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Summary of Notation
ADVI automatic differential variational inference

c a subset of variables (clique)

C a set of cliques, i.e., c � C
det determinant

dobs observed data vector

ELBO evidence lower bound

EM Expectation-Maximization

F(q;Θ) evidence lower bound of probability distribution q defined as a function of

parameters Θ
Eq expectation with respect to probability distribution q

Fθ a normalizing flow parameterized by θ
FWI full-waveform inversion

GM Gaussian mixture
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μ mean of a Gaussian distribution

Σ covariance matrix of a Gaussian distribution

HMC Hamiltonian Monte Carlo

J Jacobian matrix

k(�, �) a scalar kernel function

K(�, �) a matrix-valued kernel function

KL Kullback–Leibler divergence
L(Θ;dobs) logarithmic evidence defined as a function of parameters Θ
L a lower-triangular matrix

m vector of model parameters

MAP maximum a posterior

MC Monte Carlo

McMC Markov chain Monte Carlo

MH-McMC Metropolis-Hastings Markov chain Monte Carlo

MRF Markov random field

NN a neural network function

N(�j0, I) a standard normal distribution with zero mean and an identity covariace

matrix

pdf probability density function

p(dobsjm) likelihood function

p(dobs) normalization factor in Bayes’ theorem (evidence)

p(m, dobs) joint probability density function of m and dobs
p(m) prior probability density function

p(mjdobs) posterior probability density function

p(mjdobs, Θ) posterior probability density function parameterized with Θ
ϕ a smooth vector function

ψ, ϕ scalar functions

q a probability density function used to approximate the posterior pdf

Q q � Q

RBF radial basis function

κ geological facies

γ geological rock properites

Ap Stein operator defined on probability distribution p

SVGD Stein variational gradient descent

T an invertible transform

VFWI variational full-waveform inversion

1. Introduction

In a variety of scientific applications scientists often wish to charac-

terize a physical system using measurements or observations which do

not represent the system directly. A simplified model of the system is

defined which includes a physical relation that predicts measurements or
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observations for any particular values of the model parameters. One then

seeks parameter values that match the measurements or observations.

This process is called inversion, and the physical relation that predicts

observations that would be made if any particular set of parameter values

were true is called the forward function. In this article we focus on

Geophysics. Geophysicists often need to characterize properties of the

Earth’s interior using measurements such as seismic, gravitational, or elec-

tromagnetic data. Subsurface properties are usually parameterized such that

one can construct a forward function that predicts corresponding data, and

the inverse problem is therefore a parameter estimation problem (Aki &

Lee, 1976; Tarantola, 2005).

Due to nonlinearity of the physical relation, insufficient data coverage,

and noise in the data, the inverse problem almost always has nonunique

solutions, as infinitely many sets of parameter values fit the observed data

to within their measurement uncertainties. This family of values defines

uncertainty in the inverse problem solution. In order to reduce this uncer-

tainty, any available prior information about parameters (information known

independently of the geophysical data) is usually imposed on the solution,

and remaining uncertainties in the estimated parameters must be described

(Tarantola, 2005).

Inverse problems are often solved using optimization methods by seek-

ing parameter values that minimize misfits between observed data and the

data predicted by the forward function. Since most inverse problems are

under-determined, some form of regularization is often imposed on the

model. This process is well-established for linear problems in which the

system reduces to solving a set of linear simultaneous equations (Aster,

Borchers, & Thurber, 2018). This approach can also be applied to nonlinear

problems by linearizing (approximating) the nonlinear physics around a ref-

erence model and solving that linearized problem for the parameter values.

The process of linearizing and solving the problem is iterated until the misfit

or update to the values is sufficiently small (Aki & Lee, 1976; Aster et al.,

2018; Constable, Parker, & Constable, 1987; Dziewonski & Woodhouse,

1987; Iyer & Hirahara, 1993; Tarantola, 2005; Tarantola & Valette,

1982). However, since the regularization is often ad-hoc in the sense that

it does not correspond to genuine prior information, the results can be biased

and valuable information can be concealed in the process (Zhdanov, 2002).

In addition this method cannot provide accurate uncertainty estimate for

nonlinear problems, nor even for linear problems with complex data

uncertainty distributions.
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Bayesian inference provides a different way to solve inverse problems

and quantify uncertainties. In Bayesian inference the prior information is

represented by a probability density function (pdf ) and is updated with

new information from the data to produce a probability density function that

describes all information post inversion, called a posterior pdf. According to

Bayes’ theorem, the posterior pdf can be expressed as:

pðmjdobsÞ ¼ pðmÞpðdobsjmÞ
pðdobsÞ (1)

wherem is a vector of model parameter values, dobs is the observed data, and

p(mjdobs) is the posterior pdf; p(m) represents the prior pdf which describes

information independent of data, p(dobsjm) is called the likelihoodwhich rep-

resents the probability of observing data dobs given parameters m which in

turn depends on the forward function, and p(dobs) is a normalization factor

called the evidence. The term inference indicates that the prior information is

combined with uncertainties in the measured data and forward function to

infer the posterior pdf.

A common way to solve Bayesian inference problems is to use Markov

chain Monte Carlo (McMC). In McMC one constructs a set (chain) of

successive samples of m drawn from the posterior pdf by taking a structured

random walk through a parameter space (Brooks, Gelman, Jones, & Meng,

2011); those samples can thereafter be used to calculate useful statistics of

that pdf, e.g., the mean and standard deviation. The Metropolis-Hastings

algorithm is one such method (Hastings, 1970; Metropolis & Ulam, 1949)

and has been applied to a range of geophysical applications (Andersen,

Brooks, & Hansen, 2001; Gallagher, Charvin, Nielsen, Sambridge, &

Stephenson, 2009; Malinverno, 2002; Malinverno, Leaney, et al., 2000;

Mosegaard & Sambridge, 2002; Mosegaard & Tarantola, 1995; Oh &

Kwon, 2001; Ramirez et al., 2005; Sambridge & Mosegaard, 2002). The

method has been generalized to trans-dimensional inversion called revers-

ible-jump McMC, in which the number of parameters (the dimensionality

of parameter space) can vary in the inversion and consequently the para-

meterization itself can be adapted to the data and the prior information

(Green, 1995; Green & Hastie, 2009). Reversible-jump McMC has been

applied to various geophysical applications, including vertical seismic profile

inversion (Malinverno et al., 2000), electrical resistivity inversion (Galetti &

Curtis, 2018; Malinverno, 2002), electromagnetic inversion (Minsley, 2011;
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Ray, Alumbaugh, Hoversten, & Key, 2013), surface wave dispersion inver-

sion (Bodin et al., 2012; Shen, Ritzwoller, Schulte-Pelkum, & Lin, 2012;

Young, Rawlinson, & Bodin, 2013), travel time tomography (Bodin &

Sambridge, 2009; Galetti, Curtis, Baptie, Jenkins, & Nicolson, 2017;

Galetti, Curtis, Meles, & Baptie, 2015; Hawkins & Sambridge, 2015; Piana

Agostinetti, Giacomuzzi, & Malinverno, 2015; Zhang, Curtis, Galetti, &

de Ridder, 2018; Zhang, Hansteen, Curtis, & de Ridder, 2020; Zhang,

Roy, Curtis, Nowacki, & Baptie, 2020) and full-waveform inversion

(Guo, Visser, & Saygin, 2020; Ray, Kaplan, Washbourne, & Albertin,

2017; Ray, Sekar, Hoversten, & Albertin, 2016; Sen & Biswas, 2017).

