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Many modelling studies of wave scattering require repeated numerical simulations through 
models with properties that differ only in a small sub-domain. Hence, it is of interest 
to recompute the wavefields that account for wave propagation through the whole 
domain, using simulations that are performed only in the sub-domain. Immersive boundary 
conditions (IBCs) can be used to establish such a local wavefield modelling scheme 
which enables accurate wavefield recomputation, including all interactions between the 
locally-perturbed medium and the full domain. We develop IBC theory for elastic wave 
propagation, in which the boundary conditions are updated dynamically at each time 
step of a simulation in the local domain. These updates are calculated by wavefield 
extrapolation based on the Kirchhoff-Helmholtz integrals using Green’s functions in the 
background medium. Wavefield recording and injection in IBCs can be implemented either 
using finite-difference (FD) injection methods, or using the method of multiple point 
sources (MPS). The latter method is significantly less computationally demanding in terms 
of both memory and number of calculations. We therefore both extend acoustic FD 
injection methods to elastic media, and propose a new second-order accurate MPS method 
to implement elastic IBCs, which is numerically exact. In higher-order FD modelling, the 
MPS method is not numerically exact but still produces highly accurate IBC wavefields 
when compared to global-domain simulations.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many numerical studies such as full waveform inversion (FWI) [e.g., 12,55,67] and the design of wave-based imaging 
and monitoring surveys [e.g., 36,49,52] require wave simulations for a suite of closely related models. In these applications, 
model changes may be restricted to small sub-domains within the global model, in which case it is not computationally at-
tractive to perform the simulations on the full model to recompute seismic responses after those changes. Recomputing the 
full wavefield while performing only local wavefield simulations on a sub-domain that encloses the model alterations would 
significantly reduce the required computational resources, so this has been an active area of research in exploration geo-
physics and seismology [e.g., 1,22,28,42]. Local-domain modelling can also be applied for investigating a target of interest 
inside a sub-volume of a medium, for example, in nondestructive testing where damage zones are commonly highly lo-
calised [e.g., fracture corridors, see Refs. 41,71,73], in medical acoustics where modelling targets are often local organs such 
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Fig. 1. (Colour online) Schematic plot of immersive boundary conditions (IBCs). The dashed red rectangle (Semt ) represents the boundary of a local domain, 
while the dashed blue rectangle represents the recording surface Srec . The black star denotes a source that generates wave energy in an IBC simulation. 
Arrows 1 to 3 show paths of wave propagation explicitly in the sub-domain and implicitly outside. Black arrows denote the pre-computed Green’s functions 
connecting receivers on Srec and sources on Semt .

as a beating artery or liver fat [e.g., 25,44,54], and in modelling of electromagnetic waves such as for ground-penetrating 
radar (GPR) which are often used to detect a local target in the Earth’s subsurface [3,21,26]. Particularly for imaging and 
inversion in all of these fields [e.g., 5,10,19,32,40,68], local-domain simulations may be useful to save computational cost 
compared to simulating full models.

The conventional approach for such local wavefield recomputation involves a simulation on the full model during which 
the wavefield quantities are recorded around a user-defined surface. Then in a second simulation the modelled material 
properties may be altered within that surface and the recorded wavefield quantities are injected around the surface; this 
reproduces the local wavefield only inside that enclosed sub-domain, which can then be extrapolated to the rest of the 
domain using a variety of techniques [e.g., 33,47]. However, this strategy cannot correctly compute so-called higher-order 
long-range interactions between the local and exterior domains due to the local model alterations.

van Manen et al. [31] and Vasmel et al. [64] propose so-called immersive boundary conditions (IBCs) that allow the 
local wavefield to be recomputed by simulating only the sub-domain, while maintaining full interaction with the rest of 
the medium. They implemented IBC-based local-domain modelling for acoustic or scalar media, and these IBCs have since 
been applied to acoustic full waveform inversion [e.g., 11,72] and localised tomography [e.g., 35]. In this paper, we further 
develop IBC theory to allow full wavefield simulations to be obtained from local wavefield modelling in elastic media.

Any IBC simulation is performed in a local modelling domain in which two surfaces exist as shown in Fig. 1: an outer 
emitting boundary Semt with sources enclosing the simulated local domain, and an inner recording surface Srec spanned 
by receivers. In IBC simulations, the emitting boundary Semt absorbs outgoing waves (ray path 1 in Fig. 1) and generates 
the ingoing waves that correspond to the interaction between the local and global domains (ray path 3). This interaction is 
controlled by sources on Semt whose signatures are calculated by means of Kirchhoff-Helmholtz integrals that extrapolate 
wavefields measured on Srec to Semt . The wavefield extrapolation relies on pre-computed Green’s functions, generated in 
the full, unperturbed model before carrying out the IBC simulation. In IBC simulations, the Kirchhoff-Helmholtz integrals are 
evaluated at every time step to update the boundary condition on Semt : waves propagating in the global domain (ray path 
2 in Fig. 1) are therefore not explicitly modelled, but are included implicitly in the boundary conditions. In the general IBC 
methodology introduced above, the emitting boundary Semt , as shown in Fig. 1, is a transparent boundary on which source 
injection takes place. A common practice, as used in acoustic IBCs, involves setting up a numerical reflecting boundary 
condition (i.e., a free surface1 or rigid boundary2) on Semt when carrying out an IBC simulation inside Semt [e.g., 9,64]. 

1 I.e., the surface where normal tractions are kept zero.
2 I.e., the surface where normal particle displacement or velocity is kept zero.
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This practice allows to further save computational and memory storage cost in acoustic local-domain simulations [e.g., 
63], and is useful for simulating IBC-based physical laboratory experiments such as immersive wave experimentation that 
allows the immersion of a physical experiment into an arbitrary numerical environment [6,7,27,59]. However in elastic IBCs 
used for local-domain modelling, we focus only on the transmitting boundary condition case for Semt (i.e., a non-reflecting, 
transparent boundary) since the current implementations of elastic free surfaces and rigid boundaries are not as accurate as 
their acoustic counterparts in finite-difference (FD) modelling [24,38,39,46].

Important ingredients for implementing immersive wavefield modelling are the wavefield recording and injection meth-
ods used to carry out source injection on the emitting boundary Semt , and the wavefield extrapolation required to implement 
IBCs. The accuracy of local-domain modelling involves comparing a locally-computed wavefield and a counterpart global-
domain simulation; ideally the two wavefields that are computed locally and globally should exactly match each other 
with a numerical difference as low as machine calculations allow. For elastic wavefield recording and injection, Mittet [37]
proposed a method of multiple point sources (MPS) for FD modelling involving staggered stress and particle acceleration 
grids. Koene and Robertsson [23] and Aaker et al. [1] further extend this MPS method for the widely-used velocity-stress FD 
scheme [65]. However, while MPS can be used to implement IBCs accurately to machine precision in acoustic media [e.g., 
63], existing methods such as the MPS method introduced by Mittet [37], do not produce locally-computed wavefields that 
are numerically exact.

In this paper, we propose a new method to implement wavefield recording and injection using MPS in elastic IBCs 
for velocity-stress FD modelling. We demonstrate that elastic IBCs can be implemented using this method with machine-
precision accuracy for second-order (in both time and space) FD modelling, and that high accuracy is maintained in a 
higher-order (in space) FD scheme. We also implement elastic IBCs with FD injection - a different technique for wavefield 
recording and injection that is accurate to machine precision [e.g., 47]. However, using MPS for IBCs saves a significant 
amount of computational power and memory compared to using FD injection, especially in higher-order FD modelling, and 
for multi-component wavefields such as those simulated in elastic media.

In Section 2, we introduce elastic IBC theory and present the new method of MPS to implement the theory for IBC 
simulations. In Section 3, we show numerical examples of IBCs. In Section 4, we discuss (a) the accuracy of MPS, (b) the 
computational and memory storage cost of IBC simulations and (c) the possibility of collocating recording and emitting 
surfaces in IBCs. Section 5 summarises our conclusions.

