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Bayesian full-waveform inversion with realistic priors

Xin Zhang' and Andrew Curtis’

ABSTRACT

Seismic full-waveform inversion (FWI) uses full seismic
records to estimate the subsurface velocity structure. This
requires a highly nonlinear and nonunique inverse problem
to be solved; therefore, Bayesian methods have been used to
quantify uncertainties in the solution. Variational Bayesian
inference uses optimization to efficiently provide solutions.
However, previously the method has only been applied to a
transmission FWI problem and with strong prior information
imposed on the velocity such as is never available in prac-
tice. We have found that the method works well in a seismic
reflection setting and with realistically weak prior informa-
tion, representing the type of problem that occurs in reality.
We conclude that the method can produce high-resolution
images and reliable uncertainties using data from standard
reflection seismic acquisition geometry, realistic nonlinear-
ity, and practically achievable prior information.

INTRODUCTION

Seismic full-waveform inversion (FWI) produces high-resolution
subsurface images directly from seismic waveforms (Tarantola,
1984). FWI is traditionally solved by minimizing the difference be-
tween predicted and observed seismograms. In such methods, a good
starting model is often required because of multimodality of the mis-
fit functions caused by the nonlinearity of the problem. Also, those
methods cannot provide accurate estimates of uncertainties, which
are required to better understand and interpret the resulting images.

Monte Carlo sampling methods provide a general way to solve
nonlinear inverse problems and quantify uncertainties, and they
have been applied to solve FWI problems (Ray et al., 2016; Zhao
and Sen, 2019; Gebraad et al., 2020; Guo et al., 2020). However,
Monte Carlo methods are usually computationally expensive and all
Markov chain Monte Carlo (MCMC)-based methods are difficult to

fully parallelize. For example, MCMC methods usually require a
large number of samples, but they cannot be parallelized across
successive samples, which restricts their real-time computational
efficiency. In practice, they also can be difficult to tune (Gebraad
et al., 2020).

Variational inference provides an efficient, fully parallelizable al-
ternative methodology. This class of methods optimizes an approxi-
mation to a probability distribution describing inverted parameter
uncertainties (Blei et al., 2017). The method can be parallelized at
the sample level, is easy to tune by using adaptive gradient-descent
methods (Duchi et al., 2011), and can take advantage of stochastic
optimization techniques, which cannot be applied within MCMC
methods. Variational inference has been applied to petrophysical in-
version (Nawaz and Curtis, 2018), traveltime tomography (Zhang and
Curtis, 2020a), and more recently to FWI (Zhang and Curtis, 2020b).
In the latter study, strong constraints were imposed on the velocity
structure to limit the space of possible models; unfortunately, such
strong constraints are almost never available in practice. In addition,
the method has only been applied to wavefield transmission problems
in which seismic data are recorded on a receiver array that lies above
the structure to be imaged, given known double-couple (earthquake-
like) sources located underneath the same structure. The transmission
FWI problem is less nonlinear than reflection FWI problems, and, in
practice, knowledge of such sources is never definitive because it usu-
ally depends circularly on the unknown structure itself. Thus, the
method has not been demonstrated in a problem with real-world
acquisition geometries, nonlinearities, and realistic prior information.
In this study, we therefore apply variational inference to solve FWI
problems with more practically realistic prior probabilities and using
seismic reflection data as would be acquired from active near-surface
sources, which represents a realistic problem.

In the next section, we briefly summarize the goals of variational
inference and the specific method of the Stein variational gradient
descent (SVGD). Then, we demonstrate the method by solving an
acoustic reflection FWI problem using the Marmousi model with
practically reasonable prior information. To further explore the
method, we perform multiple inversions using data from different
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frequency ranges, and we demonstrate that the method produces
high-resolution velocity models and uncertainties.

METHODS
SVGD

Bayesian inference solves inverse problems by finding the prob-
ability distribution function (PDF) of model m given prior informa-
tion and observed data d,,. This is called a posterior PDF written as
p(m|d,). By Bayes’ theorem,

p(dobs |m)p(m)

, 1
p (dobs) ( )

p(m‘dobs) =

where p(m) is the prior PDF which characterizes the probability
distribution of model m prior to the inversion, p(d,|/m) is the like-
lihood that represents the probability of observing data d,, given
model m, and p(d,y,) is a normalization factor called the evidence.