However, due to its random-walk behavior the method becomes inefficient

in high dimensional space (e.g., >1000). Other more advanced McMC

methods have been introduced to geophysics to solve high dimensional prob-

lems such as Hamiltonian Monte Carlo (Duane, Kennedy, Pendleton, &

Roweth, 1987; Fichtner, Zunino, & Gebraad, 2018; Gebraad, Boehm, &

Fichtner, 2020; Kotsi, Malcolm, & Ely, 2020; Sen & Biswas, 2017),

Langevin Monte Carlo (Roberts, Tweedie, et al., 1996; Siahkoohi,

Rizzuti, & Herrmann, 2020), stochastic Newton McMC (Martin, Wilcox,

Burstedde, & Ghattas, 2012; Zhao & Sen, 2019), and parallel tempering

(Dosso, Holland, & Sambridge, 2012; Hukushima & Nemoto, 1996;

Sambridge, 2013). Nevertheless, these methods remain intractable for large

datasets and high dimensionality because of their extremely high

computational cost.

Variational inference solves Bayesian inference problems in a different

way: one seeks an optimal approximation to the posterior pdf within a

predefined family of (simplified) probability distributions. This is achieved

by minimizing a measure of the difference between the posterior pdf and

the approximating pdf, for example, the Kullback–Leibler (KL) divergence
(Kullback & Leibler, 1951). Since the method uses optimization rather than

random sampling, it can be computationally more efficient than McMC and

provide better scaling to high dimensionality. The methods can also be

applied to large datasets by dividing the dataset into minibatches and using

stochastic optimization techniques (Kubrusly & Gravier, 1973; Robbins &

Monro, 1951). By contrast, stochastic optimization cannot be applied to

McMC because it breaks the detailed balance which is required by most

McMC methods.

In variational inference the choice of the variational family determines

the accuracy of the approximation and the complexity of the optimization

5An introduction to variational inference

ARTICLE IN PRESS



problem. A good choice should be rich enough to approximate complex

distributions and simple enough such that the optimization problem can

be efficiently solved. A common choice is to use a mean-field approximation

in which the parameters are assumed to be mutually independent (Bishop,

2006; Blei, Kucukelbir, & McAuliffe, 2017; Parisi, 1988; Zhang, B€utepage,
Kjellstr€om, & Mandt, 2018). The optimization problem can then be solved

efficiently using a coordinate ascent algorithm (Bishop, 2006; Blei et al.,

2017) which has been applied in geophysics to invert for spatial distributions

of geological facies using seismic data (Nawaz & Curtis, 2018, 2019; Nawaz,

Curtis, Shahraeeni, & Gerea, 2020).

Despite its wide application in practice, the mean-field method ignores

correlations between parameters and requires tedious model-specific

mathematical derivations and implementation. This restricts the method to

a narrow range of inverse problems for which the derivations can be per-

formed. Tomake variational inference applicable to general inverse problems,

a variety of “black box” methods have been proposed based on different var-

iational families, for example, the mean-field approximation (Ranganath,

Gerrish, & Blei, 2014; Ranganath, Tran, & Blei, 2016), Gaussian distributions

(Kucukelbir, Tran, Ranganath, Gelman, & Blei, 2017), and probability trans-

forms (Liu & Wang, 2016; Marzouk, Moselhy, Parno, & Spantini, 2016;

Rezende & Mohamed, 2015; Tran, Ranganath, & Blei, 2016). These

methods are quite general and can be applied to a wide range of applications,

for example, in geophysics they have been applied to travel time tomography

(Zhang&Curtis, 2020a; Zhao, Curtis, & Zhang, 2021), full-waveform inver-

sion (Zhang &Curtis, 2020b, 2021), and seismic image denoising (Siahkoohi,

Rizzuti, Witte, & Herrmann, 2020).

This chapter aims to give a brief introduction to variational inference and

its applications in geophysics. In the following sections we first introduce the

concepts of variational inference, and then describe four different variational

methods: mean-field variational inference, automatic differential variational

inference (ADVI), normalizing flows, and Stein variational gradient descent

(SVGD). The first of these shows how the structure of some inference prob-

lems can be exploited to obtain highly efficient variational methods of solu-

tion, whereas the latter three methods make few assumptions about the

problem structure. In Section 3 we demonstrate how these methods have

been applied to a range of different applications, including petrophysical

inversion, travel time tomography, and full-waveform inversion. We con-

clude the chapter by discussing some limitations and possible improvements

to the variational methodology.
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2. Variational inference

Variational inference uses optimization to solve Bayesian inference

problems. First a family of known probability distributions Q ¼ {q(m)} is

defined. For example, Q could be the family of all Gaussians, or sums of

Gaussians. The variational method then seeks the best approximation to

the posterior pdf p(mjdobs) within that family by minimizing the KL diver-

gence between q(m) and p(mjdobs):
q*ðmÞ ¼ argmin

q �Q

KL½qðmÞjjpðmjdobsÞ� (2)

q*(m) is then used as an approximation to the posterior pdf. The KL diver-

gence is a measure of difference between two pdfs, and can be expressed as:

KL½qðmÞjjpðmjdobsÞ� ¼ Eq½logqðmÞ� � Eq½logpðmjdobsÞ� (3)

where the expectations are taken with respect to the known pdf q(m). The

KL divergence is nonnegative and only equals zero when q¼ p (Kullback &

Leibler, 1951). Expanding the posterior pdf p(mjdobs) using Bayes’ theorem,

KL½qðmÞjjpðmjdobsÞ� ¼ Eq½logqðmÞ� � Eq½logpðm,dobsÞ�+ logpðdobsÞ (4)

The evidence term logp(dobs) is computationally intractable in many prob-

lems: it is the marginal pdf over dobs of the joint distribution p(m, dobs), so

the evidence calculation requires an integral of the forward function over the

full prior pdf on m to be evaluated. This is often impossible. Therefore we

move the evidence term to the left-hand side and reverse the sign of the

equation:

logpðdobsÞ�KL½qðmÞjjpðmjdobsÞ� ¼Eq½logpðm,dobsÞ��Eq½logqðmÞ� (5)

Given that the KL divergence is nonnegative, the left-hand side defines a

lower bound for the evidence, called the evidence lower bound (ELBO):

ELBO½q� ¼ logpðdobsÞ � KL½qðmÞjjpðmjdobsÞ�
¼ Eq½logpðm,dobsÞ� � Eq½logqðmÞ�

(6)

Since the second line of Eq. (6) does not involve the intractable evidence

term, it can be computed in practice by analytical or numerical methods.

In addition because the evidence term logp(dobs) is a constant for a given
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problem, minimizing the KL divergence is equivalent to maximizing the

ELBO. Variational inference in Eq. (2) can therefore be expressed as:

q*ðmÞ ¼ arg max
q�Q

ELBO½qðmÞ� (7)

In variational inference the choice of familyQ is important because it deter-

mines the accuracy of the approximation and the complexity of the optimi-

zation. A good choice should be flexible enough to approximate the

posterior pdf accurately, but simple enough for efficient optimization.

Depending on different choices of the family, different variational methods

have been proposed. In the following sections we describe several such

methods.

2.1 Mean field approximation
For problems that have particular types of structures, extremely efficient var-

iational methods can be derived to find solutions. In this section we look at

problems that have known, structured probabilistic relationships among the

variables.

Exact Bayesian inference requires evaluation of the evidence—the

denominator in Bayes theorem (Eq. 1). As the model dimensionality

increases, the cost of this calculation escalates exponentially. Thus, exact

inference becomes infeasible for many-parameter models and for all practical

purposes one needs to resort to approximate inference.