2. Method

2.1. Elastic immersive boundary conditions

Elastic wavefield propagation in a solid medium can be described by the stress tensor τi j(x, t) and particle velocity 
vi(x, t) governed by the equation of motion [65]:

ρ(x)
∂vi(x, t)

∂t
= ∂τi j(x, t)

∂x j
+ f i(x, t) (1)

where t is time, x represents a Cartesian coordinate, ρ(x) is mass density, and f i(x, t) denotes a distribution of body force 
(density) sources. Einstein’s summation applies to repeated subscripts in this paper. The stress-strain relation is:

∂τi j(x, t)

∂t
= ci jkl(x)

∂vl(x, t)

∂xk
+ ci jkl(x)hkl(x, t) (2)

where ci jkl is a fourth-rank stiffness tensor, and hkl denotes a distribution of deformation rate (density) sources. An elastic 
representation theorem can be derived from Equations (1) and (2) (see Appendix A), and the surface integral of the derived 
theorem provides the effect of the immersive boundary condition:

v IBC
n (x, t) =

˛

Semt

(
τi j(xemt, t) ∗ G v, f

n,i (x, t |xemt,0) − vi(xemt, t) ∗ G v,h
n,i j(x, t |xemt,0)

)
n j dS(xemt) (3)

This provides the basis for implementing sources on the emitting boundary or surface Semt (Fig. 1). In Equation (3), v IBC
n (x, t)

is the particle velocity wavefield due to sources on Semt , n j is the outward-pointing normal vector component of Semt , the 
symbol ∗ denotes temporal convolution, the Green’s function G v, f

n,i (x, t | xemt , 0) represents the particle velocity wavefield 
(superscript v) in the direction xn (subscript n) recorded at the location x due to an impulsive point source of body force 
(superscript f ) in the xi direction (subscript i) at xemt , and G v,h

n,i j(x, t | xemt, 0) represents the particle velocity wavefield due 
to an impulsive point source of deformation rate (superscript h). The Green’s functions G in Equation (3) are associated with 
the medium in the local domain of an IBC simulation; they are not recorded but act as the so-called propagators which 
propagate wavefields from the domain boundary Semt into the local domain [43].

The right side of Equation (3) can be interpreted as an active boundary condition, with densely-spaced sources on the 
emitting surface Semt enclosing a local domain (Fig. 1). The convolution term τi j n j ∗ G v, f is interpreted as the effect inside 
n,i

3



X. Li, E. Koene, D.-J. van Manen et al. Journal of Computational Physics 451 (2022) 110826
the local domain due to body force sources f i (on Semt ) with normal tractions τi j n j as the corresponding source signatures, 
and vi ∗ G v,h

n,i j n j is interpreted as the effect inside the local domain due to normal deformation rate sources hij n j (on 
Semt ) with particle velocities vi as the corresponding source signatures. In this scenario, the source terms f i and hij (with 
subscript kl ↔ i j) in Equations (1) and (2) become:

f i(x, t) =
˛

Semt

δ(x − xemt)τi j(xemt, t)n j dS(xemt) + f ′
i (x, t) (4)

and

hij(x, t) =
˛

Semt

δ(x − xemt)vi(xemt, t)n j dS(xemt) + h′
i j(x, t) (5)

where δ(·) denotes the Dirac distribution, and f ′
i and h′

i j denote other sources not on Semt (e.g., the black star in Fig. 1). 
Other examples of interpreting the surface integrals in representation theorems as boundary conditions can be found in 
Mittet [37] and Aki and Richards [2].

In Equations (4) and (5), both the stresses τi j(xemt, t) and particle velocities vi(xemt , t) are wavefield quantities that in 
theory should be obtained at the location of the emitting surface Semt in the simulation on the full model including the 
medium perturbations in the sub-domain. Hence these quantities cannot be obtained directly on Semt in an IBC simulation 
on a local domain [31]. Instead, τi j(xemt, t) and vi(xemt , t) can be obtained through wavefield extrapolation, using the fol-
lowing Kirchhoff-Helmholtz integrals based on the wavefields measured on a recording surface Srec placed inside the local 
domain (see Fig. 1):

vi(xemt, t) =
˛

Srec

( − τkl(xrec, t) ∗ �
v, f
i,k (xemt, t |xrec,0) − vk(xrec, t) ∗ �

v,h
i,kl (xemt, t |xrec,0)

)
ml dS(xrec) (6)

and

τi j(xemt, t) =
˛

Srec

( − τkl(xrec, t) ∗ �
τ, f
i j,k (xemt, t |xrec,0) − vk(xrec, t) ∗ �

τ,h
i j,kl(xemt, t |xrec,0)

)
ml dS(xrec) (7)

where ml is the normal vector component of Srec , and the Green’s functions � pertain to a global domain with an arbitrary 
structure inside Srec . Derivations of the Kirchhoff-Helmholtz extrapolation integrals are given in Appendix B. Wavefield 
extrapolation using Kirchhoff-Helmholtz integrals allow medium properties (associated with �) inside Srec to be changed 
arbitrarily in local-domain simulations since the (perturbed) medium inside Srec is irrelevant to the derivation of Kirchhoff-
Helmholtz integrals (see Appendix B). This property allows IBCs to correctly recompute the wavefield in a local domain as 
long as the regions of change are located inside a region enclosed by the recording surface Srec [9], and the local and global 
models have identical material properties between Srec and Semt . In IBCs, the sources f ′

i and h′
i j [in Equations (4) and (5)] 

can also be placed outside of Semt but cannot be placed between Srec and Semt [see Ref. 9].

2.2. Velocity-stress finite-difference modelling

In this paper, we carry out immersive wavefield modelling using the velocity-stress finite-difference (FD) method which 
was proposed by Virieux [65] to simulate elastic wave propagation based on Equations (1) and (2) for a linear isotropic 
lossless medium (i.e., for elastodynamics). This FD method involves the velocity-stress staggered grid shown in Fig. 2(a), and 
the accuracy of the method can be simply denoted as O(2, 2L) for second-order accuracy in time and (2L)th-order accuracy 
in space. For an isotropic medium, the stiffness tensor ci jkl in Equation (2) can be replaced by Lamé parameters λ and μ via

ci jkl(x) = λ(x)δi jδkl + μ(x)(δikδ jl + δ jkδil)

where δ is Kronecker delta. The Lamé parameters λ and μ are related to compressional and shear wave velocities V p and 
V s via

V p(x) =
√

λ(x) + 2μ(x)

ρ(x)

and

V s(x) =
√

μ(x)

ρ(x)
4
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Fig. 2. (Colour online) (a) Staggered velocity-stress grids for FD simulations. The solid line denotes the main FD grid in Cartesian coordinate x, z, with grid 
sizes �x and �z. (b) The densely-spaced sources (blue dots) on the emitting surface Semt (solid red line) and densely-spaced receivers or measurement 
points (red dots) on the recording surface Srec (solid blue line).

2.3. Wavefield recording and injection methods

Since elastic wavefields are simulated using a staggered-grid FD method, recording and injecting a wavefield on a single 
layer or surface (e.g., for implementing Semt and Srec shown in Fig. 1) is challenging due to the staggered nature of FD 
quantities. Hence, special attention must be paid to wavefield recording and injection schemes for implementing local-
domain simulations using IBCs. Hence, we propose a method of multiple point sources (MPS) which is designed for the 2D 
staggered-grid FD modelling method (with coordinates x, z); the extension to a 3D scheme should be straightforward.

2.3.1. MPS wavefield recording
In a 2D IBC simulation, the particle velocities vk(xrec, t) for Equations (6) and (7) are obtained on the recording surface 

Srec at each FD time step of the simulation. The recording surface Srec coincides with the main FD grid that runs through FD 
quantities τxx and τzz , as shown in Figs. 2(a) and (b), and the receivers or measurement points share the same locations with 
the nodes of τxx and τzz on Srec . Note that obtaining all wavefield quantities exactly at the locations of these measurement 
points is desired, but in staggered-grid FD modelling, the values of measured FD wavefield quantities may need to be 
obtained from neighbouring staggered grids on which FD quantities are actually located.

