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Abstract
Estimating the spatially varying microstructures of heterogeneous and locally anisotropic media non-destructively is

necessary for the accurate detection of flaws and reliable monitoring of manufacturing processes. Conventional algorithms

used for solving this inverse problem come with significant computational cost, particularly in the case of high-dimen-

sional, nonlinear tomographic problems, and are thus not suitable for near-real-time applications. In this paper, for the first

time, we propose a framework which uses deep neural networks (DNNs) with full aperture, pitch-catch and pulse-echo

transducer configurations, to reconstruct material maps of crystallographic orientation. We also present the first application

of generative adversarial networks (GANs) to achieve super-resolution of ultrasonic tomographic images, providing a

factor-four increase in image resolution and up to a 50% increase in structural similarity. The importance of including

appropriate prior knowledge in the GAN training data set to increase inversion accuracy is demonstrated: known infor-

mation about the material’s structure should be represented in the training data. We show that after a computationally

expensive training process, the DNNs and GANs can be used in less than 1 second (0.9 s on a standard desktop computer)

to provide a high-resolution map of the material’s grain orientations, addressing the challenge of significant computational

cost faced by conventional tomography algorithms.
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1 Introduction

Ultrasonic non-destructive evaluation (NDE) is widely

used across a number of industries including aerospace,

nuclear and oil and gas. The technique involves the gen-

eration, transmission and reception of high-frequency

mechanical waves through a component [11]. An image of

the component’s interior is then generated via post-pro-

cessing of this data to aid in the detection of any internal

defects [42]. Conventional ultrasonic imaging algorithms

within NDE typically assume that the material that is being

inspected is isotropic and homogeneous. However, metals

can develop locally anisotropic and heterogeneous

microstructures, particularly when they are subjected to

extreme thermal cycles, such as those present in welding

and additive manufacturing processes [16, 51, 60]. Con-

ventional ultrasonic imaging algorithms which assume

homogeneity or isotropy can fail to focus the energy cor-

rectly in the image domain in such cases and are therefore

unreliable [44, 55, 66]. Algorithms which incorporate a

priori information about a material’s spatially varying

properties significantly improve the accuracy of defect

characterisation [55].

In recent years, much effort has been expended on

generating material property maps non-destructively using

tomographic inversion, where material properties such as

wave speed, or microstructural descriptors such as grain

orientation, are estimated from the scattered wave field

data recorded at the surface of an object. A wide range of
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advanced tomographic algorithms are used across geo-

physics [1, 2, 12, 40, 58, 67, 69], bio-medicine [19] and

NDE [14, 37, 55, 56]. A common approach is to use iter-

ative methods to improve the fit of the measured data to

forward modelled data which depend on an estimate of the

material map. They sample potential material maps from

some multi-dimensional parameter space, solve a forward

problem for each new material property map and update

the estimated map to improve the data fit [37]. In the case

of probabilistic sampling frameworks (for example, those

built around Markov chain Monte Carlo methods [56, 68]),

there is the added benefit of extracting uncertainty infor-

mation on the parameter estimates, facilitating valuable

uncertainty quantification studies. Although these algo-

rithms have demonstrated impressive results in recon-

structing wave speed and grain orientation maps, they are

computationally demanding, often requiring the storage of

large sample sets and compute times of several hours to

several weeks. This poses a problem for the NDE com-

munity, where there is an increasing demand for the

monitoring of dynamical processes employed during

manufacturing, for example, in welding and additive

manufacturing processes [31, 32], and so it is desirable to

carry out inspection in real time.

Machine learning shows strong potential to solve iso-

tropic material characterisation inverse problems rapidly

[20] and has comparable results to more computationally

expensive algorithms such as Markov chain Monte Carlo

methods [21]. Specifically, we focus on the use of deep

neural networks (DNNs), which can approximate any

nonlinear relationship between two parameter spaces,

given a sufficiently large set of training data (pairs of

dependent and corresponding independent parameters [9]).

The training of a DNN is computationally expensive.

However, the training process is only performed once prior

to using a DNN, and a trained network can be used

effectively in near-real time without the need for high-

performance computing.

Inversion methods based on DNNs have become

increasingly popular for tomographic imaging of isotropic

material properties, particularly in geophysics

[5, 8, 13, 20, 43] and bio-medicine [4, 64]. However,

DNNs have not yet been implemented for tomographic

reconstruction of anisotropic material properties. Although

various deep learning algorithms have been used to solve

inverse problems in NDE, for example, to predict material

fatigue behaviour [3], to augment ultrasonic data [59] and

for ultrasonic crack characterisation [47] and crack detec-

tion using image recognition [15, 29], the use of DNNs for

tomography has yet to be explored in this context.

In addition to DNNs, generative adversarial networks

(GANs) have more recently been applied to various com-

puter vision tasks, including achieving super-resolution

with upscaling by up to a factor of four [41], colourisation

[25], segmentation and labelling [30]. This family of

algorithms has strong potential to improve image resolu-

tion and has been used increasingly in remote sensing [33]

and X-ray tomography [65]; however, there has been no

application of GANs in NDE to produce ultrasonic tomo-

graphic images. Achieving image super-resolution is a

challenging task, and a range of algorithms have been

employed to tackle this problem including interpolation-

based methods [36], reconstruction-based methods [17] or

learning-based methods [26]. Interpolation-based and

reconstruction-based methods can suffer from accuracy

shortcomings, particularly when the super-resolution scale

factor increases, whereas learning-based methods such as

GANs are increasingly used for their fast computation and

good performance [63]. Therefore, we focus on such

learning-based methods for our application.