Stochastic sampling-based inference, such as the commonly usedMcMC

method, is only asymptotically exact, i.e., sampling distributions in high-

dimensional (henceforth, simply large) models converge to the true distribu-

tion only theoretically as sampling continues to infinite time. Instead of

approximating the true distribution by a finite number of samples, one

may consider other approximation schemes such as limiting the dimension-

ality of probabilistic dependence among variables (Nawaz & Curtis, 2016).

One such scheme is the mean field approximation which provides an effi-

cient method to model probabilistic dependence in high dimensional prob-

lems by exploiting structure in the probabilistic dependence among various

variables, and replacing at least some probabilistic dependence in the model

by an effective random field that is defined by a set of scalar potential func-

tions ψi, each of which is defined over just a few variables. Thus, the intrac-

table joint posterior distribution p(mjdobs) over all of the variables under the
mean field approximation assumes a factorized form
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pðmjdobsÞ ffi qðmÞ ¼ 1

Z

Y
i

ψiðmiÞ (8)

where Z is the normalization constant and q(m) is the factorized approxi-

mation of p(mjdobs). Such a factorized approximation allows computation-

ally efficient inference in large models. In its simplest form, each random

variable is regarded as independent of the others, and the only source of

mutual interaction (or correlation) among several variables is a random

field—a structured set of probabilistic relationships among various parame-

ters of interest at multiple locations. Fig. 1 shows examples of the mean field

approximation to different bivariate Gaussian distributions. While the

method can provide accurate approximations to distributions that have zero

or weak correlation between parameters (Fig. 1A and B), it fails to produce

accurate estimates of distributions with strong correlations (e.g., Fig. 1C).

Fig. 1 Examples of mean field approximation to bivariate Gaussian distributions with
(A) zero correlation, (B) weak correlation and (C) strong correlation between the two
parameters.
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Thus, a naive implementation of the mean field approximation cannot be

used to infer posterior distributions with strong correlations.

A more common approach is to capture correlations among pairs of vari-

ables which results in the so called Ising or Potts model depending on

whether each variable can take two or more possible states, respectively.

Modeling of pairwise dependence among variables imposes smoothness

constraints that can be described by second-order statistics, e.g., using

covariance matrix. These models, however, ignore higher-order depen-

dence structure beyond pairs of variables, e.g., multiple-point statistics.

Nawaz and Curtis (2019) introduced higher order mean field inference

method that makes use of structure of dependence among variables to cap-

ture most of the significant higher order correlations among them while still

allowing computationally efficient inference. Factorization of joint distribu-

tion in this case takes the form

qðmÞ ¼ 1

Z

Y
c�C

ψcðmcÞ (9)

where ψc represents potential functions (called clique potentials) defined over
some subsets c of variables called a clique and C represents the set of cliques in
the graph. Full probabilistic dependence among variablesmcwithin a clique

c is honored; however, it is assumed that a variable in c may interact with

other variables outside c only through an effective field defined by the func-

tional form of clique potentials ψc. According to the Hammersley-Clifford

theorem (Besag, 1974; Hammersley & Clifford, 1971), the joint distribution

q(m) over all m may be expressed as a Gibbs distribution which takes the

form

qðmÞ ¼ 1

Z
exp � 1

r

X
c�C

EcðmcÞ
( )

(10)

where Ec(mc) represents the energy function that associates low energy states

corresponding to high probability configurations of mc, and r is a constant.

The clique potentials ψc, therefore, take the function form

ψcðmcÞ ¼ exp �EcðmcÞ
r

� �
(11)

A factorized distribution that takes the form of the Gibbs distribution is com-

monly known as a Markov random field. The quality of the mean field

approximation can be determined using some distance measure between

10 Xin Zhang et al.

ARTICLE IN PRESS



the true (unknown) posterior distribution p(mjdobs) and its factorized

approximation q(m). This may be achieved by using the KL divergence

(Eq. 4) which we then minimize, showing that mean field inference is a spe-

cial form of variational inference where the approximating distribution takes

a factorized form. Mean field inference commonly employs iterative opti-

mization methods to perform probabilistic inference in an optimization

framework without stochastic sampling while still providing full probabilis-

tic results, as described below.

In order to estimate the intractable constant p(dobs) in Bayes’ theorem

under the above simplified model, we denote its logarithm as a function

of parameters Θ as L(Θ; dobs) and refer to it as the log evidence. Any choice

of the auxiliary distribution q defines a lower bound F(q; Θ) (the ELBO in

Eq. 6) on the log-evidence L(Θ; dobs) (Beal, 2003; Nawaz & Curtis, 2018;

Neal & Hinton, 1998) such that

LðΘ;dobsÞ ¼ Fðq;ΘÞ + KLðqðmÞjjpðmjdobs,ΘÞÞ (12)

where the lower boundF(q;Θ) is also called variational free energy or simply free

energy. It has its origin in statistical physics where it corresponds to the neg-

ative of Gibbs free energy (Feynman, 1972), andKL(q(m)jjp(mjdobs,Θ))� 0

is the KL divergence (also called relative-entropy) between q(m) and

p(mjdobs, Θ) as defined above. For a factorizable distribution q, F(q; Θ)
assumes a closed-form expression in terms of marginal distributions of q

(Nawaz & Curtis, 2018).

Although L(Θ; dobs) is intractable, its lower bound F(q; Θ) may be

estimated for a suitably chosen family of approximate pdfs q. This suggests

that an iterative scheme may be devised to estimate L(Θ; dobs) by succes-

sively updating q and Θ in each iteration. For example, a variational form

of the Expectation-Maximization (EM) algorithm (Dempster, Laird, &

Rubin, 1977) may be used to approximate L(Θ; dobs) in an iterative fashion

such that its lower bound F(q; Θ) is increased which effectively decreases

KL(q(m)jjp(mjdobs, Θ)) for a given set of parameters Θ in each iteration.

The E-step of the EM algorithm at any iteration l updates the variational

distribution q(m) by maximizing the free-energy F(q; Θ) with respect to q

while keeping the parameters Θl fixed such that

ql+1 ¼ arg max
q

Fðq;ΘlÞ (13)

where the superscripts refer to the iteration number.Nawaz andCurtis (2018)

showed that the E-step of the EM algorithm can be solved using a message

passing algorithm, called belief propagation (BP) (Pearl, 1982), or its variant,
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the loopy belief propagation (LBP) (Mariethoz & Caers, 2014; Yedidia,

Freeman, &Weiss, 2003). TheM-step of the EM algorithm at any iteration

l computes an updated set of parameters Θl+1 by maximizing the free-

energy F(q; Θ) with respect to Θwhile keeping the variational distribution

q fixed at its value ql+1 estimated during the E-step such that

Θl+1 ¼ arg max
Θ

Fðql+1;ΘÞ (14)

In summary, at the end of (l+1)th iteration, the E-Step of the EM algorithm

yields the free energy F(ql+1, Θl) equal to L(Θl; dobs) which is the upper

bound of F(q, Θl). Therefore, the E-step improves the estimate of the pos-

terior distribution p(mjdobs, Θ) while the M-step improves the estimate of

parameters Θ such that the combined E-M steps are guaranteed not to

decrease the estimate of log evidence L(Θ; dobs) during any iteration of

the EM algorithm. On convergence, the EM algorithm yields the best mean

field approximation q(m) of the true intractable posterior distribution

p(mjdobs). We summarize the method in Algorithm 1.

Algorithm 1 Mean field approximation.
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2.2 Automatic differential variational inference
Themean-field approximation allows highly efficient variational methods to

be derived, at the expense of losing full correlation information between

parameters. Such methods require model-specific derivations and imple-

mentations, which restricts them to those types of problems for which

approximation applies. In this section we describe a method called automatic

differential variation inference (ADVI) which can be applied to a general

class of inverse problems, and which is made efficient by introducing a

different approximation (Kucukelbir et al., 2017).