The recording surface Srec is composed of vertical (V) and horizontal (H) line segments with different unit normal vectors 
mV = (±1, 0) and mH = (0, ±1) (±1 for pointing to positive or negative direction along x or z axis). A recording of vx(xrec)

depends on whether the measurement point at xrec = (i�x, j�z) [writing (i, j) as shortened notation in this paper] is 
located at a vertical line [i.e., m(xrec) = mV with m as the normal of Srec ] or a horizontal line [i.e., m(xrec) = mH]:

vx(xrec) =
⎧⎨
⎩

L∑
l=1

αl[vx(i + 1/2 − l, j, t) + vx(i − 1/2 + l, j, t)] for m(xrec) = mV

vx(i + 1/2, j, t) for m(xrec) = mH
(8)

where the overbar symbol ¯ denotes the computed value of a wavefield quantity (i.e., vx) at a measurement point xrec =
(i, j), and αl are the interpolation coefficients with the (spatial) order of accuracy 2L [14], which should be consistent with 
the FD scheme used [63]. Recording vz(xrec) follows similarly:

vz(xrec) =
⎧⎨
⎩

vz(i, j + 1/2, t) for m(xrec) = mV

L∑
l=1

αl[vz(i, j + 1/2 − l, t) + vz(i, j − 1/2 + l, t)] for m(xrec) = mH (9)

In order to record normal tractions τkl(xrec) ml in Equations (6) and (7), τ xx and τ zz can be obtained directly at the 
locations of the measurement points that are coinciding with the nodes of τxx and τzz [see Fig. 2(b)]. For τ xz (where 
τxz = τzx), the recording scheme reads
5



X. Li, E. Koene, D.-J. van Manen et al. Journal of Computational Physics 451 (2022) 110826
τ xz(xrec) =

⎧⎪⎪⎨
⎪⎪⎩

L∑
l=1

αl[τxz(i + 1/2 − l, j + 1/2), t) + τxz(i − 1/2 + l, j + 1/2, t)] for m(xrec) = mV

L∑
l=1

αl[τxz(i + 1/2, j + 1/2 − l, t) + τxz(i + 1/2, j − 1/2 + l, t)] for m(xrec) = mH
(10)

Fig. 3 shows an example of the MPS recording scheme for O(2, 2) FD modelling with second-order accuracy in both time 
and space. The recording schemes shown in Fig. 3 correspond to the cases where a measurement point is located at either 
the vertical line or the horizontal line around the upper left corner of the recording surface Srec , and the situation for the 
other two lines (of Srec) follows the same principle. The wavefield recording at sharp corners where normal direction(s) of 
Srec [e.g., ml in Equations (6) and (7)] cannot be defined will be discussed in Section 2.3.3. Another example of this MPS 
recording scheme for higher-order FD modelling [O(2, 4) with fourth-order accuracy in space] is shown in Appendix C.

Note that our MPS scheme as presented calculates recordings at a single, common measurement point xrec on Srec for all
IBC-related FD wavefield quantities that are located on either the main or staggered FD grids. This is only for the purpose 
of concise notation. While wavefield quantities vx and vz should be recorded exactly on Srec , the true array of receivers 
on Srec are not represented by the grid locations of vx and vz exactly. In other words, the discretized, integer locations of 
the measurement points [i.e., (i, j)] can be different from the locations of actual MPS recording points. For example, the 
measurement point xrec = (i, j) on the left side of Equation (8) does not share the same location with the corresponding 
actual recording point, indicated on the right side of Equation (8). For the measurement involving more than one wavefield 
quantity [e.g., the two solid black symbols in Fig. 3(a, left)], the MPS recording point is defined to be at the middle of the 
two wavefield quantities involved and should be located exactly on the same level of Srec [63]. Also, we choose receivers or 
measurement points on Srec to coincide with the nodes of τxx and τzz [see Fig. 2(b)] such that their values can be obtained 
directly at the locations of the measurement points, but other choices may also be feasible. Our MPS method is not limited 
by the placement of a recording surface Srec coinciding with the main FD grid, and Srec can also run through staggered vx , 
vz , and τxz grids, with the MPS wavefield recording scheme slightly modified according to a different staggered nature of 
FD quantities. A similar idea applies to MPS wavefield injection presented in the next section.

2.3.2. MPS wavefield injection
In IBC simulations on a local domain, wavefield injection by MPS applies to the implementation of the emitting surface 

Semt (see Fig. 1). Here, we show only the source injection scheme, i.e., how δ(x − xemt) in Equations (4) and (5) is actually
implemented for various types of sources in elastic FD modelling over the space-discrete and time-invariant grids. For the 
source signatures, i.e., wavefield quantities to be injected onto the FD grids, we refer to Equations (4) and (5) for the terms 
multiplied by δ(·) functions.

In IBCs implemented with MPS, the emitting surface Semt is placed so as to be coinciding with the main FD grid that 
runs through the nodes of normal stresses τxx and τzz , and sources are densely distributed on Semt as shown in Fig. 2(b). 
The implementations of these sources on Semt [with unit normal vectors nV = (±1, 0) and nH = (0, ±1)] depend on whether 
xemt = (i, j) is at the vertical lines [n(xemt) = nV with n as the normal of Semt ] or horizontal lines [n(xemt) = nH] of Semt . 
The sources fx are implemented as:

δ̃ fx(x − xemt) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L∑
l=1

αl[δ(x − x−l) + δ(x − xl)]
where x−l = (i + 1/2 − l, j) and xl = (i − 1/2 + l, j) for n(xemt) = nV

δ(x − x0)

where x0 = (i + 1/2, j) for n(xemt) = nH

(11)

where δ̃ fx represents the FD approximation to the theoretically-required source fx [see Equation (4)] in the subscript at 
xemt = (i, j), and the symbol ˜ denotes source injection that cannot be done directly in the FD grid (i, j) but can be done at 
neighbouring FD nodes (e.g., x±l and x0). Similarly, the sources f z are implemented as

δ̃ f z (x − xemt) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ(x − x0)

where x0 = (i, j + 1/2) for n(xemt) = nV

L∑
l=1

αl[δ(x − x−l) + δ(x − xl)]
where x−l = (i, j + 1/2 − l) and xl = (i, j − 1/2 + l) for n(xemt) = nH

(12)

The deformation rate sources hxx and hzz can be directly implemented as source injection on the FD nodes τxx and τzz , 
respectively. The deformation rate sources hxz and hzx (hxz �= hzx) are implemented as:
6
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Fig. 3. (Colour online) MPS wavefield recording in the O(2, 2) FD scheme (second-order accuracy in both time and space). (a) Recording of vx for a 
measurement point (red dot) located on a vertical part (left plot) or a horizontal part (right plot) of Srec . The solid black symbols denote the quantities 
involved for calculating actual recording in the staggered FD grid. The equations are associated with the two plots and are the same as Equation (8)
with L = 1; ‘V-line’ denotes the case where the measurement point at (i�x, j�z) is on a vertical part of Srec and ‘H-line’ denotes the case where the 
measurement point is on a horizontal part. The time variable t is omitted from the equations. (b) Similarly for recording vz following Equation (9). (c) 
Similarly for recording τxz following Equation (10).

δ̃hxz (x − xemt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for n(xemt) = nV

L∑
l=1

αl[δ(x − x−l) + δ(x − xl)]
where x−l = (i + 1/2, j + 1/2 − l) and xl = (i + 1/2, j − 1/2 + l) for n(xemt) = nH

(13)

and
7
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Fig. 4. (Colour online) MPS wavefield injection in the O(2, 2) FD scheme. Each panel contains two plots for implementing a source (blue dot) located on a 
vertical part (left plot) and a horizontal part (right plot) of Semt ; the solid black symbols denote the corresponding actual wavefield injection on one or 
multiple FD nodes. The equations in each panel are associated with the two plots. (a) The source injection scheme for fx . The equations are the same as 
in Equation (11) with L = 1, ‘V-line’ denotes the case where the source is located on a vertical part of Semt and ‘H-line’ denotes the case where the source 
is located on a horizontal part. (b) The source injection scheme for f z , following Equation (12). (c) The source injection schemes for hxz and hzx , following 
Equations (13) and (14), respectively.