The novel elements of this paper are: (1) the first DNN

framework for rapid, nonlinear, two-dimensional tomog-

raphy of heterogeneous and locally anisotropic materials

and (2) the first use of GANs for processing ultrasound

tomographic images in NDE. The data sets used for the

tomographic inversion are the arrival times of ultrasonic

waves which have been transmitted and received by an

array of sensors on the exterior of the component. The

examples shown are inspired by the NDE of polycrystalline

materials, but the methodology should naturally extend to

other domains, for example, imaging anisotropic fibrous

tissue [22, 27] or the Earth’s subsurface [70]. We compare

the network’s performance for a range of transducer con-

figurations, model textures and different types of simulated

ultrasonic testing data (i.e. we move beyond inverse crime

scenarios). The novel GAN-based method for post-pro-

cessing ultrasound tomographic images to achieve super-

resolution with a fourfold upscaling factor is presented,

achieving up to 50% improvement using structural simi-

larity metrics. We define the term super-resolution in the

context of image processing, as reconstructing images

below the original lengthscale. This is different to an

alternative definition often used in physical acoustics,

which is to image below the wavelength in the data.

2 Method

We employ model-driven deep learning, where a large data

set of simulated material maps and corresponding travel

time measurements are used to train a DNN and hence

solve the tomographic inverse problem. The forward

modelling problem can be denoted as

f ðm; sÞ ¼ Tm; ð1Þ
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where f is a forward mechanical wave modelling operator,

m is a material model, s contains the locations of the ele-

ments in the ultrasonic transducer array and Tm is the time-

of-flight (ToF) matrix between every pair of array ele-

ments. Within each database used for network training, the

transducer configuration s is fixed and therefore s is

omitted in the notation for the ToF matrix Tm. We use deep

learning to obtain (or learn) an approximation of f�1,

which maps the measured data Tm to a material mapm (i.e.

DNN � f�1). In this study, the training data consist of two-

dimensional material models with spatially varying crystal

orientations hðx; yÞ and the travel time matrix Tm corre-

sponding to each one. The target materials for characteri-

sation are metals, which often exhibit correlated structures

due to their manufacturing process (i.e. an interlocking

crystalline texture). While Earp et al. [20] successfully use

both normal and uniformly distributed random models

without correlated structure in the training data, here we

generate models in such a way that although the distribu-

tion of orientations is randomly assigned, the material still

exhibits some structural correlation which well represents

the microstructure of the material of interest. To achieve

this, we examine that an initial random Voronoi tessella-

tion [53] with 30 seeds (a set of two-dimensional Cartesian

coordinates lying within the domain of interest) is com-

puted and an orientation h between 0� and 45� is randomly

assigned to each of the 30 resulting Voronoi regions or

cells (Fig. 1a). We consider only in-plane crystal rotation,

and therefore, the orientation h relates to the orientation of

a slowness curve in each cell. This slowness curve plots the

reciprocal of velocity in the crystal over a range of incident

wave directions [56]. The material models used in the

training data fm16;Tm16
g are generated by discretising the

Voronoi tessellation into a regularly spaced 16� 16 grid

and smoothing with a Gaussian kernel (Fig. 1b; the sub-

script 16 denotes the model resolution). Gaussian

smoothing is less likely to cause low-frequency artefacts

compared to other methods such as a moving average

approach, and convolutional neural layers have been pro-

ven to be effective for Gaussian denoising [39]. The

smoothing simplifies the inverse problem such that only

smooth models are inverted for. To demonstrate that this

machine learning approach can be generalised for any

locally anisotropic media, the longitudinal group slowness

curve is obtained for an arbitrary anisotropic material with

a cubic stiffness tensor, where c11 ¼ 256:45GPa, c12 ¼
133:5GPa and c44 ¼ c12 and density q ¼ 7874 kg m�3.

Three common configurations of ultrasonic transducer

array locations s are considered: a full aperture coverage of

16 elements (4 on each face as shown in Fig. 1d), a two-

sided aperture pitch-catch configuration with 16 transmit-

ting elements at the top of the model, with the time of

flights measured at 16 receiving elements at the bottom of

the model (Fig. 1e) and a one-sided aperture pulse-echo

configuration, where 16 elements are positioned along the

top face and the travel times of waves reflecting off the

bottom face and returning to the transducers on the top face

are measured (Fig. 1f). In real-world applications, often

only the pulse-echo configuration is feasible due to access

of the test sample, but to develop the algorithms, the

availability of data from the full aperture to the pitch-catch

to the pulse-echo arrangements is gradually decreased. The

measured data are the time of flight (ToF) of each propa-

gating wave between each pair of array elements, repre-

sented in a ToF matrix Tm16
shown in Fig. 1c.