The key idea behind ADVI is to use a Gaussian variational family.

Gaussians are defined over the entire set of real numbers, whereas in reality

model parameters often have hard bound constrains (for example, seismic

velocity is greater than zero). To apply ADVI to constrained variables we

first transform those variables into an unconstrained space using an invertible

transform T: θ ¼ T(m). In this space the joint pdf p(m, dobs) becomes:

pðθ,dobsÞ ¼ pðm,dobsÞjdet JT�1ðθÞj (15)

where JT�1ðθÞ is the Jacobian matrix of the inverse of transform T, and j�j
denotes absolute value. Define a Gaussian family in this unconstrained space,

qðθ; ζÞ ¼ Nðθjμ,ΣÞ ¼ Nðθjμ,LLTÞ (16)

where ζ represents variational parameters, that is the mean vector μ and the

covariance matrix Σ. To ensure the covariance matrix is positive semi-

definite, we use a Cholesky factorization Σ ¼ LLT where L is a lower-

triangular matrix, to reparameterize the covariance matrix. If Σ is a diagonal

matrix, q reduces to a mean-field approximation as described in Section 2.1.

Within this Gaussian family the variational problem in Eq. (7) becomes:

ζ* ¼ arg max
ζ

ELBO½qðθ; ζÞ�

¼ arg max
ζ

Eq½logp T�1ðθÞ,dobs

� �
+ logjdet JT�1ðθÞj� � Eq½logqðθ; ζÞ�

(17)

This optimization problem can be solved by gradient-based optimization

methods, for example, gradient ascent. In order to calculate the gradients

of the ELBO with respect to variational parameters ζ, we first transform

the Gaussian distribution q(θ; ζ) to a standard Normal distribution
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N(ηj0, I) by using the transform η ¼ R(θ) ¼ L�1(θ �μ). The problem

thereafter becomes:

ζ* ¼ arg max
ζ

ELBO½qðθ; ζÞ�

¼ arg max
ζ

ENðηj0,IÞ logp T�1R�1ðηÞ,dobsð Þ+ logjdet JT�1 R�1ðηÞð Þj½ �

�Eq½logqðθ; ζÞ�
(18)

where the first expectation in Eq. (18) is calculated with respect to a standard

Normal distribution. There is no Jacobian term appearing in Eq. (18)

according to the rules of integration by substitution. For example, for any

function h(θ),

Eq½hðθÞ� ¼
Z

hðθÞqðθ; ζÞdθ

¼
Z

h R�1ðηÞ� �
q R�1ðηÞ; ζ� �jdet JR�1ðηÞjdη

¼
Z

h R�1ðηÞ� �
N ηj0, Ið Þdη

¼ ENðηj0,IÞ½hðR�1ðηÞÞ�

(19)

The second expectation in Eq. (18) does not need to be transformed because

the expectation has an analytic form. In fact this expectation is called the

entropy of q, written H[q(θ; ζ)]:

H ½qðθ; ζÞ� ¼ �Eq½logqðθ; ζÞ�

¼ k

2
+

k

2
logð2πÞ + 1

2
logjdetLLTj

(20)

where k is the dimension of vector θ.
The gradients of the ELBO with respect to variational parameters can be

calculated by exchanging the derivative and expectation according to the

dominant convergence theorem (Çınlar, 2011) which allows the derivatives
to be calculated inside the expectations, and by applying the chain rule:

rμELBO ¼ ENðηj0,IÞ rmlogpðm,dobsÞrθT
�1ðθÞ+rθlogjdet JT�1ðθÞj� �

(21)
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The gradients of the ELBO with respect to L can be written similarly:

rLELBO¼ENðηj0,IÞ rmlogpðm,dobsÞrθT
�1ðθÞ+rθlogjdet JT�1ðθÞj� �

ηT
� �

+ðL�1ÞT
(22)

The expectations can be estimated using Monte Carlo (MC) integration

which provides noisy, unbiased estimates of the expectations. The accuracy

of MC integration increases with the number of samples, but in practice a

low number or even a single sample can be sufficient at each iteration since

optimizations are usually performed over many iterations so that statistically

they will converge toward the solution (Kucukelbir et al., 2017). The var-

iational problem in Eq. (18) can therefore be solved by standard gradient-

based optimization methods, by gradient ascent. The final approximation

q(m) can then be obtained by transforming the solution q*(θ) back to

the constrained parameter space, either numerically or analytically

depending on the form of transform T. By combining with the automatic

differential technique (Baydin, Pearlmutter, Radul, & Siskind, 2018;

Wengert, 1964) the whole process can be conducted automatically; hence,

the name “automatic differential.” The procedure is summarized in

Algorithm 2.

Algorithm 2 Automatic differential variational inference (ADVI).
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Note that the final approximation is determined by the Gaussian distribution

q*(θ) in the unconstrained space and by the transform T. Unfortunately the

optimal transform is difficult to determine because it depends on the

unknown properties of the posterior distribution p(mjdobs). A commonly

used transform is:

θi ¼ TðmiÞ ¼ logðmi � aiÞ � logðbi � miÞ

mi ¼ T�1ðθiÞ ¼ ai +
ðbi � aiÞ

1 + expð�θiÞ
(24)

where mi represents the i
th parameter in the original constrained space, θi is

the transformed unconstrained variable, and ai and bi are the lower and upper

bounds on mi, respectively (Stan Development Team, et al. (2016)). The

final approximation is then limited by the Gaussian distribution q*(θ) and
the transform in Eq. (24).

Fig. 2 shows a 1D example of the ADVI. The true target (posterior) pdf is

defined in the positive half space (Fig. 2A). An initial Gaussian distribution is

defined in the transformed unconstrained space (Fig. 2B) and updated using

Fig. 2 A 1D example of ADVI. (A) the target (posterior) pdf in the original positive half
space. (B) The target pdf in the transformed unconstrained space (blue line) and an initial
Gaussian approximation (red dashed line). (C) and (D) show the target pdf (blue line) and
the approximation obtained using ADVI (red dashed line) in the unconstrained space
and the original space, respectively.
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the gradient ascent method (Fig. 2C). The final approximation is obtained

by transforming the obtained Gaussian distribution back to the original space

(Fig. 2D). Since the true distribution is a non-Gaussian distribution in both

original and transformed spaces, the obtained approximation is different to

the true distribution. This indicates that ADVI can produce biased results for

non-Gaussian posterior pdfs.

Note that in very high dimensional space ADVI may become inefficient

because of the large size of the full covariance matrix (the number of vari-

ables is proportional to the square of dimensionality). In such cases if corre-

lation between certain parameters can be ignored, a diagonal covariance

matrix or a sparse covariance matrix may be used to reduce computational

cost. Due to the Gaussian variational family, ADVI cannot provide accurate

approximations to multimodal distributions. However, further improve-

ments are made possible by using a mixture of Gaussian distributions

(Arenz, Zhong, & Neumann, 2018; Zobay et al., 2014).

2.3 Normalizing flows
The approximation to the posterior pdf obtained using ADVI is limited by a

Gaussian distribution in the unconstrained space, and a fixed transform T

that is used to transform that Gaussian distribution to the original parameter

space. It should be possible to improve the approximation by finding a more

suitable transform. This idea leads to a method called normalizing flows, in

which a series of invertible and differential transforms (called flows) are

applied to an initial known distribution (e.g., a Gaussian distribution); the

flows are optimized to produce an improved approximation to the posterior

pdf (Rezende & Mohamed, 2015).