Variational inference solves Bayesian inference problems using
optimization. The method seeks an optimal approximation to the
posterior PDF within a predefined family of PDFs. This is achieved
by minimizing the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) between the approximating PDF and the posterior
PDF. Variational inference has been shown to be an efficient alter-
native to Monte Carlo sampling methods for a range of geophysical
applications (Nawaz and Curtis, 2018; Zhang and Curtis, 2020a,
2020b).

SVGD is one such algorithm that iteratively updates a set of mod-
els, called particles {m'} generated from an initial distribution ¢(m)
using a smooth transform:

T(m') = m' + egp(m’), 2

where m' is the ith particle, ¢p(m’) is a smooth vector function rep-
resenting the perturbation direction, and e is the magnitude of the
perturbation. Define g as the PDF of ¢ after transforming by 7. The
gradients of the KL-divergence between gr and the posterior PDF
p(m|dy) with respect to € are found to be (Liu and Wang, 2016)

VeKL{g7||plle—o = —Eq[trace(A,p(m))],  (3)

where A, is the Stein operator defined as
App(m) = Vi log p(mldops)p(m)" + Vyup(m). (4
The optimal ¢ that maximizes the right expectation is found to be
¢*(m) & By gy [Apk(m’, m)], )

where k(m’, m) is a kernel function. This is the direction of steepest
descent in KL divergence; therefore, the KL divergence can be
minimized by iteratively stepping a small distance in that direction.
The expectation Ep .,y is calculated using the set of particles
{m'}, and then ¢*(m) is used to update each particle using equa-
tion 2. This process is iterated to equilibrium, at which point the
particles are optimally distributed according to the posterior PDE.
The kernel function ensures that all pairs of particles interact, which
helps the method to jump out of local optima: A particle in a local

optimum can be driven out by other particles that are not in that
local optimum.

In SVGD, the choice of kernel can affect the efficiency of the
method. Instead of the commonly used scalar radial-basis kernel, in
this study we apply a matrix-valued kernel to improve efficiency:

1
k(m’,m) = Q! exp(—ﬁ|m—m’||é>, (6)

T

where Q is a positive definite matrix, |jm —m’[[g = (m —m’)
Q(m —m’), and £ is a scaling parameter. Wang et al. (2019) show
that by setting Q to be the Hessian matrix, the method converges
faster than with a scalar kernel. However, the Hessian matrix is usu-
ally expensive to compute. One alternative is to use the covariance
matrix calculated from the particles, but the full covariance matrix
may occupy large memory and is difficult to estimate from a
relatively small number of samples (Ledoit and Wolf, 2004). We
therefore use a diagonal covariance matrix: Q™! = diag(var(m)),
where var(m) is the variance estimated from the particles. For those
parameters with higher variance, this choice applies higher weights
to the posterior gradients to induce larger perturbations, and it also
enables interactions with more distant particles.

Variational FWI

We apply SVGD to solve an acoustic FWI problem. The constant
density wave equation is solved using a time-domain finite-differ-
ence method. Gradients of the likelihood function with respect to
velocity are calculated using the adjoint method (Plessix, 2006). For
the likelihood function, we assume Gaussian data errors with a
diagonal covariance matrix:

P(dops[m) o< exp HZ (@) 2} NG

i L

where i is the index of time samples and o; is the standard deviation
of each data point.

RESULTS

We apply the preceding method to a 2D acoustic FWI to recover
part of the scaled Marmousi model (Martin et al., 2006) from wave-
form data (Figure 1). The model is discretized in space using a regu-
lar 200 X 120 grid. Sources are located at a depth of 20 m in the
water layer. In total, 200 equally spaced receivers are located at a
depth of 360 m across the horizontal extent of the model. We gen-
erated two waveform data sets with a maximum time of 5 s using
Ricker wavelets with a dominant frequency of 4 and 10 Hz, respec-
tively. Uncorrelated Gaussian noise with 0.1 standard deviation
(1% of the average maximum amplitude of all traces) is added
to the data.