2.1 Forward model approaches

Acquiring the data for training a DNN experimentally

would be impractical due to the time and cost of obtaining

the large amount of data that is required. So an efficient

forward model is needed for computing the time-of-flight

matrix Tm (Fig. 1d) corresponding to a grain orientation

model m16 for each source–receiver pair. We take two

approaches: a semi-analytic model using an anisotropic

multi-stencil fast marching method (AMSFMM) algorithm

from [56], denoted as fFMM, and a finite element analysis

(FEA) method, denoted as fFEA. The AMSFMM incorpo-

rates the effects of ray bending due to variations in locally

anisotropic grain orientations and models the travel-time

field by solving the Eikonal equation using an upwind finite

difference scheme [49, 54, 56]. This allows the calculation

of the shortest travel time between transmitter and receiver

locations, and the matrix Tm
FMM can be constructed (that is

Tm
FMM ¼ fFMMðm16Þ). As wave reflections are not incor-

porated into the AMSFMM, a different approach is

required for the pulse-echo transducer array configuration.

In this case, the time of flight between the transmitter and

receiver is calculated by the summation of the time of flight

between the transmitter to all points along the back-wall

and between the receiver and all points along the bottom

face. The output of this summation is an array of travel

times corresponding to all the reflection points along the

bottom face, and the minimum value is taken to be the time

of flight for the pulse-echo transducer array configuration.

The FEA method incorporates more of the underlying

physics in the model compared to AMSFMM, as it models

full wave propagation including multiple scattering and

diffraction. Following the approach of [56], to measure the

ToF of the received waves from FEA generated data, an

amplitude threshold is selected and the time for the

recorded wave amplitude to reach this threshold is used as

an element of the travel time matrix Tm
FEA (that is

Tm
FEA ¼ fFEAðm16Þ). The FEA method is significantly
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more computationally expensive than the AMSFMM. As a

large number of data-model pairs are required to train a

deep neural network, the more efficient AMSFMM method

is used to generate travel time matrices Tm
FMM for the

training data. The more physically realistic FEA generated

data are then used to generate data to test the trained net-

works’ performance (see FEA set-up in ‘‘Appendix’’).

Alternatively, a finite difference approach could be used for

forward modelling wave propagation, which can provide

similar levels of accuracy and computational cost to FEA;

however, finite difference methods can be challenging to

extend to irregular component geometries. A total of 7500

models are generated, and the corresponding travel time

matrices Tm
FMM are computed using AMSFMM for the

training data set, where additional 4 models are used with

the FEA for testing purposes.

2.2 Deep neural network for orientation
mapping

Deep neural networks (DNNs) are mathematical mappings

that emulate the relationship between two parameter spaces

[20]. Here, we seek a map between the grain orientation

models m16 and the corresponding time of flight data Tm

(that is DNNðTFMM
16 Þ ¼ mpred

16 , where the pred superscript

denotes the DNN prediction). For each of the transducer

configurations s, a different number of travel times are used

as input to the neural network. For a full aperture config-

uration (Fig. 1d), we have n source–receivers per side of

our rectangular domain, and so there are 6n2 unique travel

times (accounting for source–receiver reciprocity and

excluding those between elements which lie on the same

side). When n ¼ 4, a set of 96 travel times is taken from

each ToF matrix Tm. For the pitch-catch configuration

(Fig. 1e), all source–receiver paths are unique; therefore,

the full ToF matrix is used, and with n ¼ 16, there are 256

inputs to the neural network. Finally, for the pulse-echo

(a) (b) (c)

(d) (e) (f)

Fig. 1 Illustration of the procedure for generating training data: a
Randomly generated Voronoi tessellation with 30 seeds and random

grain orientations ranging between 0� and 45�. (Other angles are

included due to symmetry of the slowness curve.) bMaterial mapm16

generated by discretising the Voronoi image a on a 16� 16 grid and

then smoothing with a Gaussian kernel. c An example travel time

matrix Tm16
populated by measurements of the time of flight between

every pair of transducer elements. In this paper, we position

transducer elements in three configurations: d full aperture coverage

by 16 elements (4 on each face), e two-sided aperture coverage with

16 transmitting elements at the top of the model with the pitch-catch

time of flight being measured at 16 receiving elements at the bottom

of the model and f one-sided aperture coverage, where 16 transducers

are positions along the top face and the pulse-echo arrival time of the

wave reflecting from the bottom face is measured
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configuration (Fig. 1f), when n is even, there are n2=2þ
n=2 unique travel times (accounting for source–receiver

reciprocity), so when n ¼ 16, a total of 136 travel times are

selected for the ToF matrix. For network training, both the

input travel times and the output orientations are scaled to

have zero mean and unit variance.

We configure three DNNs (corresponding to three

transducer configurations), each with five fully connected

layers (illustrated in Fig. 2), using sigmoid activation

functions. The final output layer contains a single node

corresponding to the orientation of a single pixel in the

imaging domain. Therefore, following the approach of

[20], a separate network is trained for each pixel, so for a

16� 16 resolution image a total of 256 networks are

trained. Alternatively, a single network with an output

layer consisting of the same number nodes as pixels can be

trained; however, the size of network and trainable

parameters will be higher, and therefore, there would be a

slower training process. The approach of training a separate

network per pixel also allows individual network archi-

tectures to be modified for different pixels (though this is

not considered in this study). The networks are trained

using the Adam optimisation algorithm [38]. While a wide

range of more sophisticated algorithms could be imple-

mented to provide greater training accuracy (e.g. [28, 50]),

this algorithm is implemented as it provides fast conver-

gence and simple implementation. A description of net-

work hyper-parameters is provided in ‘‘Appendix 2’’.