Let m0 be a random vector variable which has a simple and analytically

known pdf q0(m0), for example, a Gaussian distribution, and apply an invert-

ible transform Fθ (parameterized by θ) such that m1 ¼ Fθ(m0). The pdf of

transformed variable m1 can be expresses as:

q1ðm1Þ ¼ q0ðm0Þ det ∂Fθ
∂m0

����
����
�1

(25)

where ∂Fθ
∂m0

is the Jacobian matrix of the transform Fθ. The pdf q0 is called

an initial distribution and the transform Fθ is referred to as a normalizing flow

which pushes the simple and known pdf q0 to a target pdf q1. Depending

on the form of the normalizing flow, the initial pdf can be manipulated

in different ways, for example, it can be expanded, contracted, and rotated

or its location can be shifted to produce different target pdfs.

17An introduction to variational inference
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In Bayesian inference the goal is to estimate the posterior pdf, that is, to

find a normalizing flow Fθ such that the pdf q1 is close to the posterior pdf.

However, in general it is difficult to construct a single flow that transforms a

simple distribution to the posterior distribution given that real posterior pdfs

often have complex forms (which a priori we do not know). Instead this

ideal transform can be approximated by combining multiple simple flows

and successively applying Eq. (25).

Assume we have K flows, Fðθ0Þ,Fðθ1Þ,…,FðθK�1Þ, and successively

apply them to the initial variable m0:

mK ¼ FθK�1
� FθK�2

⋯Fθ1 � Fθ0ðm0Þ (26)

wheremK is the variable after the combined transformation. The pdf ofmK

can be obtained using Eq. (25):

qKðmKÞ ¼ q0ðm0Þ
YK�1

i¼0

det
∂Fθi
∂mi

����
����
�1

(27)

Hereafter for simplicity we use the notation Θ ¼ ðθ0, θ1,…, θK�1Þ and FΘ
to represent the chain of transforms: FΘ ¼ FθK�1

� FθK�2
⋯Fθ1 � Fθ0, and use

jdet ∂FΘ
∂m0

j ¼QK�1
i¼0 jdet ∂Fθi

∂mi
j. By using a series of transforms Eq. (27) improves

the expressibility of the combined transformation so that more complex final

distributions can be created. Note that if we use an analytically known initial

distribution and construct transforms such that their Jacobian determinants

are also analytically known, the final distribution is also analytic.

To approximate the posterior pdf using the distribution qK(mK) obtained

from normalizing flows, we optimize the flow parameters Θ by maximizing

the ELBO as in Eq. (7). This results in a variational problem:

Θ* ¼ arg max
Θ

ELBO½qKðmKÞ�

¼ arg max
Θ

EqK
logp mK ,dobsð Þ � logqKðmKÞ½ �

(28)

According to the change of variables theorem, for any function h(mK) the

expectation with respect to qK(mK) can be expressed as:Z
hðmkÞqKðmKÞ dmK ¼

Z
hðmkÞq0ðm0Þ dm0 (29)
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Combining Eq. (27) and 29 with Eq. (28) gives

Θ* ¼ arg max
Θ

ELBO½qKðmKÞ�

¼ arg max
Θ

Eq0
logpðmK ,dobsÞ � logq0ðm0Þ+ log det

∂FΘ
∂m0

����
����

	 
 (30)

where the expectation is taken with respect to the initial distribution

q0(m0). This problem can be solved using standard gradient-based optimi-

zation methods, for example, gradient ascent. Similarly to the gradient

computations in ADVI, the gradients of ELBO with respect to Θ can be

obtained by exchanging the expectations and derivatives and by applying

the chain rule:

rΘELBO ¼ Eq0
rmK

logpðmK ,dobsÞrΘmK + rΘlog det
∂FΘ
∂m0

����
����

	 

(31)

As in ADVI the expectation can be calculated using MC integration over a

small number of samples, and the resulting gradients can be used to solve the

optimization problem using gradient ascent methods. The final approxima-

tion can be obtained using Eq. (27) with the optimal parameters Θ*. The
procedure is summarized in Algorithm 3.

Algorithm 3 Normalizing flows.
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As described in Section 2.2, in ADVI we apply two transforms: one trans-

forms constrained variables to unconstrained variables and the other trans-

forms a Gaussian distribution to a standard Gaussian distribution. The first

transform is fixed, while the parameters of the latter transform (the mean

and covariance matrix of the Gaussian distribution) are optimized such that

they maximize the ELBO between the Gaussian distribution and the poste-

rior pdf in the unconstrained space (Eq. 18). Thus, ADVI is in fact a single

normalizing flow.

To construct a flexible normalizing flow for practical applications, several

conditions are required: the flows must be (1) invertible, and (2) expressive

enough to represent any desired pdf; (3) The forward and backward trans-

form and associated Jacobian determinant must be able to be computed effi-

ciently. A simple example of such flows is planar flow:

mi+1 ¼ mi + uhðwTmi + bÞ (33)

where u and w are vectors, b is a scalar and h is a smooth function

(Rezende & Mohamed, 2015): h(x) ¼ tanh(x) is usually used. The determi-

nant of the Jacobian matrix of this flow is:

det
∂mi+1

∂mi
¼ 1+ uTh0ðwTmi + bÞw (34)

The planar flow essentially expands or contracts a distribution along the

direction perpendicular to the hypeplane wTmi + b ¼ 0, and can be inter-

preted as a neural network with one hidden layer and one hidden unit

(Kingma & Dhariwal, 2018).

Fig. 3 shows a 1D example using planar flows. The true target (posterior)

pdf is a multimodal distribution (blue line in Fig. 3A). We use a standard

normal distribution as the initial distribution and a normalizing flows model

with 10 planar flows in Eq. (33). The model parameters are updated using

gradient ascent with gradients calculated using Eq. (31). Fig. 3B–D show the

estimated pdfs after 1000, 10,000, and 20,000 iterations, respectively. The

initial pdf is gradually reshaped and finally produces an accurate approxima-

tion to the true pdf.

It becomes difficult to use planar flows to approximate complex posterior

distributions in high dimensionality in the sense that each planar flow is a

neural network with the necessarily simple structure of only one hidden

layer and one hidden unit. To improve the expressiveness of the sequence

of flows in Eq. (27), many different forms of flow have been proposed

(an overview is given in Zhao et al., 2021). One such flow is constructed
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from an invertible neural networkwith a specific design to enable invertibility

and fast computation of the Jacobian determinant (Behrmann, Grathwohl,

Chen, Duvenaud, & Jacobsen, 2019; Dinh, Sohl-Dickstein, & Bengio,

2017; Greydanus, Dzamba, & Yosinski, 2019; Kingma & Dhariwal, 2018).

In this study we describe an invertible neural network called a coupling flow

(Dinh et al., 2017). In a coupling flow an input vector mi is divided into

two half vectors mA
i and mB

i , and the output halves mA
i+1 and mB

i+1 are

obtained using (see Fig. 4):

mA
i+1 ¼ mA

i

mB
i+1 ¼ f ðmB

i ;NNðmA
i ÞÞ

(35)

where NNðmA
i Þ represents any neural network which takes mA

i as input,

and f transforms mB
i to mB

i+1 and is an invertible, element-wise bijection

function parameterized by the output of the neural network. The two halves

mA
i+1 and mB

i+1 are combined to obtain the output vector mi+1. This trans-

form can be easily inverted

Fig. 3 A 1D example using normalizing flows. (A) the true or target pdf (blue line) and
the initial pdf (red dashed line). (B), (C) and (D) show the estimated pdfs after 1000,
10,000, and 20,000 iterations of gradient ascent, respectively.
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mA
i ¼ mA

i+1

mB
i ¼ f �1ðmB

i+1;NNðmA
i ÞÞ

(36)

and the Jacobian determinant of the transform can also be calculated using

det
∂mi+1

∂mi
¼ det

∂mA
i+1

∂mA
i

∂mA
i+1

∂mB
i

∂mB
i+1

∂mA
i

∂mB
i+1

∂mB
i

2
6664

3
7775 ¼ det

∂mB
i+1

∂mB
i

(37)

where we have used the fact that
∂mA

i+1

∂mA
i

¼ I and
∂mA

i+1

∂mB
i

¼ 0. Since the function

f is an element-wise function, the matrix
∂mB

i+1

∂mB
i

is a diagonal matrix whose

determinant can be calculated efficiently.