δ̃hzx(x − xemt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L∑
l=1

αl[δ(x − x−l) + δ(x − xl)]
where x−l = (i + 1/2 − l, j + 1/2) and xl = (i − 1/2 + l, j + 1/2) for n(xemt) = nV

0 for n(xemt) = nH

(14)

Note that the actual implementations of hxz and hzx both involve source injection on the FD node τxz [consider ci jkl in 
Equation (2)]. Fig. 4 shows examples of implementing individual sources using MPS wavefield injection for the O(2, 2) FD 
scheme with second-order accuracy in both time and space. Another example of MPS in O(2, 4) FD modelling (with fourth-
order accuracy in space) is presented in Appendix C.
8
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Fig. 5. (Colour online) MPS wavefield recording in the O(2, 2) FD scheme at corners. The two dashed blue squares denote the two FD-injection surfaces 
associated with the MPS recording surface Srec (solid blue square). The red dots denote (only) the locations of measurement points at the four corners. 
The solid black symbols and thick solid black lines denote relevant, stored wavefield quantities for calculating recordings at corners, while the thick dashed 
black lines point to wavefield quantities that are excluded in actual recording at corners but would have been used in recording if the measurement point 
(red dot) is located on the planar surface with which the measurement point is associated. (a) Recording of vx at the corners for the measurement points 
on vertical parts of Srec [compared to Fig. 3(a, left) in which a measurement point is on a planar vertical segment of Srec but not at a corner position]. (b) 
Recording of vz for the measurement points on horizontal parts of Srec [compared to Fig. 3(b, right)]. (c) Recording of τxz for the measurement points on 
vertical parts of Srec [compared to Fig. 3(c, left)]. (d) Recording of τxz for the measurement points on horizontal parts of Srec [compared to Fig. 3(c, right)]. 
Otherwise, key as in Fig. 3.

2.3.3. MPS at corners
A subtle but critical point in MPS is the wavefield recording and injection at (sharp) corners of closed (rectangular) 

surfaces (i.e., Srec and Semt ). MPS is limited by the fact that normal directions (i.e., m for Srec and n for Semt ) at corners 
cannot be defined. A conventional approach for (2D) MPS at corners is to use a simple weighting factor 1/2 for each of 
the vertical and horizontal parts of an MPS surface (i.e., Srec or Semt ) that converge at the corners, for both wavefield 
recording on Srec and source injection on Semt [1,9]. Despite the fact that this approach is successful in acoustic IBCs and 
provides machine-precision accuracy [64], when applied to elastic IBCs, it results in errors at corners in locally-recomputed 
wavefields, which subsequently leak into the rest of the local domain.

Here, we propose another solution that relies on linking MPS to FD injection: a wavefield recording and injection method 
with guaranteed machine-precision accuracy (but at a high computational cost, discussed in Section 2.3.5). In O(2, 2) FD 
modelling, our MPS method (the examples shown in Figs. 3 and 4) with a user-defined MPS surface (i.e., Srec or Semt ) 
coinciding with FD grids can be considered as a superposition of two neighbouring FD-injection surfaces that lie in-between 
FD grid quantities [58]. Hence, we can follow the wavefield recording and injection schemes at corners in Thomsen et al. [58]
to complement our MPS method in O(2, 2) FD modelling. The details of linking MPS to FD injection is beyond the scope 
of this paper and can be found in Thomsen et al. [57]. Here, we focus only on MPS wavefield recording and injection at 
corners.

Fig. 5 shows MPS wavefield recording in O(2, 2) FD modelling at the four corners of a recording surface Srec . Note that 
each corner of the closed rectangular recording surface Srec is sampled twice, by one measurement point on a vertical 
segment of Srec and another that is on a horizontal segment. In other words, the two measurement points at the same 
corner locations are associated with the two line segments of Srec that converge at this corner, respectively. The two FD-
injection surfaces shown in Fig. 5 act as auxiliary surfaces to determine wavefield recording at a corner compared to the 
recording on the same planar surface on which the measurement point (at the corner) is located or with which the point 
is associated. The principles of wavefield recording at corners are:
9
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• For MPS recordings that are calculated from a wavefield quantity at a single node [e.g., the single solid black symbols 
in Figs. 3(a, right), (b, left)], the recording at a corner is the same as the recording on the planar surface on which the 
measurement point is located.

• Otherwise at a corner, two associated quantities [e.g., the two solid black symbols in Fig. 3(a, left)] are stored [for further 
use in calculations such as those in Equation (8)] during an FD simulation (at each time step) as if the measurement 
point is located on the planar surface with which it is associated (but not located at a corner position). Wavefield 
recording at corners depends on (1) whether the stored quantity that is located outside Srec is also located outside the 
outer FD-injection surface and (2) whether the other stored quantity that is located inside Srec is also located inside the 
inner FD-injection surface. If (1) and (2) are both true [e.g., Fig. 5(c), upper left and right corners], both stored quantities 
are kept in order to calculate the final recording using the same MPS scheme presented in Section 2.3.1. If (1) is true 
but (2) is false [e.g., Fig. 5(a)], only the stored quantity in (1) is kept (or scaled by one) while the quantity in (2) is set 
to zero (or scaled by zero) in the MPS recording scheme. The case that (2) is true and (1) is false does not exist in the 
geometry shown in Fig. 5.

• When both stored quantities are outside of the outer FD-injection surface [e.g., Fig. 5(c), lower left and right corners], 
the two quantities are both set to zero.

Note that in Fig. 5, the thick solid and dashed lines are used only to show the relevant and irrelevant FD wavefield quantities 
associated with wavefield recordings at corners, following the principles listed above. Normal stresses τxx and τzz can be ob-
tained directly at the locations of the measurement points at corners, and hence Fig. 5 does not include this straightforward 
recording.

Following the same principles as for MPS wavefield recording, the system used for MPS injection at corners of Semt is 
depicted in Fig. 6. Similar to MPS recording, two co-located sources are assigned for each corner formed by the convergence 
of a horizontal and a vertical line segment of Semt . Note that for hzx sources in the geometry shown [Fig. 6(c)], wavefield 
injection at the lower two corners does not happen (or equivalently, a zero value is injected onto FD grids). A similar 
situation occurs in the implementations of hxz sources at the right two corners [Fig. 6(d)]. The principles of using two FD-
injection surfaces to determine wavefield recording and injection at corners can be extended to higher-order FD modelling, 
as presented in Appendix C.

2.3.4. Pre-computing the Green’s functions for the Kirchhoff-Helmholtz extrapolation integrals
The Green’s functions needed in the Kirchhoff-Helmholtz extrapolation integrals [i.e., Equations (6) and (7)] are computed 

using time-domain FD simulations on a full model, using the same FD scheme that is used in the IBC simulation over the 
local domain. In these FD simulations on the full model, sources are placed at locations on the recording surface Srec while 
the recordings are made at locations on the emitting surface Semt . Note that in theory Green’s functions involve impulsive 
point sources, i.e., a δ distribution in both time and space. In FD modelling with time- and space-discretised representations 
of wavefield quantities, wavefield injection for point sources on Srec is implemented using the MPS method. For an impulsive 
source, wavefield injection only occurs at time t = 0 or the first time step (�t) with the injected value 1/(�x�z�t). 
Wavefield recording (i.e., impulse responses) on Semt is also implemented with MPS. Evaluations of the Kirchhoff-Helmholtz 
integrals for the wavefield extrapolation in IBCs are carried out in the time-discrete forms presented in Appendix B.

2.3.5. IBCs implemented with FD injection
If computational resources allow, local wavefield modelling based on IBCs can also be implemented directly using FD 

injection with guaranteed machine-precision accuracy [30,34]. This implementation is entirely different from treating MPS 
as two FD injections, as presented in Section 2.3.3 and is, in general, applicable to higher-order FD modelling and any other 
wave equations. However, using FD injection to implement IBCs costs significantly more computational and memory storage 
resources than using MPS. The general (acoustic) algorithm of using FD injection for immersive wavefield modelling can be 
found in van Manen et al. [30], and in this paper, we extend the algorithm to elastic wave equations and implement elastic 
IBCs.

FD injection is a general two-step wavefield recording and injection method for any wave equation that is linear for the 
principle of superposition and for any spatial gradient operator (e.g., FD stencils) that is compact in space. For the elastic 
wave equations shown as Equations (1) and (2) and the 2D velocity-stress FD scheme introduced by Virieux [65], wavefield 
recording and injection based on FD injection are summarised in the following. We refer to Robertsson and Chapman [47]
for more details.