These hyper-parameters are selected using a stochastic

optimisation library [7] for each network architecture cor-

responding to different transducer configurations. We use a

mean-squared-error (MSE) loss function, given by:

MSE ¼
PN

i¼1 mtrue
16 ðiÞ �mpred

16 ðiÞ
� �2

N
;

ð2Þ

where mtrue
16 and mpred

16 are the true and predicted grain

orientation models, i denotes the pixel index, and N is the

total number of pixels (for models m16, N ¼ 256). The

choice of loss function controls the performance of the

trained network. MSE penalises large prediction errors,

whereas mean absolute error (MAE) is less sensitive to

outliers. Alternatively, the structural similarity index

measure (SSIM, [61]) could be used to penalise perceived

changes in structural information, or the Wasserstein dis-

tance [18] could be used to emphasise the correct location

of anomalous regions in the reconstructed images.

A validation data set is created using 20% of the training

data. To avoid over-fitting the network to the training data,

the cost function is periodically evaluated over the vali-

dation data set, and we implement an early stopping

algorithm so that training stops once the validation loss

stops decreasing (with a patience of 10 iterations). The

time to train 256 separate networks sequentially using

Google Colab [10] free graphics processing units (GPUs) is

approximately 40 min, although training could be paral-

lelised to reduce this time if required. Once trained, the

compute time of mpred
16 is approximately 0.15 s per model

inversion.

2.3 Generative adversarial networks for super-
resolution

Conditional GANs learn a mapping between two images

[30] and so can be used for post-processing of the DNN

tomography output (mpred
16 ) to increase resolution and

Fig. 2 Schematic of the tomography algorithm using deep neural

networks (DNNs). First, N travel times are selected from the travel

time matrix (where N ¼ 96, N ¼ 256 and N ¼ 136 for the full

aperture, pitch-catch and pulse-echo configurations, respectively).

Travel times are then used as input into the DNN. The DNN consists

of 3 hidden layers (L1, L2 and L3) and a final output layer. The nodes

are illustrated as circles, and the number of nodes in each layer is

denoted in the bottom circles (L1N , L2N and L3N ). Each output

corresponds to the crystal orientation of a single pixel in the material

map m16, so 256 separate networks are trained in order to predict all

pixel orientations
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accuracy. The GAN architecture, as illustrated in Fig. 3a,

consists of two separate trainable networks: a generator

(GANG) and a discriminator (GAND).

Training a GAN for post-processing the output of the

DNN tomography method (mpred
16 ) to achieve an increase in

image resolution (super-resolution) requires an additional

training data set, where travel time data are generated using

higher-resolution models (64� 64). The GAN framework

assumes some prior knowledge of the structure of the

material which is incorporated into the GAN training data.

For example, in layered structures such as carbon fibre-

reinforced polymers (CFRPs), the training data should

include models with locally anisotropic layers, or alterna-

tively models exhibiting crystalline grain structures should

be used to train GAN’s for cases such as welds, and

knowledge on the average grain size could feed into the

complexity of the models included in the training data. We

use three separate training data sets of increasing com-

plexity. The first high-resolution model mtrue
64 consists of up

to 5 horizontal layers where the orientation and thickness

of each layer are randomly assigned (Fig. 3b). The second

(a)

(b)

(c)

(d)

Fig. 3 a Schematic of the generative adversarial network (GAN) post-

processing algorithm for achieving super-resolution material maps.

The 16� 16 output of the DNN tomography algorithm m16 is input to

the generator network, which outputs a 64� 64 image mG
64. The

known 64� 64 image mT
64, which was used to generate the DNN

input data, as well as the output of the generator mG
64 is input into the

discriminator, which outputs a prediction of which image is generated

and which belongs to the training data set. Three different model data

sets are used for GAN training: b a layer model with up to 5 layers

where positions of the interfaces are random, c a random Voronoi

tessellation with 6 seeds and d a random Voronoi tessellation with 30

seeds
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and third are generated by discretising random Voronoi

tessellations with 6 and 30 seed locations into a 64� 64

grid, as shown in Fig. 3c and d, respectively. The travel

time matrices Tm
FMM
64 are calculated using the AMSFMM

algorithm for 2000 models for each of the three data sets,

which are input into the DNN tomography algorithm

described in the previous section, which outputs a 16� 16

predicted model m
pred
16 . The generator is configured to take

the low-resolution mpred
16 image as input and to output a

high-resolution 64� 64 image mG
64 (i.e.

GANGðmpred
16 Þ ¼ mG

64). Here, the generator is a modified U-

net [52] based on fully convolutional layers (see ‘‘Ap-

pendix’’ for network architecture). The discriminator takes

the output of the generator mG
64, as well as the known 64�

64 high-resolution image (mtrue
64 ) that was used to generate

the ToF data, and predicts which image is generated (fake)

and which is part of the training data (real). The accuracy

of the discriminator prediction can then be established.

These competing networks are then trained against each

other; in each iteration of training, the accuracy of the

discriminator is fed into the loss function of the generator

network. The generator seeks to create images mG
64 that

decrease the discriminator accuracy meaning that mG
64

cannot be discriminated from the reference training data

mtrue
64 . Following the training process, the generator can be

used to map from 16� 16 images to 64� 64 resolution

images.