In practice a series of successive coupling flows are used to improve the

expressiveness of the overall transform. To ensure that all elements in the

input vector mi are modified, the locations of the two outputs mA
i+1 and

mb
i+1 are exchanged before feeding into the next flow. The function f can

be any element-wise function which is invertible and differentiable, and

many choices of f can be used in practice (De Cao, Aziz, & Titov, 2020;

Dinh, Krueger, & Bengio, 2014; Dinh et al., 2017; Durkan, Bekasov,

Murray, & Papamakarios, 2019a, 2019b; Kingma & Dhariwal, 2018).

Note that instead of coupling flows, other designs of invertible neural

networks can also be used in normalizing flows, for example, invertible

residual networks (Behrmann et al., 2019), neural ordinary differential equa-

tions (Chen, Rubanova, Bettencourt, & Duvenaud, 2018; Grathwohl,

Chen, Bettencourt, Sutskever, & Duvenaud, 2018) or Hamiltonian neural

networks (Greydanus et al., 2019). Further research that performs fair com-

parisons between these networks would be a useful contribution.

Fig. 4 An illustration of a coupling flow. The input vector mi is first divided into two
halves mA

i and mB
i . The former half mA

i is copied as the first half mA
i+1 of the output.

It is also input to a neural network which outputs hyperparameters of an element-wise
function f; this function f transforms the second half mB

i to mB
i+1 which together with

mA
i+1 forms the output mi+1.
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2.4 Stein variational gradient descent
In normalizing flows a series of analytical invertible transforms are applied to

a simple initial distribution and are optimized by maximizing the ELBO

between the final transformed distribution and the posterior distribution.

In practice construction of effective analytic transforms can be a difficult task.

Instead of using analytical transforms, Stein variational gradient descent

(SVGD) uses a smooth transform whose analytical form remains unknown,

and successively applies it to an initial probability distribution represented by

a set of parameter-space samples which are referred to as particles (Liu &

Wang, 2016). Similarly to normalizing flows, the transforms are optimized

to minimize the KL divergence between the transformed distribution and

the posterior distribution so that the final set of particles are distributed

according to the posterior.

In SVGD a smooth transform is used:

TðmÞ ¼ m+ EϕðmÞ (38)

where m is a d-dimensional vector, ϕðmÞ ¼ ½ϕ1,…,ϕd� is a smooth

d-dimensional vector function which describes the perturbation direction

and E is the magnitude of the perturbation. When E is sufficiently small,

the transform T is invertible as the Jacobian matrix is close to an identity

matrix. Define q as an initial distribution and qT as the transformed distribu-

tion, the gradient of KL divergence between qT and the posterior pdf pwith

respect to E can be calculated as:

rEKL½qT jjp�jE¼0 ¼ �Eq½traceðApϕðmÞÞ� (39)

where Ap is the Stein operator such that ApϕðmÞ ¼ rmlogpðmjdobsÞ
ϕðmÞT + rmϕðmÞ (Liu & Wang, 2016). This implies that by maximizing

the right-hand side expectation we obtain the steepest direction of change in

the KL divergence; the KL divergence can therefore be minimized by iter-

atively stepping a small distance in that direction.

The optimal ϕ* which maximizes the expectation in Eq. (39) can be

found using kernels. Assume x, y � X and define a mapping φ from X to

an inner product space; a kernel is a function which satisfies k(x, y) ¼
hφ(x), φ(y)i where h, i represents an inner product (Gretton, 2013). The

optimal ϕ* is found to be:

ϕ*∝Efm0�qg½Apkðm0,mÞ� (40)

where k(m0, m) is a kernel function (Liu & Wang, 2016).
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Given Eq. (40), the KL divergence can be minimized by iteratively

applying the transform in Eq. (38) with the optimal ϕ* to an initial distri-

bution. For example, define an initial distribution q0, and apply the trans-

form T0ðmÞ ¼ m+ Eϕ*
0ðmÞ where ϕ*

0ðmÞ is given in Eq. (40). This

produces a new distribution q½T0� which decreases the KL divergence.

This process is iterated to obtain an approximation to the posterior:

TlðmÞ ¼ m + Elϕ*
l ðmÞ

ql+1 ¼ ql½Tl �
(41)

where the subscript l denotes the lth iteration. If the perturbation magnitude

{El} is sufficiently small, that is, the transform is invertible at each iteration,

the process should eventually converge to the posterior distribution.

In practice since the posterior distribution p(mjdobs) and its gradient with
respect to model m are analytically unknown (and are needed in the defi-

nition of the Stein operatorAp), we cannot obtain the analytical form of the

optimal ϕ* and consequently the optimal transform T. Fortunately the

unnormalized posterior distribution can usually be estimated at a set of sam-

ples fm1,…,mng distributed approximately according to the posterior pdf,

which enables us to estimate the optimal ϕ* numerically, for example, using

the mean value taken over the set of samples. Thus in SVGD we use a set of

samples {mi} (the particles) to represent the approximate distribution q and

to approximate the optimalϕ* using the particles mean. Each particle is then

updated using the estimated ϕ*. This results in Algorithm 4.

Algorithm 4 Stein variational gradient descent (SVGD).
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Since SVGD uses particles to approximate the posterior pdf, the accuracy of

the method increases with the number of particles. For sufficiently small {El}
the method converges to the posterior distribution asymptotically with the

number of particles. On the other hand for one single particle, the method

reduces to a standard gradient ascent method toward the model with max-

imum a posterior (MAP) pdf value if the gradient rmk(m, m) vanishes

(which is valid for many kernels, including the radial basis function kernel

described below). This suggests that in practice we can start from a small

number of particles and gradually increase the particles to produce more

accurate results. In comparison to other particle-based methods, for exam-

ple, sequential Monte Carlo (Smith, 2013), SVGD requires fewer samples to

achieve the same accuracy which makes it more efficient (Liu & Wang,

2016). It is also important to notice that sequential Monte Carlo is a stochas-

tic sampling method, whereas SVGD is a deterministic sampling method.

The kernel function enables interactions between particles and strongly

affects the efficiency of the method. We first describe a simple, commonly-

used kernel function, the radial basis function (RBF)

kðm,m0Þ ¼ exp½� k m�m0k2
2σ2

� (43)

where σ is a scale factor which intuitively controls the interaction intensity

between pairs of particles based on their distance apart.

With an RBF kernel the first term of ϕ* in Eq. (42) is the weighted aver-
age of gradients of the posterior pdf from all particles, in which the weights

are determined by particle distances and the scale factor σ. This term drives

particles toward a local high probability area. The second term of ϕ*
becomes

P
j

m�m j

σ2 kðm j,mÞ which pushes the particle m away from its

neighboring particles with high kernel values. The two terms therefore con-

tribute in different ways to arrange particles to represent the posterior pdf:

the first term drives particles toward a local high probability area, whereas

the second term acts as a repulsive force which prevents particles from collaps-

ing to a single mode. These terms balance such that the limiting distribution

is the posterior pdf provided that the derivative of the kernels (the second

term of ϕ* in Eq. (42)) does not vanish. Note that when σ ! 0, the method

becomes independent gradient ascent for each particle as the kernel value

and its derivative between any two particles vanish.