Zhang and Curtis (2020b) and Gebraad et al. (2020) impose
strong prior information (a uniform distribution over an interval
of 0.2 km/s) on the velocity to reduce the complexity of their (iden-
tical) inverse problems. In practice, such strong prior information is
almost never available. In this study, we use much weaker prior in-
formation: a uniform distribution over an interval of 2 km/s at each
depth (Figure 1c). We also impose an extra lower velocity bound of
1.5 km/s to ensure that the rock velocity is higher than the acoustic
velocity in water. Velocity in the water layer is fixed to be 1.5 km/s
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in the inversion. This prior information mimics a practical choice
that is applied in real problems.

We perform two independent inversions using the two data sets.
For each inversion, we use 600 particles that are initially generated
from the prior distribution (an example is shown in Figure 1b) and
updated using equation 2 for 600 iterations at which point the
average misfit across particles ceases to decrease. Figure 2a shows
the mean model obtained using the low-frequency data. In the shal-
lower part (<2 km), the mean model shows features similar to the
true model, but it has slightly lower resolution than the true model,
which probably reveals the resolution limit imposed by the re-
stricted frequency range. In comparison, the mean model obtained
using high-frequency data shows higher resolution (Figure 2d) and
is more similar to the true model. In the deeper part (>2 km), mean
models are different from the true model: The mean obtained using
low-frequency data only shows a large-scale
structure, whereas that obtained using high-fre-
quency data shows spatially rapid variations that
are different from the true model. This may be
because of poor illumination of the deeper part,
which causes complex posterior PDFs when us-
ing high-frequency data and which cannot be

anomalies (see the examples denoted by red arrows in Figure 2).
This phenomenon has also been found in previous studies (Gebraad
et al., 2020; Zhang and Curtis, 2020b). In the shallower part, this is
probably due to the fact that the low-velocity layers cause strong
changes in traveltimes, to which the L2 misfit is sensitive. Similarly,
in the deeper part, those strong high-velocity anomalies can have a
large influence on seismic waveforms and hence have lower stan-
dard deviations. In most areas, the error between the mean and true
models obtained using the two data sets is within two standard
deviations (Figure 2c and 2f). In the deeper part (>1.5 km) and close
to the sides, errors are higher because of poor illumination. There
are also higher errors at the boundaries of anomalies, which
suggests that the boundary locations are not well constrained
by the data, producing the equivalent of uncertainty loops (Galetti
et al., 2015).

represented properly by a small number of par-
ticles. However, we also note that the mean
model does not need to reflect the true model
in nonlinear problems. For example, Figure 3
compares the data predicted from models with
the observed data for the high-frequency inver-
sion. Although the data predicted by a random
posterior sample match the observed data
(Figure 3a), the data predicted by the mean show
differences compared to the observed data (the
black box in Figure 3b). This is because in gen-
eral the mean model does not represent the true

structure when the posterior PDF is multimodal

2 3
X (km)

(Figure 4).

Both standard deviation models show features
that are related to the mean model. For example,
in the shallow part (<1 km), the standard
deviation is lower at locations of lower velocity
anomalies, and, in the deeper part, lower standard
deviations are associated with higher velocity
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Figure 2. (a, d, and g) Mean, (b, e, and h) standard deviation, and (c, f, and 1) the error
between the mean and true models divided by the standard deviation obtained, respec-
tively, using low-frequency data, high-frequency data only, and using high-frequency
data but starting from the results of low-frequency data. The white lines denote the well
location referred to in the main text.
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Figure 1. (a) The true velocity model. The red stars denote the locations of 10 sources. The 200 receivers are equally spaced at 0.36 km in
depth. (b) A random model generated from the prior distribution. (c) The prior distribution of seismic velocity, which is chosen to be a uniform
distribution over an interval of up to 2 km/s at each depth. A lower velocity bound of 1.5 km/s is imposed to ensure that the velocity is higher

than the acoustic velocity in water.
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To improve the results in the deeper part, we conducted another
inversion using high-frequency data but starting the SVGD itera-
tions with the particles generated using the low-frequency data, sim-
ilarly to the idea of multiscale FWI (Bunks et al., 1995). After
running for 300 iterations, the mean model shows features more
similar to the true model in the deeper part (Figure 2g). The standard
deviation model (Figure 2h) has a smoother structure than in the
previous results, and the error between the true model and the mean
model is significantly smaller (Figure 2i).