3 Results

3.1 DNN results

Following the training of the fully connected DNN, we

predict material mapsmpred
16 using the three transducer array

configurations shown in Fig. 1 following

mpred
16 ¼ DNN Tm

FMM
� �

; ð3Þ

where Tm
FMM is test data which has not been used in the

network training process. The test data are generated fol-

lowing the same protocol as for the training data, using

smoothed Voronoi models m16 and the AMSFMM algo-

rithm to generate a total of 200 test models and data.

Comparisons of the true models mtrue
16 with the predicted

models mpred
16 using the DNN and with full aperture, pitch-

catch and pulse-echo transducer array configurations are

shown in Fig. 4. We use two metrics for comparing pre-

dicted models with the true models: the mean absolute

error (MAE), which is a scalar value (MAE� 0, where

MAE ¼ 0 describes a perfect prediction), and the structural

similarity index measure (SSIM) [61] (�1� SSIM� 1,

where SSIM ¼ 1 describes a perfect prediction). The SSIM

incorporates the similarity of three independent parame-

ters: image luminescence, contrast and structure (see

‘‘Appendix’’). These values are calculated with orientations

that are scaled to have zero mean and unit variance. Note

that lower values of MAE indicate higher similarity

between the true and predicted models, whereas higher

values of SSIM indicate higher image similarity.

In all cases, the predicted material property maps

resemble the true orientation maps, predicting the magni-

tude and location of areas with similar orientations. The

DNN predictions with a full aperture experimental con-

figuration (Fig. 4b) perform the best (lower MAEs and

higher SSIMs), and predictions made using the pulse-echo

configuration perform the worst (higher MAEs and lower

SSIMs). The histograms of MAE and SSIM values for the

200 test models are shown in Fig. 5a and b. The distribu-

tions of the pixel mean absolute error (averaged for each

pixel across the 200 models) are shown for each transducer

array configuration in Fig. 5c–e, showing that reconstruc-

tion accuracy generally decreases (increasing pixel MAE)

in the central region of the domain and with distance from

the transmitting element transducer array.

So far, the same mathematical model has been used for

both the training data and the test data (a so-called inverse

crime [62]), and this is not a sufficient challenge of the

methodology [35]. We therefore now use a different

mathematical model to test the trained DNN. One further

additional challenge is to generate material maps using a

different method from that used in the training data, so not

originating from Voronoi diagrams. The material maps in

Fig. 6a show a range of structures including a homoge-

neous model, a checkerboard structure, a layered structure

and a single circular anomaly, all of which are significantly

dissimilar from the textures and structures found within the

training data. The FEA method is used to generate ToF

data Tm
FEA using a full aperture transducer array config-

uration, which is then input into the DNN to predict the

grain orientation map mpred
16

mpred
16 ¼ DNNðTm

FEAÞ: ð4Þ

The predicted material maps mpred
16 shown in Fig. 6b

and c show similar results using Tm
FEA and Tm

FEA time of

flight data. In the cases of the homogeneous model and the

single circular anomaly, the results using Tm
FEA are

slightly improved (lower MAE). The similarity of results

between the two data types indicates that the DNN is robust

to changes in different data simulation methods and to the

noise in the FEA data set associated with the identification

of travel times. The presence of this additional noise does

not appear to have a significant effect on the changes in

measured travel time due to anisotropy, and therefore, the
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inversion remains accurate. The accuracy of the predicted

models is lower where the material maps exhibit different

textures to those used in the training data; compare the

MAE and SSIM values in Fig. 6c with those in Fig. 4b.

The higher accuracy of the results in Fig. 4b highlights that

the texture of the target application material for the DNN

tomography algorithm should be included as far as possible

in the training data set.

3.2 GAN results

Three GANs are trained using the layered, 6-seed Voronoi

and 30-seed Voronoi models mtrue
64 , and 200 additional

models per GAN are used for testing, of which 5 are shown

in Figs. 7a, 8a and 9a, respectively. The AMSFMM

method is used to compute travel time data (Tm
FMM) using

a full aperture transducer array configuration, which are

input into the trained DNN (as used for the generation of

DNN predictions in Fig. 4b). The DNN predicted outputs

mpred
16 are shown in Figs. 7b, 8b and 9b and the GAN out-

puts mG
64 in Figs. 7c, 8c and 9c for the layered, 6-seed

Voronoi and 30-seed Voronoi models, respectively. In

order for image comparison with MAE and SSIM, the 16�
16 resolution DNN outputs are upscaled to 64� 64 reso-

lution using nearest neighbour interpolation. Histograms of

the changes in MAE (DMAE ¼ MAEGAN �MAEDNN) and

SSIM (DSSIM ¼ SSIMGAN � SSIMDNN) when using a

GAN to post-process the DNN tomography outputs are

shown in Fig. 10.

For the 5 layer models (Fig. 7), the GAN predictions are

significantly more accurate compared to DNN predictions,

offering large improvements in MAE (decrease up to

DMAE ¼ �0:85) and SSIM (increase up to DSSIM ¼ 0:5).