• During an initial FD simulation, we focus on update wavefield quantities whose FD stencils cross a user-defined bound-
ary, i.e., an FD-injection surface (e.g., inner or outer dashed blue square in Fig. 5) that lies in-between FD gridpoints. For 
an update quantity that is located inside of the FD-injection surface, the wavefield quantity(s) on the part of the stencil 
outside the FD-injection surface should be recorded. For an update quantity that is located outside of the FD injection 
surface, stencil quantity(s) inside the FD-injection surface should be recorded.

• Subsequently in a second simulation, wavefield injections are carried out at the locations of the updated wavefield 
quantities whose FD stencils cross an FD-injection surface (i.e., for those gridpoints for which quantities were recorded 
in the first step). For an update quantity that is located inside of the FD-injection surface, the injected value is calculated 
10
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Fig. 6. (Colour online) MPS wavefield injection in the O(2, 2) FD scheme at corners. The two dashed red squares denote the two FD-injection surfaces 
associated with the MPS injection surface Semt (solid red square). The blue dots denote the sources placed at the four corners of Semt . The solid black 
symbols and thick solid black lines denote actual wavefield injection for sources (blue dots) at corners, while the thick dashed black lines point to wavefield 
injection that does not actually happen but should be carried out if the source is located on the planar surface with which the source is associated. (a) 
fx source injection at the corners that are associated with the vertical parts of Semt [compared to Fig. 4(a, left) in which a source is on a planar vertical 
segment of Semt but not at a corner position]. (b) f z source injection at the corners on horizontal parts of Semt [compared to Fig. 4(b, right)]. (c) hzx source 
injection at the corners on vertical parts of Semt [compared to Fig. 4(c, left)]. (d) hxz source injection at the corners on horizontal parts of Semt [compared 
to Fig. 4(c, right)]. Otherwise, key as in Fig. 4.

from the recorded wavefields at the FD gridpoints that are on the FD stencil (for the update quantity) outside the FD-
injection surface. The calculation follows the FD update such that the FD stencil is corrected for the wavefield inside 
of the injection surface to appear from outside. For an update quantity that is outside of the FD-injection surface, the 
injected value is calculated from wavefields at the FD gridpoints inside the FD-injection surface.

Wavefield extrapolation can also be implemented using FD injection, as illustrated in van Manen et al. [30]. In an IBC 
simulation implemented with FD injection, both the emitting surface Semt and the recording surface Srec lie in-between 
FD grid quantities; this differs from the setup of Semt and Srec in the method of MPS where they coincide exactly with 
grid lines, as shown in Fig. 2(b). For wavefield extrapolation, wavefield recordings are made at each FD gridpoint whose FD 
stencil crosses Srec (i.e., an FD-injection surface). The recording for each gridpoint is calculated from the wavefield quantities 
that are on the stencil but on the opposite side of Srec , and the calculation follows the same wavefield injection scheme 
as in FD injection introduced above. Also, one needs to (pre-)compute FD Green’s functions that connect each FD-injection-
related gridpoint around Srec and each gridpoint around Semt [for the definition of FD Green’s functions, see Ref. 30]. The 
wavefield injection around Semt is carried out using FD injection with injected values calculated from extrapolated wavefield 
quantities. Note that compared to MPS, wavefield recording and injection in FD injection do not depend on a surface normal 
vector; instead, they depend on locations of sources/receivers inside or outside of an FD injection surface.

In IBCs implemented by FD injection, the sources on Semt and receivers or measurement points on Srec are distributed 
across multiple layers, depending on the length of FD stencil used in numerical simulations; this is different from the 
single-layer sources and measurement points used in the IBC simulations implemented with MPS. Hence, implementing 
IBCs with FD injection takes more computational power and memory than those implemented with MPS, due to more 
sources and measurement points (receivers) used and more pre-computed Green’s functions that connect these sources and 
measurement points in the FD-injection-based IBCs [see Ref. 30, and more discussion in Section 4]. Hence, for applications 
that do not necessarily require machine-precision accuracy or in the simulations of IBC-based physical experiments where 
the number of physical sources and receivers must be kept to a minimum [6,8,66], MPS may be preferable over FD injection 
due to considerations of cost.
11
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Fig. 7. (Colour online) (a) Two-dimensional full model for IBCs with background density ρ0 (white region), and with scatterers of density 6ρ0 (green). The 
blue and red squares represent the recording surface Srec and emitting surface Semt , respectively. The black star shows a local source that generates wave 
energy for both the reference simulation on the full model and the IBC simulation in the sub-domain (inside Semt ). The black triangle denotes a local 
receiver. (b) Local domain (inside Semt ) where an IBC simulation is carried out.

Table 1
Numerical values of the model parameters used.

Parameter Definition Value

cp compressional wave velocity 5450 m/s
cs shear wave velocity 3200 m/s
ρ0 background density 2000 kg/m3

lx length of model 2 m
lz width of model 2 m
f p peak frequency of Ricker wavelet 10 kHz
tmax time length of simulation 1.5 ms
�t time step 8.8073 ×10−7 s
�x finite-difference grid size in x direction 0.016 m ( 1

20 cs/ f p)
�z finite-difference grid size in z direction 0.016 m ( 1

20 cs/ f p)

3. Numerical examples

Fig. 7 shows a 2D model for IBCs with homogeneous compressional and shear velocities cp and cs and heterogeneities of 
density 6ρ0 where ρ0 is the background density across the rest of the domain. In Table 1, we summarise the model and FD 
simulation parameters. IBC simulations are performed only in the local domain [Fig. 7(b)], truncated by the emitting surface 
Semt from the full model [Fig. 7(a)]. An explosive deformation rate source is placed inside the local domain, and the source 
signature corresponds to a Ricker wavelet with peak frequency f p =10 kHz [69]. For the reference simulation performed on 
the full model, perfectly matched layers (PMLs) [48] are implemented to absorb the wavefield propagating outside of the 
model.

The Green’s functions used for wavefield extrapolation [i.e., Equations (6) and (7)] in IBCs are computed using time-
domain FD simulations on the full model shown in Fig. 7, except that the domain inside the recording surface Srec was 
taken to be homogeneous. For IBC simulations carried out after computing these Green’s functions, the scatterers inside the 
recording surface Srec in Fig. 7 can therefore be treated as medium perturbations (from a homogeneous local model), which 
are not included in the pre-computed Green’s functions used for wavefield extrapolation. In theory, IBCs allow the scatterers 
inside Srec to be changed arbitrarily for local wavefield (re)computation such that all higher-order long-range interactions 
between local and global domains are correctly computed.

IBCs can be implemented with an accuracy of machine precision (compared to global-domain simulations) using FD 
injection since wavefield recording and injection based on FD injection relies on the linearity of FD operators and hence 
naturally is as accurate as machine precision allows [30,34]. The second column of Fig. 8 shows the IBC simulation imple-
mented using FD injection on the model shown in Fig. 7, together with the reference simulation (first column) on the full 
model shown in Fig. 7. Here, we use the FD modelling scheme with second-order accuracy in both time and space [i.e., 
O(2, 2)]. In the third column of Fig. 8, we show that the locally-computed wavefield is exact to machine-precision accuracy 
with the error at a relative order of magnitude of 10−12. However as we have mentioned above and will discuss further 
in Section 4, the computational cost of using FD injection for IBCs may become a major bottleneck since the number of 
sources and measurement points (receivers) involved on emitting and recording surfaces increases with the spatial order of 
12
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Fig. 8. (Colour online) Snapshots of the IBC simulations implemented with FD injection and MPS in O(2, 2) FD modelling. The first column shows the 
reference FD wavefield τxx at different times, and the black star represents the local source shown in Fig. 7. The second column shows the IBC simulation 
implemented with FD injection, and the fourth column shows the IBC simulation implemented with MPS. The third and fifth columns show the difference 
in the local domain between the IBC (second and fourth columns) and reference (first column) simulations, exaggerated by a factor of 1012 (1E12).

FD modelling. Due to this limitation, we do not implement numerical examples of IBCs using FD injection for higher-order 
FD modelling.

