion results represented by posterior probability distributions. Previously, similar questions were 
usually answered by interpreting mean or maximum likelihood models directly. In the synthetic example, we have 
proved that direct interpretation of the mean model alone provides an inaccurate answer, especially under a coarse 
model parametrization. The true Earth has infinitely fine structure, whereas we often use a relatively coarser para-
metrization to reduce the dimensionality of the inversion problem. It is therefore likely that the answer obtained 
in this way is always biased at some level. On the other hand, the examples presented above show that the optimal 
answer obtained from interrogation theory is very close to the true (reference) answer, despite the relatively 
coarse model parametrization (the grid size) employed.

The above result arises because the target function T(m|f(m), C, Q), which projects model parameter m into target 
space 𝐴𝐴 𝕋𝕋  where the question can be answered directly, is applied stochastically. In the synthetic example, consider 
a fixed pixel that spans the boundary of the true velocity anomaly. In some samples it is classified as part of the 
low velocity anomaly by the defined target function (suppose we label those pixels as 1), while in other samples 
it is not (we label them as 0). By applying Equation 3, we account for the posterior mean of those labels, resulting 
in a fraction between [0, 1], which denotes the probability that this pixel belongs to the low velocity anomaly. For 
comparison, if we only interpret the mean model (or any other single model) alone, this same pixel always either 
belongs or does not belong to the low velocity anomaly, so it always contributes either 1 or 0. As a result, the 
effective resolution of the answer obtained from interrogation theory can be much higher than might be apparent 
from the grid cell size alone, since we consider all of the posterior samples together in a statistical manner. Thus 
the answer is still accurate even when using a coarser parametrization as observed in Supporting Information S1 
associated with this paper.

Bayesian nonlinear inversion is many times more expensive than linearized inversion, especially for high dimen-
sional problems due to the curse of dimensionality (Curtis & Lomax, 2001). Typically geophysicists only present, 
publish, and use a small amount of the statistical information obtained from Bayesian inversion results, such as 
mean and point-wise standard deviations; most of the valuable information within the posterior pdf is discarded, 
which can introduce errors and biases when answering questions. This paper shows that interrogation theory 
provides a way to make use of all posterior samples obtained from Bayesian inversion, in a way that gives answers 
of improved accuracy. This goes some way to justifying the computational expense of solving inverse problems 
nonlinearly and probabilistically.

We considered the effect of different computational inversion algorithms C, and combined them to calculate opti-
mal answers (Equation 3). Thus, the uncertainty caused by the use of any single algorithm was taken into account 
and the bias of the obtained answer was reduced. On the other hand, all of the above examples only used a single 
forward function f(m), the fast marching method (together with a modal approximation for the 3D example) to 
map model parameter m into the corresponding data d. Future improvements in interrogation applications might 
focus on involving different forward models to answer area-type (or volume-type) questions, for example, using 
full wave simulators as the forward model and using full waveform inversion to solve Bayesian inverse problems 
(Gebraad et al., 2020; Zhang & Curtis, 2020b, 2021), such that we can reduce the uncertainty caused by different 
model-data relationships.

In Equation 3, we translate the uncertainty from inversion results to the answer space by calculating the poste-
rior distribution of the target function as shown in Figures 6, 12, and 15. Following Arnold and Curtis (2018) 
we obtain the statistically unbiased estimator of our answer by calculating the average value of each posterior 
histogram, which is the optimal answer 𝐴𝐴 𝐴𝐴

∗

𝒇𝒇 (𝐦𝐦),𝐶𝐶
 for each specific forward model f(m) and algorithm C. The final 

optimal answer is obtained by taking a weighted sum of each 𝐴𝐴 𝐴𝐴
∗

𝒇𝒇 (𝐦𝐦),𝐶𝐶
 . This provides a single estimate of the 

answer. Additional uncertainty in the answer could arise from the assignment of the weights assigned to each 
algorithm since these were assigned essentially by an informal expert elicitation process (where the authors were 
the experts). Polson and Curtis (2010) showed that expert elicitation can be a biased process in itself, but that 
if care is taken then uncertainties on elicited quantities can also be obtained. If we wish to quantify uncertainty 
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in the final answer caused by different algorithms and forward models, we may therefore replace the two prior 
values p(f(m)) and p(C|f(m)) by two random variables with the elicited probability distributions: the output of 
Equation 3 then becomes a posterior distribution over the final answer. In this way we are able to incorporate 
uncertainty about the performance of different models and algorithms into the final answer.

Prior information is often critical in order to define a reasonable target function. In the synthetic example we 
defined the largest continuous low velocity body to be the low velocity anomaly of interest rather than simply 
including all of the low velocity bodies inside the mask. In the field data test, we interpreted sedimentary basins 
as low velocity bodies considering that basins often have relatively lower velocities compared to their surround-
ing rocks, and further interpreted the largest continuous low velocity body that starts from the surface to be the 
3D basins of interest since these basins have been observed in the near surface geologically. The definition of 
the target function may be more or less subjective in different applications, but this is how one incorporates 
realistic geological prior information into the target function. Geological information is itself mainly based on 
knowledge from experts, hence is affected by subjective choices (Bond et al., 2007, 2012; Curtis, 2012; Polson 
& Curtis, 2010). The application of interrogation theory in this paper tries to reduce some of the bias that would 
be imposed by individuals who often use a single algorithm or method, but we still need (subjective) expertise 
to make the procedure geologically reasonable. Therefore, the target function will always be more accurate if we 
consider more realistic prior information, and thus will provide a more reliable answer.