The GAN successfully learns to generate horizontal (lay-

ered) structures, so very little horizontal variation exists in

the GAN predictions. The reconstructed grain orientation

(a)

(b)

(c)

(d)

Fig. 4 a True material orientation maps mtrue
16 from the test data set

and corresponding predicted models mpred
16 using the DNN tomogra-

phy algorithm for b full aperture, c pitch-catch and d pulse-echo

transducer array configurations. The associated mean absolute errors

(MAEs) and the structural similarity index metrics (SSIMs) between

the predicted and true maps are labelled above each reconstructed

material map
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(a) (b)

(c) (d) (e)

Fig. 5 Histogram of a mean absolute error (MAE) and b structural

similarity index metric (SSIM) for DNN prediction on 200 test

models using different transducer array configurations. Lower values

of MAE and higher values of SSIM suggest a good tomographic

reconstruction. The lower panels show the mean absolute error

(MAE) for each pixel averaged across the 200 test models for c full

aperture, d pitch-catch and e pulse-echo transducer array

configurations

(a)

(b)

(c)

Fig. 6 a True material maps (mtrue
16 ). The predicted models using the AMSFMM trained DNN tomography algorithm with b

mpred
16 ¼ DNNðTm

FMM) and c m16
pred ¼ DNNðTm

FEA)
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maps from the GAN exhibit discontinuous grain bound-

aries and piecewise constant orientations for each layer,

compared to the smooth spatially varying DNN tomogra-

phy outputs (Fig. 7b). The GAN also performs well for the

6-seed Voronoi tessellation models (Fig. 8), where recon-

structed grain orientation maps from the GAN exhibit

discontinuous, piecewise constant orientations for each

grain. The GAN improves MAE and SSIM in all cases;

however, there is slight blurring across some grain

boundaries. The GAN results for the 30-seed Voronoi

tessellation models (Fig. 9) exhibit stronger blurring across

grain boundaries. While the GAN prediction is texturally

more similar to the true models (piecewise constant and

discontinuous regions), the distributions of DMAE and

DSSIM in Fig. 10 show the GAN offers only marginal

improvements in reconstruction accuracy, and in some

cases the accuracy decreases when using the GAN

(DMAE[ 0 and DSSIM\0). The difference between the

6-seed and 30-seed Voronoi models is in the model com-

plexity due to smaller individual grains in the 30-seed

models. In these models, multiple grains can fit into a

single pixel of a low-resolution DNN tomography image,

resulting in a loss of spatial information that the GAN

cannot fully recover. These results show that a GAN can be

used for post-processing tomography results to improve

reconstruction accuracy and image resolution, particularly

when prior information regarding the spatial distribution of

the material map is known (e.g. if the sample is known to

be layered, or similarly well-structured) and the spatial

distribution is simple.

4 Discussion

The framework presented includes several stages: (1) the

generation of training data using the AMSFMM method,

(2) training of the DNN, and (3) training of the GAN.

However, each of these stages only need be performed

once. Thereafter, the DNN and GAN can be used in

effectively real time (\1 s). Here, the time for generating

7500 ToF matrices TFMM
m was approximately 1 h, for

training the DNN was approximately 40 min (until con-

vergence), and for training the GAN was approximately

8 h (using Google Colab GPUs [10]). There are several

alternative algorithms for solving the tomographic inverse

problems, which would require less computing time than

(a)

(b)

(c)

Fig. 7 a True high-resolution (64� 64) grain orientation maps mtrue
64

consisting of 5 horizontal layers, b 16� 16 resolution DNN

tomography output (mpred
16 ) and c 64� 64 GAN output mG

64. For

row b, the MAE and SSIM are calculated on an upscaled image to

64� 64 resolution using nearest neighbour interpolation. Note the

significant improvements in MAE and SSIM using the GAN

methodology and the clear improvements in reconstructing a layered

structure
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for the deep learning training process (e.g. genetic algo-

rithms [24], conjugate gradient least squares algorithms

[46] and the simultaneous iterative reconstruction tech-

nique [57]). These algorithms involve sampling possible

models multiple times (e.g. a family of 20 models for 100

generations using a genetic algorithm as in [24]), and

depending on the speed of the forward model technique,

this process can range from minutes to hours of compute

time. While this may be faster than the DNN training

process, a repeated inversion (as is required for monitoring)

would require the whole process to be restarted, whereas

the DNN approach is real time once trained. It is clear that

when repeated material map reconstructions are desired, as

is the case for NDE monitoring purposes, the deep learning

framework excels in its ability to provide real-time results.

There is therefore also a strong potential to extend the

capabilities of the current framework to include spatio-

temporal modelling by incorporating long short-term

memory (LSTM) networks into the network architecture

[23].

The benefits of real-time inversions come at the expense

of a few limitations that are yet to be overcome in the

current work. Firstly, the DNN is trained with a constant

transducer configuration and on a limited set of training

data, so a trained DNN cannot be generally extended to

changes in relative transducer locations or be used to

reconstruct materials whose properties are not present in

the training data. This is not a problem for many applica-

tions in NDE, as the transducer arrays are rigid and fixed,

and the test sample geometries do not change through time.

However, limited network flexibility may be problematic in

cases where the configuration changes, such as in-process

monitoring of additive manufacturing: during the building

process, the shape of the sample changes therefore the

distribution of transducer elements also changes. One

solution is to train many DNNs for all the possible trans-

ducer configurations throughout the building process;

however, this would require a significantly expensive

training process. Another solution, proposed in [20], is to

train more flexible networks that account for missing data

by augmenting the training data set with additional input

samples taken from additional transducer locations. Travel

times in the ToF matrix can be set to zero to indicate that a

transducer is not used for a particular transducer

(a)

(b)

(c)

Fig. 8 a True high-resolution (64� 64) grain orientation maps mtrue
64

consisting of a Voronoi tessellation with 6 seeds, b 16� 16 resolution

DNN tomography output (mpred
16 ) and c 64� 64 GAN output mG

64. For

row b, the MAE and SSIM are calculated on an upscaled image to

64� 64 resolution using nearest neighbour interpolation. Note the

significant improvements in MAE and SSIM using the GAN

methodology and the clear improvements in reconstructing piecewise

constant structures
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configuration, and then, the trained network can invert

using multiple configurations.