Fig. 5 shows a 1D example using SVGD with a RBF kernel. The target

pdf is the same multimodal distribution in Fig. 3A (blue line). We start

from 1000 particles generated from a standard Normal distribution
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(red histograms in Fig. 5A) and iteratively update them using Eq. (42).

Fig. 5B–D show the histograms of those particles after 5, 100, and 500 iter-

ations, respectively. After 100 iterations the method has almost converged

to the true distribution. This example shows that SVGD arranges particles

to represent the posterior pdf optimally.

Kernel functions can be generalized to matrix forms and used in SVGD

instead of scalar kernel functions. By doing this one can inject information

about correlations between the different parameters in m into the method.

Assuming a matrix-valued kernel function K, the ϕ* in Eq. (42) becomes:

ϕ*
ql ,p

ðmÞ ¼ 1

n

Xn
j¼1

Kðml
j,mÞrml

j
logpðml

jjdobsÞ+ Kðml
j,mÞrml

j

h i
(44)

where Kðml
j,mÞrml

j
represents matrix multiplication (Wang, Tang,

Bajaj, & Liu, 2019). A possible choice of a matrix-valued kernel is:

Kðm0,mÞ ¼ Q�1expð� 1

2σ2
jjm�m0jj2QÞ (45)

Fig. 5 A 1D example using SVGD. (A) The true pdf (blue line) and the histogram of 1000
initial particles (red) which are generated from a Gaussian distribution. (B), (C) and
(D) show the histograms of the particles after 5, 100, and 500 iterations, respectively.
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whereQ is a positive definite matrix, jjm�m0jj2Q¼ðm�m0ÞTQðm�m0Þ
and σ is a scaling parameter. This kernel is essentially a RBF kernel with a

preconditioning matrix Q. Wang et al. (2019) showed that by setting Q to

be the average Hessian matrix of all particles, the method converges faster

than a scalar RBF kernel. Other choice of Q includes the inverse of the

covariancematrix calculated from the particles, or the inverse of the diagonal

covariance (variance) matrix.

3. Applications

3.1 Petrophysical inversion
In this section, we present an application of variational inference using the

mean field approximation for joint estimation of geological facies κ and

petrophysical rock properties γ using information derived from seismic

data that are referred to as seismic attributes d. These attributes represent

elastic rock properties that may directly be inverted from seismic waveform

data such as P- and S-wave impedances (Ip and Is), velocities (Vp and Vs),

and their ratios (Vp/Vs). Examples of petrophysical properties γ of interest
include porosity (ϱ), clay volume (Vcl), and water saturations (Sw).

Geological facies refer to well-defined discrete classes of lithology and fluid

types that are in principle distinctively distinguishable from seismic and

well data. Petrophysical rock properties and facies together represent the

unknown model parameters, i.e., m ≡ {γ, κ}.
Estimation of rock properties from seismic attributes is a nonunique

inverse problem. Usually the solution can be better constrained if the spatial

distribution of geological facies is known (Nawaz et al., 2020). For this rea-

son, we would like to infer the rock properties γ and facies κ jointly from the

seismic attributes d along with their associated uncertainty of prediction. In

terms of probability theory, we seek the posterior distribution p(γ, κjd) of
unknown model parameters γ and κ conditioned on the attribute data d.

According to Bayes’ theorem

pðγ, κjdÞ ¼ pðdjγ, κÞpðγjκÞpðκÞ
pðdÞ (46)

where p(κ) represents the prior distribution of facies κ, p(γjκ) represents the
conditional prior distribution of the petrophysical properties γ given the

facies κ, p(djγ, κ) represents the data likelihood given γ and κ, and p(d)
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represents the marginal distribution of data d. Since the data d is observed,

p(d) is a constant that normalizes the posterior distribution.

The joint distribution p(κ) of facies is modeled as a Markov random field

(MRF) with pair-wise correlations, which according to Eq. (9) is given by

pðκÞ ¼ 1

Z

Y
i, j

ψijðκi, κjÞ (47)

where the potential functions ψ ij(κi, κj) define how probable it is to find the

facies κi and κj in locations i and j in the model, and may be estimated by

scanning a training image (Mariethoz & Caers, 2014) and building histo-

grams for various combinations of facies over various neighbouring

locations.

The conditional prior distribution p(γjκ) of γ given κ is usually modeled

using well logs that have been upscaled to the dominant seismic wavelength

(Grana & Della Rossa, 2010), and the likelihood p(djγ, κ) is usually modeled

using rock physics models (Grana, 2018; Grana & Della Rossa, 2010)

calibrated with the well data and local geological information. We adopt

a different approach: we model both the conditional prior p(γjκ) and

the likelihood p(djγ, κ) jointly using up-scaled well-logs in the form of a

joint distribution p(d, γjκ, Θ) of elastic attributes d and petrophysical

properties γ given the facies κ, parameterized by Θ. Eq. (46) may then be

written as

pðγ, κjd,ΘÞ ¼ pðd, γjκ,ΘÞpðκÞ
pðdjΘÞ (48)

Thus, we do not use a rock physics model explicitly. However, if only lim-

ited well data are available, rock physics models may be used to augment the

existing data.

We use a Gaussian mixture (GM) distribution to model p(d, γjκ, Θ) that
is defined as a linear combination of Gaussian kernels, usually referred to as

the components of the mixture distribution. AGMdistribution is a universal

approximator of pdfs: given a sufficient number of Gaussian kernels with

appropriate parameters, a GM can approximate any complex pdf to any

desired nonzero accuracy (McLachlan & Peel, 2004). The GM distribution

for rock properties di and γi given facies κi at a location imay be expressed as

pðdi, r ijκi,ΘÞ ¼
XTk

t¼1

αt,k gt,k di, rið Þ, 8i (49)
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where Tk is the number of mixture components (which may be different for

each facies k), αt,k is the component weight, and gt,k(di, γi) is the Gaussian

kernel for the tth component given by

gt,kðdi, riÞ ¼ N
μd
μr

	 

t,k

,
Σd,d Σd,r

Σr,d Σr,r

	 

t,k

 !
, 8i (50)

where N represents the pdf of the Normal distribution, μ and Σ are means

and block covariance matrices of the kernel with subscripts indicating the

components with respect to the data d and the petrophysical properties γ.
Since the joint conditional distribution p(d, γjκ,Θ) of seismic attributes d

and rock properties γ given facies κ (and the distribution parameters Θ) is
modeled as a GM distribution, and the prior distribution of facies p(κ)
is modeled as a MRF, the overall model of the joint distribution p(d, γ, κjΘ)
of the data d and unknown model parameters γ and κ represents a Gaussian
mixture - Markov random field (GM-MRF) given by

p γ, κjd,Θð Þ ¼ p d, γ, κjΘð Þ
p djΘð Þ ffi 1

Z 0
Y
i

p di, r ijκi,Θð Þ
Y
i, jð Þ

ψij κi, κ j

� �
(51)

where p(djΘ) has been absorbed in the normalization constant Z0 on the

right-hand side. This demonstrates that although we only assumed that

the prior distribution p(κ) on facies κ is an MRF, the posterior distribution

p(γ, κjd, Θ) and the joint distribution p(d, γ, κjΘ) then also turn out to be

MRFs. This is a consequence of the conditional independence assumption

on the rock properties d and γ that is invoked in the mean-field approxima-

tion. The factorization of the posterior distribution in Eq. (51) is instrumen-

tal in making inference tractable for real-scale models using, for example, the

EM method of inference as described in Section 2.1.