The fourth column of Fig. 8 shows the IBC simulation implemented using the MPS method on the model shown in Fig. 7. 
Here we still implement IBCs in O(2, 2) FD modelling. The local wavefield simulated in the sub-domain exactly matches 
the reference wavefield simulated on the global model, and the error is as low as machine calculations allow (see the fifth 
column of Fig. 8). Hence in O(2, 2) FD modelling, both MPS and FD injection can be used to implement elastic IBCs to 
machine-precision.

Fig. 9 shows the O(2, 4) IBC simulation (with fourth-order FD accuracy in space) implemented using MPS on the model 
shown in Fig. 7. In this IBC simulation, the sub-domain enclosed by the emitting surface Semt is simulated with extra 
PMLs deployed outside of Semt such that any outward-propagating wavefield that is not perfectly cancelled at Semt (e.g., at 
corners) can be further attenuated outside Semt . In Fig. 9, we show some error that originates around the corners of the 
emitting surface Semt (second row of Fig. 9) and propagates into the whole sub-domain. This corner-related error is small, 
and the difference between the IBC and reference wavefields is exaggerated by a factor of 1000 to be visible. In Fig. 10, 
we further compare the recorded signals at the local receiver (i.e., the black triangle in Fig. 9) in both wavefields and show 
that the error of recomputing wavefields in a local domain is negligible in this higher-order FD modelling scheme [i.e., 
O(2, 4)]. We also found that using the new paradigm of wavefield recording and injection at corners improves the accuracy 
of higher-order FD-based IBC implementations by one order of magnitude compared to using the conventional approach, 
i.e., the factor 1/2 described in Section 2.3.3 (this less accurate IBC simulation is not shown).

Our observation from the IBC simulation suggests that the corners may be responsible for all of the inaccuracy. To further 
explore the (potential) origin(s) of the observed error, we use a fully homogeneous IBC model shown in Fig. 11. The values 
of the model parameters in Table 1 are used except for lx = 6 m. In this case, the immersive boundary condition (IBC) 
applied on the emitting surface Semt becomes an absorbing boundary condition [15,18,61], and all outgoing waves (i.e., ray 
path 1 in Fig. 1), ideally, should be perfectly cancelled at Semt .

Fig. 12 shows the IBC simulation corresponding to the model shown in Fig. 11, with the O(2, 4) FD scheme. The error of 
(re)-computing wavefields locally in this MPS-based IBC simulation is mainly caused by the corners, while some artefacts 
exist along the two horizontal line segments of the emitting surface Semt . These artefacts move horizontally and are referred 
to as ‘halo’ artefacts in Vasmel and Robertsson [63], which are caused by the long FD stencil updating (with 2L ≥ 4) across 
the emitting surface Semt together with the MPS wavefield injection on Semt . These halo artefacts do not exist in the IBC 
simulations implemented with FD injection.
13



X. Li, E. Koene, D.-J. van Manen et al. Journal of Computational Physics 451 (2022) 110826
Fig. 9. (Colour online) Snapshots of the IBC simulation implemented with MPS in O(2, 4) FD modelling. Key for the first and second columns as in Fig. 8, and 
the black triangle denotes the local receiver shown in Fig. 7. The third and fourth columns show the difference between the reference and IBC simulations 
exaggerated by a factor of 100 and 1000, respectively.

Fig. 10. (Colour online) Recorded traces at the local receiver (i.e., the black triangle in Fig. 9) in the reference O(2, 4) FD simulation and IBC simulation 
implemented with MPS.

4. Discussion

Linking an MPS method to FD injection helps to eliminate the limitation in conventional MPS at corners where a sur-
face normal vector cannot be defined. This is due to the fact that FD injection does not involve the concept of a surface 
normal at all for wavefield recording and injection [47]. However in higher-order FD modelling, this strategy of linking MPS 
to FD injection does not generalise in a straightforward manner. In this paper, we simply extend O(2, 2) MPS at corners 
to a higher-order scheme [i.e., O(2, 4)] without expecting machine-precision accuracy in the implementations of IBCs. This 
new scheme used specifically at corners improves accuracy over the scheme that simply uses the factor of 1/2 to weight 
contributions on each of the converging surface edges as was proposed by Vasmel and Robertsson [63] for acoustic MPS. 
Whether a better MPS scheme might be possible for machine-precision accuracy in higher-order FD modelling remains an 
open issue.
14
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Fig. 11. (Colour online) Homogeneous IBC model. Key as in Fig. 7.

Fig. 12. (Colour online) Snapshots of the O(2, 4) IBC simulation implemented with MPS on the model shown in Fig. 11. Key as in Fig. 8.

When using IBCs for local-domain modelling, the computationally single most expensive operation is the wavefield ex-
trapolation, in which the pre-computed Green’s functions also occupy a large amount of memory. IBCs are non-local in both 
time and space, requiring significant overhead of computational and memory storage resources [9,30]. The computational 
cost of the wavefield extrapolation is estimated with O(nemt × nrec × N3

t ) where nemt represents the number of sources at 
an emitting surface Semt , nrec represents the number of measurement points (receivers) at a recording surface Srec , and Nt

represents total time steps of numerical simulations. The memory storage cost is estimated with O(nemt × nrec × Nt). These 
cost estimates apply to both IBCs implemented with MPS and FD injection, but IBCs with FD injection is even more expen-
sive than IBCs with MPS, especially in higher-order FD modelling. This is because in IBCs with FD injection, the number of 
sources on Semt and measurement points (receivers) on Srec linearly increases with the length of FD stencil or the spatial 
order of FD modelling, i.e., nemt ∝ L and nrec ∝ L; in contrast, in IBCs with MPS, the number of sources and receivers does 
not change with the length of FD stencil. Hence, the computational saving of using MPS over FD injection in IBCs would be 
O(L2). For example, the modelling runs of Robertsson et al. [45] (in which FD injection is deployed to perform wavefield 
separation) used a fourth-order accurate FD scheme. In this scenario for IBCs, we estimate that the saving would amount 
to a factor ∼16 in terms of memory and calculations, which is extremely significant for simulations which may already 
approach the limits of available computational power. The savings would be far larger for higher-order FD schemes, such 
as in the modelling runs of Vasmel and Robertsson [63] (MPS for local wavefield reconstruction) where a twelfth-order FD 
scheme is used (so the saving is of a factor ∼144).

Our IBCs, in practice, require the separation of a recording surface Srec and an emitting surface Semt in space (see Fig. 1). 
In FD modelling, the number of gridpoint(s) between Srec and Semt should be larger than or equal to the length of the 
FD stencil (2L) [see also Ref. 30]. An intriguing question therefore still remains: can Srec and Semt be collocated in IBCs? 
We note that IBCs are closely related to the exact non-reflecting boundary conditions, in which Semt encloses all scatterers 
in the entire model and source injection on Semt cancels all outgoing waves, providing absorbing boundary conditions for 
numerical simulations [e.g., 15–17,50,61]. Among those works, Teng [56] explored a case where a recording surface coincides 
with an emitting surface; this involves solving a boundary integral equation (BIE) in conjunction with the wave equation. 
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Although collocating recording and emitting surfaces has been done by Teng [56] for absorbing boundary problems (i.e., 
homogeneous global model), Schuster [51] proposes a self-interaction operator which is built from a set of BIEs for a single 
volume scatterer placed in a global domain. For IBCs, one possible research route is to build a similar set of BIEs when 
collocating the recording and emitting surface; this results in a system that can be solved using a pure BIE method [29]. 
Collocating recording and emitting surfaces in IBCs will require a practical numerical means of avoiding the singularities 
in pre-computed Green’s functions that occur from any point to itself in wavefield extrapolation. One potential solution 
is to consider the approach in Halliday and Curtis [20] and Vasconcelos et al. [62] where source and receiver arrays are 
collocated, in which one makes use of the fact that these singularities are only relevant for the direct wave between a point 
and itself, which need not be extrapolated in IBCs. The further development of IBCs with collocated recording and emitting 
surfaces could also be useful for the development of elastic immersive experimentation in a physical laboratory [e.g., see 
Ref. 59]. We leave this development for future research.