The GAN is also limited in its applicability. This is

highlighted when a trained GAN is used to invert for tex-

tures that are dissimilar to those found in the training data.

This can be seen in Fig. 11, where the GAN trained on the

30-seed Voronoi models is applied to the DNN prediction

of the checkerboard, layered and circular inclusion material

models as well as a 30-seed Voronoi model for reference.

There are significant decreases in SSIM and increases in

MAE when using the GAN on the models with dissimilar

textures to the Voronoi models. This highlights the

importance of the data used to train the network and sug-

gests that the GAN should only be used if prior knowledge

of the material is known and the expected textures are

present in the training data. In the case of NDE, it is

realistic for this prior information to be known (for

example, an NDE operator will know whether the material

of interest is a laminar composite or a welded steel).

However, training a GAN with a much broader training

data set, for example, including all of the layered, 6-seed

and 30-seed Voronoi models in the same training data set,

would allow for more general application of the GAN

where less prior knowledge of the material is known. We

leave this for future work.

Where real-time inversions are not required, more

computationally expensive tomography algorithms can be

implemented. Algorithms such as the reversible-jump

Markov chain Monte Carlo [55] offer more information

including an estimate of the uncertainty of the tomography

results. A place for rapid deep learning-based tomography

still exists within this framework as it can provide a fast,

coarse initial model which can be used a starting point for

more sophisticated algorithms. Additionally, a GAN can be

used in post-processing any tomographic image. Often

linearised image methods are often regularised and hence

predict smoother structures that are expected to exist in the

true medium, and therefore, a GAN can be trained to

upscale resolution and sharpen these images. Even where

the GAN provides marginal improvements to the DNN

(a)

(b)

(c)

Fig. 9 a True high-resolution ð64� 64Þ grain orientation maps mtrue
64

consisting of a Voronoi tessellation with 30 seeds, b 16� 16

resolution DNN tomography output (mpred
16 ) and c 64� 64 GAN

output mG
64. For row b, the MAE and SSIM are calculated on an

upscaled image to 64� 64 resolution using nearest neighbour

interpolation. Note the marginal improvements in MAE and SSIM

using the GAN methodology
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tomography results, the GAN output models exhibit dis-

continuous boundaries. It can be important that such

boundaries are present in tomography algorithms where

entire waveforms are modelled and matched to the recor-

ded waveforms (that is, full waveform inversion [58]).

A GAN might also be extended to take the full waveform

as an input, though this would require expensive FEA

modelling to generate the training data, so that all internal

reflections are modelled.

The purpose of this study is to present a framework and

its capabilities rather than a complete, optimised network.

Therefore, there are several steps that can be taken to

further improve the performance of the DNN and GAN

networks [48]. The networks in this study use simple loss

functions such as MSE and MAE. The Wasserstein (or

Earth-Mover) distance emphasises accurate reconstruction

of the location of spatial information as well as of the

absolute parameter values. A Wasserstein-GAN approach

[6] could yield better reconstruction performance com-

pared to a MAE based GAN and would make for an

interesting future study. Estimating the uncertainty of the

predicted tomographic images, for example, through the

use of mixture density networks [20] or Bayesian neural

networks [34], is an important future step to improve the

current framework, as this would give an indication of

cases where predictions are made on materials that are not

represented in the training data. To reach the capability

where the DNN and GAN tomography framework can be

applied to experimentally acquired data, several assump-

tions need to be overcome. For example, our method

assumes there is no background noise in the acquired data

and no uncertainty in the transducer locations. As these

assumptions may not be valid for experimentally acquired

data, additional noise can be incorporated into the mod-

elled travel time data representing the level of background

noise or the uncertainty in the transducer locations. The

framework should then be tested on acquired data from a

controlled physical experiment, where a ground truth of

material properties is available. Estimating the sensitivity

of the resulting tomographic images to perturbations of the

training hyper-parameters is also important step that should

be taken to improve the current framework

5 Conclusion

We present a deep learning-based framework for the real-

time tomographic reconstruction of spatially varying

crystal orientations in locally anisotropic media using

ultrasonic array time-of-flight data. We train a series of

deep neural networks (DNNs) using 7500 models in a

training data set, to accurately reconstruct orientation maps

using full aperture, pitch-catch and pulse-echo transducer

array configurations. We present the first application of

generative adversarial networks (GANs) on ultrasonic

tomographic data, where a series of GANs are trained with

three sets of training data exhibiting increasing levels of

complexity in the model textures. The GAN takes the low-

resolution DNN output and refines the resolution by a

factor of four. We show that prior information used to

create the training data for both the DNN and the GAN is

important factors in providing accurate estimations of the

orientation maps. The proposed framework is currently

limited in its application to a set of fixed transducer array

configurations and a fixed component shape. This can be

overcome by augmenting the training data to represent a

wider range of configurations. Providing a wider range of

the types of textures in the training data will enhance the

applicability of the GAN. Using the methods presented

unlocks a wide range of potential applications for ultra-

sonic monitoring, allowing for faster and more accurate

(a)

(b)

Fig. 10 Histograms showing the change in a the mean absolute

error (MAE) and b the structural similarity index measure

(SSIM) when using a GAN to post-process 200 low-resolution

DNN tomography outputs (DMAE ¼ MAEGAN �MAEDNN and

DSSIM ¼ SSIMGAN � SSIMDNN)
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detection of flaws and in-process inspection during

manufacturing.