To further understand the results, we show marginal velocity
distributions at the horizontal location X = 2 km (the white line in
Figure 2) along with 1D histograms at four depths: 0.6, 1.2, 1.8,
and 2.4 km. Overall, the marginal distributions obtained using
high-frequency data are narrower. In the shallower part (<1.5 km),
all marginal distributions show high probabilities around the true
velocity (the red lines in Figure 4). In the deeper part, the marginal
distributions show complex multimodal distributions, and the high-
probability area of the marginal distribution obtained using only
high-frequency data deviates from the true values. In comparison,

the marginal distributions obtained using the results of low-frequency
inversion as starting particles for the high-frequency inversion show
high probabilities close to the true values. This clearly indicates that
the method can get stuck at local modes in regions of poor illumina-
tion when using only high-frequency data; for example, at the depth of
1.8 km, only one incorrect mode is found (Figure 4b). By starting
from particles obtained using low-frequency data, this issue can
largely be resolved.

DISCUSSION

Because SVGD uses hundreds of particles and updates them iter-
atively, the method can be computationally expensive (cost similar
to running hundreds of standard FWIs). For example, the preceding
inversion with 600 iterations took approximately 6703 central
processing unit (CPU) hours, which required 74 h to run using
90 Intel Xeon E5-2630 CPU cores. In practice, stochastic minibatch
optimization (Robbins and Monro, 1951) can be used to improve
computational efficiency for larger data sets and 3D applications.
Because the method does not require accurate
prior information as shown in our high-frequency

example (which is difficult to solve using stan-
dard FWI with local optimization methods),
we propose that the results obtained using a small
data set could be used to provide a reliable start-
ing model for standard FWI with larger data sets
to produce higher resolution models.

To improve the method’s efficiency, other full
matrix kernels might be used, for example, Hes-
sian matrix kernels (Wang et al., 2019) or Stein
variational Newton methods (Detommaso et al.,

40 30 20 10 00 10 20 30 40 40 30 20 10 00 10 20 30 40
X (km) X (km)

Figure 3. The “butterfly plot” of data comparison for the rightmost shot in Figure 1
obtained using the high-frequency inversion. (a) The data predicted by a random model
from the posterior PDF (left) and the observed data (right). (b) The data predicted by the
mean model in Figure 2d (left) and the observed data (right). The black box denotes an
example location where data predicted by a posterior sample and the mean are different.

2018). Improved prior information also may be
used to improve efficiency, for example, prior
velocity information from traveltime tomogra-
phy. Faster, approximate forward modeling
methods also may be used to provide solutions
more rapidly, for example, neural network-based
forward modeling methods (Meng et al., 2020).
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Figure 4. The marginal distributions at horizontal location X =2 km (the white line in Figure 2) plotted along with four histograms at depths of
0.6, 1.2, 1.8, and 2.4 km. (a-c) Marginal distributions obtained using low-frequency data, high-frequency data only, and using high-frequency
data but starting from the results of low-frequency data, respectively. The red lines show true values.
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CONCLUSION

In this study, we have presented the first application of variational
full-waveform inversion (VFW]I) in a seismic reflection setting. To
explore the applicability of the method, we imposed realistically
weak prior information on seismic velocity: a uniform prior PDF
across a 2 km/s interval, and we performed multiple inversions us-
ing data from different frequency ranges. The results showed that
the method can produce high-resolution mean and uncertainty mod-
els using only high-frequency data, but it can get stuck in local
modes in areas of poor illumination. This can be resolved by using
the results obtained from low-frequency data to initiate high-
frequency inversions. We therefore conclude that VFWI may be a
useful method to produce high-resolution seismic reflection images
with reliable uncertainties.
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