In 3D Rj-McMC inversion, we first projected 3D Voronoi-tessellated models onto a regular gridded system, such 
that we can compute some statistics of the posterior distribution (the average model and point-wise standard 
deviations). We used these regular gridded samples to calculate their target function values. As an alternative we 
could have performed the target function calculations directly on the Voronoi-tessellated models, taking care to 
account for cell volumes so that the estimated threshold values that discriminate low and high velocities remain 
unbiased.

In this paper, we explicitly tested two different experimental designs: a circular design used in the synthetic 
example and a fixed receiver network used in the field data test. In both cases, we used interrogation theory to 
find the best answer a*. In addition, in the second step of the 3D inversion, we used three different dispersion data 
sets picked from three variational tomographic results. These three data sets can also be viewed as data obtained 
from three different “experimental designs.” Therefore, the posterior target functions shown in Figure 15 can be 
interpreted as interrogation results obtained from three different experimental designs, which provided similar 
results in answer space.

In reality, it is common that the (predefined) design used to collect data is not the optimal one for the question 
posed because when networks are established it is always difficult to define a design that can best answer all ques-
tions that may be of interest in future. Interrogation theory also provides a methodology to solve design problems 
to create an experiment that optimizes information on one or more questions (Arnold & Curtis, 2018). For a given 
question, we seek the design that provides answers with the highest expected utility (before collecting data). For 
each design from a group of candidate designs, we calculate the utility value averaged over a representative set 
of all possible data sets observable under that design. The optimal design is the one that maximizes this expected 
utility value. To solve a design problem, in principle we therefore need to solve thousands of inverse problems 
(number of candidate designs × number of possible datasets for one design), which is far more expensive than a 
single probabilistic tomographic problem (although simplifications can be made which reduce this calculation 
significantly (e.g., Shewry & Wynn, 1987)).

For real-world applications, it is possible that our ultimate question may not be addressed clearly within one inter-
rogation procedure. To better answer the original question, a set of new questions are usually posed to provide 
more background knowledge, and a sequential interrogation process is required until a satisfactory answer is 
obtained. For more details about sequential interrogation, we suggest readers refer to Arnold and Curtis (2018).

In the field data test, we used interrogation theory to find the optimal volume of the East Irish Sea sedimentary 
basin. To our limited knowledge, this is the first time that geophysicist tried to estimate the volume of a basin 
directly from geophysical inversion results. In recent years, carbon capture and storage (CCS) has become a key 
technology for the provision of energy with low carbon dioxide emissions. The East Irish Sea basins studied in 
this paper host a large carbon dioxide storage potential and represent a prospective area for CCS in the western 
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UK (Gamboa et al., 2016, 2019). The inversion results for the shear-velocity structure as well as the estimated 
basin volume can be used to as background information for future research on CCS beneath the East Irish Sea.

Interrogation theory as presented in Arnold and Curtis (2018) appears to be highly structured and formalized. One 
purpose of this paper is to translate the theory into useable form, and to provide a concrete example of answering 
a specific type of question. One of the main theoretical advances of Arnold and Curtis (2018) was to introduce the 
target function in order to allow utilities to be defined in a simpler, more tractable form, even when a variety of 
parametrizations and forward functions are considered. A key revelation from our examples above is that much of 
the skill and work involved in answering real-world questions may be spent specifying prior weights for different 
algorithms and forward models and defining reasonable target functions in a clear and unbiased manner. We hope 
to use interrogation theory to answer a wide range of real-world scientific questions in future studies.

6.  Conclusion
In this paper, we use interrogation theory to answer a specific type of question about the Earth: to estimate the 
shape, area, or volume of a subsurface structure by interrogating probabilistic Bayesian tomographic results. 
We establish an interrogation procedure by using a 2D synthetic example. By considering the effect of different 
computational algorithms, we reduce the bias of the optimal answer and obtain an accurate estimation of the 
question. The results using different parametrizations show that the same question can be answered accurately 
even on a relatively coarse grid, which reduces the computational cost of Bayesian inversion by orders of magni-
tude. We further apply interrogation theory to answer realistic questions about the East Irish Sea basins. The first 
application to estimate the horizontal area of the shallow part of the basins validates the theory, as the answer 
coincides to within 10% of that obtained from surface geological survey mapping. Finally, we use the method 
to estimate the total volume of the East Irish Sea basins for which no previously published answer exists. The 
theory established here is quite general, and can be applied to find answers for many other real-world scientific 
questions.

Data Availability Statement
Traveltime data associated with both the synthetic and the field data tests are available at Edinburgh DataShare 
(https://datashare.ed.ac.uk/handle/10283/4400). Software used for the three variational methods as well as the 2D 
McMC can be found at PyMC3 website (https://docs.pymc.io/en/v3/, Salvatier et al., 2016). 3D Rj-McMC code 
is available at https://github.com/xin2zhang/MCTomo (X. Zhang et al., 2018).
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