Appendix

Finite element analysis

We implement a finite element simulation of elastic wave

propagation in anisotropic media using OnScale [45]. We

apply absorbing boundary conditions on all sides of the

domain, so energy continues past boundaries with no

reflections. We use Ricker wavelets with central frequen-

cies of 1 MHz as the source-time function and apply

pressure loads following the full aperture transducer array

configuration as shown in Fig. 1d. The values for the finite

element node spacing (Dx;Dy) are selected to ensure spa-

tial stability conditions following Dx;Dy ¼ k
15
, where k is

the shortest wavelength in the domain.

Following the simulation for each transmitting array

element, the travel time to each receiving transducer is

automatically picked by selecting the time for arriving

energy to increase above a threshold. This threshold is

taken to be 2% of the peak displacement in the recorded

signal.

Network architectures

The deep neural networks (DNNs) are trained using 5

layers, where each node receives an input from every node

in the previous layer and a sigmoidal activation function.

The number of nodes in each layer is shown in Table 1 and

other DNN hyperparameters are shown in Table 2.

The GAN generator is a modified U-Net based on [30]

consisting of an encoder–decoder chain. Each block in the

encoder is a convolution-batch normalisation-leaky recti-

fied linear unit (ReLu) activation sequence. Each block in

the decoder is a transposed convolution-batch normalisa-

tion-ReLu sequence with skip connections between mir-

rored layers in the encoder and decoder stacks [52] (as

shown in Fig. 12a). All convolutional layers use a kernel

size of 4. The generator loss is the discriminator sigmoid

(a)

(b)

(c)

Fig. 11 a True high-resolution (64� 64) grain orientation mapsmtrue
64 ,

b 16� 16 resolution DNN tomography output using AMSFMM

generated data (mpred
16 ) and c 64� 64 GAN output mG

64. For row b, the
MAE and SSIM are calculated on an upscaled image to 64� 64

resolution using nearest neighbour interpolation. It can be seen that

the similar MAE and SSIM values result for the Voronoi diagram

arises since this type of texture was used in the training data of the

DNN and GAN. However, the GAN performs significantly worse in

the cases where the material texture is not part of the training data in

columns 2, 3 and 4
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cross-entropy loss of the generated image with an array of

ones combined with the mean absolute error between the

generated and known target image (other GAN hyperpa-

rameters are provided in Table 2).

The GAN discriminator (Fig. 12b) follows a PatchGAN

architecture [30], which divides the image into smaller

30� 30 patches and the discriminator tries to classify each

patch separately. This motivates the GAN to discriminate

high-frequency structure. The discriminator receives the

target and generated images as well as the low-resolution

input. The discriminator loss is the sigmoid cross entropy

loss with the real image and an array of ones, combined

with the sigmoid cross entropy loss with generated image

and an array of zeros.

Structural similarity index measure (SSIM)

We use the SSIM described by [61] for image comparison.

The SSIM is defined as a weighted combination of com-

parisons between image luminance l(X, Y), contrast c(X, Y)

Table 1 Network configurations showing the number of nodes for each layer including the three hidden layers (L1–L3) for the full aperture,

pitch-catch and pulse-echo transducer array configurations

Array configuration No. of inputs nodes L1N L2N L3N No. of trainable parameters

Full Aperture 96 315 63 63 58,591

Pitch-Catch 256 354 55 55 113,911

Pulse-Echo 136 353 68 68 72,511

Table 2 Network hyper-

parameters for the employed

deep neural networks (DNN)

and generative adversarial

networks (GAN)

Hyper-parameter DNN GAN

Optimiser Adam Adam

Learning rate 4� 10�3 2� 10�4

Activation Sigmoid Rectified linear unit (ReLu) and Leaky ReLu

Loss function MSE MAEþ Sigmoid cross-entropy (discriminator accuracy)

Minibatch size 80 5

(a)

(b)

Fig. 12 Network configurations

for a the GAN generator U-net

architecture and b the GAN

discriminator PatchGAN

architecture. All convolutional

layers have a kernel size of 4
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and structure s(X, Y), where X and Y describe an image

window in known and estimated images of size N � N. The

SSIM is therefore

SSIMðX; YÞ ¼ ½lðX; YÞ	a � ½cðX; YÞ	b � ½sðX; YÞ	c ð5Þ

where a, b and c are the weighting parameters. We use

a ¼ b ¼ c ¼ 1. Luminance, contrast and structure are

calculated as

lðX; YÞ ¼ 2lXlY þ C1

l2X þ l2Y þ C1

; ð6Þ

cðX; YÞ ¼ 2rXrY þ C2

r2X þ r2Y þ C2

; ð7Þ

sðX; YÞ ¼ rXY þ C3

rXrY þ C3

ð8Þ

where l and r are the mean and variance of the windows X

or Y and rXY is the covariance of X and Y. This is computed

over a sliding Gaussian window of 9� 9.
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