5. Conclusion

We introduced immersive boundary condition (IBC) theory for elastic local wavefield (re)computation that includes all 
higher-order long-range interactions between the simulated local domain and global domain. Using IBCs allows local-domain 
modelling with arbitrary medium perturbations inside the recording surface (of the local domain), and this important fea-
ture is provided by the active boundary condition around the local domain, which is updated by means of calculating the 
Kirchhoff-Helmholtz extrapolation integrals at each time step of an IBC simulation.

We proposed a new method of multiple point sources (MPS) for implementing elastic IBCs in a 2D velocity-stress finite-
difference (FD) framework. The MPS method used in an O(2, 2) FD scheme (with second-order accuracy in both time and 
space) is linked to FD injection such that wavefield recording and injection at sharp corners of closed (rectangular) surfaces 
can be perfectly exact, instead of using a conventional approach that is simply using the factor 1/2 to weight contributions 
on each of the converging surface edges. Such a paradigm at corners can also be extended to a higher-order FD modelling 
scheme [e.g., O(2, 4) herein for second-order accuracy in time and fourth-order accuracy in space].

Examples of IBC simulations implemented in O(2, 2) FD modelling show that the proposed MPS scheme produces locally-
computed wavefields that are accurate to within machine precision compared to global-domain simulations. In higher-order 
FD modelling, the MPS scheme is still highly accurate, with a remaining error that is two orders of magnitude smaller than 
the simulated wavefield. This error when simulating a local wavefield is mainly caused by the corners of closed surfaces 
used in the MPS recording and injection schemes. In higher-order FD modelling, the use of MPS also leads to halo artefacts 
that move along the planar surfaces of emitting surfaces. In O(2, 2) FD modelling, we also implemented elastic IBCs using 
FD injection, which naturally outputs numerically exact locally-computed wavefields. However, IBCs with FD injection in 
higher-order FD modelling is intractable due to a significantly increased cost.

We anticipate that the IBC theory and numerical implementations developed in this paper will have further applications 
in the fields of exploration geophysics (e.g., simulations of wave-based imaging and monitoring surveys), global seismology 
(e.g., full waveform inversion), nondestructive testing (e.g., imaging localised damaged zone), and medical acoustics related 
to imaging and inversion in which local-domain modelling can save significant computational cost.
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Appendix A. Deriving the elastic representation theorem

We consider elastic wave propagation in two states, A and B, which are described by two sets of wave equations of the 
form as in Equations (1) and (2), as shown in Fig. A.13. Since an impulsive point source exists in state B, the wavefields 
τ B

i j (x, t) and v B
i (x, t) become Green’s tensors:

τ B
i j (x, t)

�= Gτ , f
i j,n (x, t |xb,0) (A.1)

and

v B
i (x, t)

�= G v, f
i,n (x, t |xb,0) (A.2)

as the impulse responses of the medium associated with state B. We then consider the interaction quantity
16
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Fig. A.13. (Colour online) Elastic states A and B used to derive the representation theorem. The volume V is enclosed by the surface S with normal vector 
n. In state A, body force source(s) exists inside V . In state B, an impulsive body force source in the xn direction is placed in V .

∂ j(τ
A

i j ∗ v B
i − τ B

i j ∗ v A
i )

where ∂ j is short for the first-order spatial gradient operator ∂/∂x j . This interaction quantity is integrated over the volume 
V shown in Fig. A.13, and applied with the divergence theorem of Gauss:

˚

V

∂ j(τ
A

i j ∗ v B
i − τ B

i j ∗ v A
i )dV =

˛

S

(τ A
i j ∗ v B

i − τ B
i j ∗ v A

i )n j dS (A.3)

to convert the volume integral into a surface integral [4]. The terms inside of the volume integral on the left side of 
Equation (A.3) are substituted together with the wave equations and source conditions presented in Fig. A.13, and using 
Equations (A.1) and (A.2) and the definitions of medium properties in states A and B (also presented in Fig. A.13) simplifies 
Equation (A.3) to

v A
n (xb, t) =

ˆ
G v, f

i,n (x, t |xb,0) ∗ f A
i (x, t)dV (x)+

˛

S

(
τ A

i j (x, t) ∗ G v, f
i,n (x, t |xb,0) − v A

i (x, t) ∗ Gτ , f
i j,n (x, t |xb,0)

)
n j dS(x)

(A.4)

where n j is the normal vector component of S enclosing V in Fig. A.13.
We apply elastic source-receiver reciprocity [53,70]:

G v, f
i,n (x, t |xb,0) = G v, f

n,i (xb, t |x,0)

and

Gτ , f
i j,n (x, t |xb,0) = G v,h

n,i j(xb, t |x,0)

to Equation (A.4), which then becomes
17
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v A
n (xb, t) =

ˆ
G v, f

n,i (xb, t |x,0) ∗ f A
i (x)dV (x)+

˛

S

(
τ A

i j (x, t) ∗ G v, f
n,i (xb, t |x,0) − v A

i (x, t) ∗ G v,h
n,i j(xb, t |x,0)

)
n j dS(x)

(A.5)

as the representation theorem of the convolution type. For IBCs, one can consider the volume V in Fig. A.13 as a sub-domain 
enclosed by an emitting surface Semt , as shown in Fig. 1. The representation theorem can then be recast as:

vn(x, t) =
ˆ

G v, f
n,i (x, t |xs,0) ∗ f i(xs)dV (xs)+

˛

Semt

(
τi j(xemt, t) ∗ G v, f

n,i (x, t |xemt,0) − vi(xemt, t) ∗ G v,h
n,i j(x, t |xemt,0)

)
n j dS(xemt)

(A.6)

where xs is the location(s) of the source(s) inside Semt , and the surface integral on the right-hand side provides the effect 
of the immersive boundary condition, i.e., Equation (3).

Appendix B. Deriving the elastic Kirchhoff-Helmholtz extrapolation integrals

We define an infinite, unbounded domain with a source that occupies a source domain Dsrc enclosed by a surface ∂ Dsrc , 
as shown in Fig. B.14. The exterior of Dsrc is the volume D ′

src enclosed by a circular surface S� . Here, we apply the A-B-state 
analysis based on Equations (1) and (2) (similar to the analysis in Appendix A). The interaction quantity ∂ j(τ

A
i j ∗ v B

i −τ B
i j ∗ v A

i )

is integrated over the volume D ′
src to relate the wavefield quantities in states A and B, defined in Table B.2. The divergence 

theorem of Gauss is applied to convert the volume integral into the surface integral over the two surfaces, i.e., the exterior 
surface S� and the interior boundary ∂ Dsrc . In view of the causality condition [Ref. 13, equation 5.9] for the surface integral 
over S� , we have˛

S�

(τ A
i j ∗ v B

i − τ B
i j ∗ v A

i )s j dS(x) = Order(�−1) as � → +∞ (B.1)

where s j is the normal vector component of S� . Equation (B.1) shows that the surface integral over S� vanishes as long as 
the domain D ′

src is infinitely large or for sufficiently large radius �, the volume outside S� has constant material properties, 
and S� satisfies a Sommerfeld radiation condition. Hence, only the surface integral over the interior boundary ∂ Dsrc remains 
in the A-B-state analysis, which gives

v A
k (xb, t) =

˛

∂ Dsrc

( − τ A
i j (x, t) ∗ �

v, f
i,k (x, t |xb,0) + v A

i (x, t) ∗ �
τ, f
i j,k (x, t |xb,0)

)
m j dS (B.2)

where m j is the outward-pointing normal vector component of ∂ Dsrc , and the Green’s functions � are associated with 
state B where the medium in the domain Dsrc has not been defined yet. Similar to Fokkema and van den Berg [13], we 
change the expressions of the Green’s functions in Equation (B.2) using source-receiver reciprocity: {�v, f

i,k , �τ, f
i j,k }(x, t | xb, 0) =

{�v, f
k,i , −�

v,h
k,i j}(xb, t | x, 0). Hence, the elastic Kirchhoff-Helmholtz extrapolation integral reads

v A
k (xb, t) =

˛

∂ Dsrc

( − τ A
i j (x, t) ∗ �

v, f
k,i (xb, t |x,0) − v A

i (x, t) ∗ �
v,h
k,i j(xb, t |x,0)

)
m j dS (B.3)

The source field in state B, as defined in Table B.2, can be redefined as f B
i (x) = 0 and hB

kl(x) = δ(t)δ(x − xb)δkiδl j . In this 
case, the wavefields associated with state B become Green’s tensors {�v,h

k,i j, �
τ,h
kl,i j}(x, t | xb, 0). We re-carry out the A-B-state 

analysis and obtain the Kirchhoff-Helmholtz integral extrapolating for a stress wavefield:

τ A
i j (xb, t) =

˛

∂ Dsrc

( − τ A
kl (x, t) ∗ �

τ, f
i j,k (xb, t |x,0) − v A

k (x, t) ∗ �
τ,h
i j,kl(xb, t |x,0)

)
ml dS (B.4)

The medium property of state B in the volume Dsrc can be arbitrarily different from the counterpart in state A since in 
theory, domain Dsrc is not required to be defined to derive Equations (B.3) and (B.4). This implies that computation of the 
Green’s functions does not require knowledge of the medium perturbations inside the recording surface in the simulated 
sub-domain(s) [9,60], and hence in IBCs, sub-domain simulations always include all higher-order long-range interactions 
when local medium perturbations take place inside of the recording surface. Note that the derived Kirchhoff-Helmholtz 
integrals work only for outward wavefield extrapolation. In the case where the extrapolated point xb is located inside the 
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Fig. B.14. (Colour online) Schematic used to derive the Kirchhoff-Helmholtz extrapolation integrals. The vector m denotes the (outward-pointing) normal to 
the surface ∂Dsrc . The domain D ′

src is enclosed by the exterior circular boundary S� with radius �, and the point O is the centre of the circle.

Table B.2
Source fields and medium properties of states A and B for deriving the Kirchhoff-Helmholtz extrapolation inte-
grals.

State A: Actual medium State B: Green’s state

Wavefields v A
i (x), τ A

i j (x) v B
i (x) = �

v, f
i,k (x, t |xb,0), τ B

i j (x) = �
τ, f
i j,k (x, t |xb,0)

Sources
f A

i (x, t) = 0 f B
i (x, t) = δ(t)δ(x − xb)δik

hA
kl(x, t) = 0 hB

kl(x, t) = 0

Medium c A
i jkl(x) = cB

i jkl(x),ρ A(x) = ρB (x) for x ∈ D ′
src

source domain Dsrc , the left sides of Equation (B.3) and (B.4) will become zero, which is known as the Oseen’s extinction 
theorem [see Ref. 13].

For IBC simulations, Equations (B.3) and (B.4) are related to Equations (6) and (7) by setting the surface Dsrc as the 
recording surface Srec in Fig. 1 and the extrapolation point on the emitting surface xb = xemt .

In IBC simulations implemented with MPS, the evaluations of Equations (6) and (7) are carried out at each FD time step. 
Following the same principle used to calculate an acoustic Kirchhoff-Helmholtz extrapolation integral [31], we discretize the 
temporal convolution in Equations (6) and (7), which give

v̂ i(xemt, l,n) = v̂ i(xemt, l,n − 1) +˛

Srec

( − τ̂kl(xrec,n)�̂
v, f
i,k (xemt, l − n |xrec,0)

−v̂k(xrec,n)�̂
v,h
i,kl (xemt, l − n |xrec,0)

)
ml dS(xrec) (B.5)

and

τ̂i j(xemt, l,n) = τ̂i j(xemt, l,n − 1) +˛

Srec

( − τ̂kl(xrec,n)�̂
τ , f
i j,k (xemt, l − n |xrec,0)

−v̂k(xrec,n)�̂
τ ,h
i j,kl(xemt, l − n |xrec,0)

)
ml dS(xrec) (B.6)

where the hat symbol ˆ is used to denote time-discretized quantities. Discrete time indices l and n correspond to t in 
Equations (6) and (7) and a time step that is iterated from 1 until l (for l > n) such that the extrapolated wavefields are 
recursively calculated. This recursive calculation can be implemented as a matrix-vector multiplication [see Ref. 9].

Appendix C. MPS in higher-order finite-difference modelling

In this appendix, we present the MPS wavefield recording and injection methods in higher-order FD modelling [i.e., 
O(2, 4) for second-order accuracy in time and fourth-order accuracy in space], complementing the O(2, 2) scheme presented 
in Sections 2.3.1, 2.3.2, and 2.3.3.
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Fig. C.15. (Colour online) MPS wavefield recording in the O(2, 4) FD scheme (fourth-order accuracy in space). Key as in Fig. 3.

Fig. C.15 shows MPS wavefield recording along planar surfaces (of Srec ) in O(2, 4) FD modelling. The interpolation co-
efficients αl are α1 = 9/16 and α2 = −1/16. Fig. C.16 shows MPS injection along planar surfaces (of Semt ) in O(2, 4) FD 
modelling.

Fig. C.17 shows MPS wavefield recording at corners in O(2, 4) FD modelling. We follow similar principles as in the O(2, 2) 
paradigm (Fig. 5). For recording calculated only from a single node of wavefield quantity [i.e., the single solid black symbols 
in Figs. C.15(a, right), (b, left)], the recording at a corner is the same as the recording on the planar line segment of Srec . 
Otherwise the wavefield quantities (potentially) involved are first stored as if the measurement point at a corner is located 
on its associated planar surface, and then these stored wavefield quantities are divided into two sets, depending on whether 
these quantities are located inside or outside of Srec . One then checks (1) whether the set of stored quantities that are 
20



Fig. C.16. (Colour online) MPS wavefield injection in the O(2, 4) FD scheme. Key as in Fig. 4.

located outside Srec is also located outside the outer FD-injection surface and (2) whether the other set of stored quantities 
that are located inside Srec is also located inside the inner FD-injection surface. If (1) and (2) are both true [e.g., Fig. C.17(c), 
upper left corner], both sets of stored quantities are kept for calculating the recording, following the scheme presented in 
Section 2.3.1 (with L = 2). If (1) is true but (2) is false [e.g., Fig. C.17(a)], only the set of stored quantities in (1) is kept for 
recording while the quantities in (2) are all set to zero for the wavefield measurement on Srec (i.e., Equations (8), (9), and 
(10) in Section 2.3.1). When both sets of stored quantities are outside the outer FD-injection surface [e.g., Fig. C.17(c), lower 
left and right corners], all quantities are set to zero.

Fig. C.18 shows MPS wavefield injection at corners in O(2, 4) FD modelling, following the same principles as for MPS 
wavefield recording. Following the same idea here, our MPS method can be applied to other higher-order (in space) FD 
modelling schemes.
X. Li, E. Koene, D.-J. van Manen et al. Journal of Computational Physics 451 (2022) 110826
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Fig. C.17. (Colour online) MPS wavefield recording in the O(2, 4) FD scheme at corners. Key as in Fig. 5. (a) Recording of vx [compared to Fig. C.15(a, left)]. 
(b) Recording of vz [compared to Fig. C.15(b, right)]. (c) Recording of τxz [compared to Fig. C.15(c, left)]. The recording at the upper right corner is the same 
as that at the upper left corner but not marked in the graph for visualisation purposes only (i.e., avoiding confusion on the solid black markers associated 
with the upper left corner). The recordings at the two lower corners are set to zero. (d) Recording of τxz [compared to Fig. C.15(c, right)]. The recording at 
the lower left corner is the same as that at the upper left corner (not marked). The recordings at the two right corners are set to zero.

Fig. C.18. (Colour online) MPS wavefield injection in the O(2, 4) FD scheme at corners. Key as in Fig. 6. (a) fx source injection [compared to Fig. C.16(a, left)]. 
(b) f z source injection [compared to Fig. C.16(b, right)]. (c) hzx source injection [compared to Fig. C.16(c, left)]. Source injection at the upper right corner is 
the same as that at the upper left corner (not marked). The sources (of the type hzx) at the lower two corners do not give any wavefield injection onto the 
FD grids. (d) hxz source injection [compared to Fig. C.16(c, right)]. Source injection at the lower left corner is the same as that at the upper left corner (not 
marked). The sources (of type hxz) at the right two corners do not give any wavefield injection.
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