3.1.1 Results
We now show the application of the joint inversion method to estimate the

spatial distribution of petrophysical rock properties and geological facies

from well data and seismic attributes from a gas field in the North Sea.

This example is based on that in Nawaz et al. (2020), where the available

data include vertical 2D sections of seismic attributes: Ip, Is, and Vp/Vs

(Fig. 6), and well logs from two wells that are located on the available 2D

seismic section. The seismic attributes were available from a previous deter-

ministic inversion of seismic waveform data. We are interested in classifying

the seismic attribute data into three geological facies: shale, brine sand and
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Fig. 6 Seismic attributes (A) P-wave impedance, (B) S-wave impedance, and (C) Vp/Vs
ratio, derived from a selected 2D section of waveform seismic data using a deterministic
inversion method. These attributes are used as inputs to our method for the joint inver-
sion of geological facies and petrophysical rock properties.
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gas sand, which are identified from the well log data (Fig. 7).We notice from

the top-left 3� 3 subplots in Fig. 7 that there is a significant overlap between

the shale and brine-sand elastic properties. However, we may notice from

rest of the subplots that these shale and brine sands may be resolved better

when elastic properties are analyzed jointly with the petrophysical properties

of interest: Vcl, Sw, and ϱ. This forms the geophysical basis for our approach

to jointly invert facies and petrophysical properties from seismic attributes

(elastic rock properties). Further, it may also be noticed that since well logs

are recorded at a much higher resolution than seismic data, a higher number

Fig. 7 Seismic attributes P-wave impedance (IP), S-wave impedance (IS), and Vp/Vs ratio
(VpVs), and petrophysical properties clay volume (VCL), water saturations (SWT) and
porosity (PHIT) of three geological facies: Shale, Brine Sand and Gas Sand obtained from
the well log data.
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of facies could be identified from the well log data (e.g., silt, sandy-shale, and

shaly-sand). However, we limited our analysis to the three main facies (shale,

brine sand and gas sand) because we hypothesized at this stage that any fur-

ther subdivision of shale and sand may not be identifiable from the seismic

data due to limited resolution. However, contrary to our hypothesis, we

later found that seismic data could resolve at least one more facies (shaly-sand

or sandy-shale) as we describe below.

We used the EM method to invert the available elastic seismic attributes

jointly for the spatial distributions of facies and petrophysical rock properties.

The estimated marginal posterior distributions (under the mean field

approximation) of the three facies and the entropy (a measure of uncertainty)

of these distributions scaled between 0.0 and 1.0 is shown in Fig. 8. The

entropy is mostly low except at the transitions between different facies,

but it appears to be high within some layers too. Since gas sands typically

have well discriminated properties, high entropy within some layers indi-

cates the presence of a mixture of brine sand and shale lithology that is

not well discriminated. Fig. 9A shows the facies map with maximum mar-

ginal probability in each model cell for the three inverted facies: shale, brine

Fig. 8 Cell-wise posterior marginal distributions of (A) shale, (B) brine sand, (C) gas sand,
and (D) the posterior marginal entropy of facies classification scaled between 0.0 and
1.0. Yellow colour represents high probability or entropy (value¼1.0) and dark blue colour
represents low probability or entropy (value¼0.0).
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Fig. 9 Cell-wise maps of facies with maximum marginal distribution. (A) Map of the
three inverted facies: Shale (SH: shown in yellow), brine sand (BS: blue) and gas sand
(GS: red). (B) Map with an additional facie “Shale/Sand” (SS: brown) identified from high
entropy layers in Fig. 8D.
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sand, and gas sand. Fig. 9B shows the facies map with an additional facies

defined as a combination of nondiscriminated shale-sand identified to exist

in the cells where entropy is greater than a cut-off value of 0.5 (i.e., 50% of

the scaled entropy range from 0.0 to 1.0). Even though we inverted for three

facies, the entropy of the marginal posterior distributions identifies that an

additional facies may also be interpreted as shaly-sand or sandy-shale shown

in brown colour in Fig. 9B.

The inverted petrophysical properties alongwith their standard deviations

are shown in Fig. 10. The seismic attribute inversion results are compared

with the well data for verification and are shown in Fig. 11. The measured

well logs are shown in solid-black curves for reference. The solid-red curves

are the input seismic attributes along the borehole in columns 1–3 and are

means of the posterior distribution of petrophysical properties in columns

Fig. 10 Cell-wise maps of petrophysical properties and their associated standard devi-
ations (std.). (A) clay volume (Vcl) and (B) its std., (C) water saturation (Sw) and (D) its std.,
and (E) porosity (ϱ) and (F) its std. Yellow colour represents high values and dark blue
colour represents low values of the respective properties.
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4–6. The blue shaded regions bounded by the dashed-red curves in columns

3–4 represent the two standard deviations of the posterior distribution of

corresponding rock properties. The mean inverted petrophysical properties

clearly identify the gas reservoir characterized by lowerVcl and Sw, and higher

ϱ compared to the nonreservoir rocks.

3.2 Travel time tomography
In this section, we explore applications of variational inference methods to

seismic travel time tomography based on examples in Zhang and Curtis

(2020a) and Zhao et al. (2021). We image a simple 2D velocity structure

that has been studied previously using Monte Carlo methods (Galetti

et al., 2015). The velocity structure contains a circular low velocity anomaly

with a 2 km radius and 1 km/s velocity within a homogeneous background

of 2 km/s velocity (Fig. 12A). Sixteen receivers are equally distributed

around the low velocity anomaly approximating a circular acquisition

Fig. 11 The inverted results compared with the well log data. Solid black lines show the
measured well log data. Red lines in columns 1–3 are the input seismic attributes.
Columns 4–6 show the mean (red lines) and two standard deviations (blue shaded area)
of the inverted posterior distribution of petrophysical properties. The rightmost two col-
umns show the measured facies and inverted facies, respectively.
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geometry with a 4 km radius. Each receiver is also treated as a virtual source

to simulate a typical ambient noise tomographic experiment (Curtis,

Gerstoft, Sato, Snieder, & Wapenaar, 2006; Shapiro et al., 2005). Travel

times between each receiver pair are calculated using the fast marching

method over a 101 � 101 gridded discretization in space of each modeled

velocity structure (Rawlinson & Sambridge, 2004), and the travel times

through the target structure are used as data to infer the velocity structure.

For inversion we use a regular 21 � 21 grid of cells to parameterize the

velocity structure (black pluses in Fig. 12A). The likelihood function is set to

a Gaussian distribution with 0.05 s standard deviation which represents the

uncertainty on observed travel times. For each cell the prior pdf of the veloc-

ity is set to be a Uniform distribution between 0.5 and 3 km/s (blue histo-

gram in Fig. 12B). To understand the characteristics of different methods we

compare the posterior pdfs obtained using four methods: ADVI, normaliz-

ing flows, SVGD and Metropolis-Hastings McMC (MH-McMC). In order

to handle the hard constrains imposed by the prior information in variational

methods, we transform the constrained velocity into an unconstrained space

using Eq. (24). The orange histogram in Fig. 12B shows the prior distribu-

tion in the transformed space. For all inversions, travel times are calculated

using the fast marching method over a 41 � 41 grid interpolated from the

lower spatial resolution properties. The gradients of the posterior pdf with

respect to velocity are calculated by tracing rays backward from each receiver

to (virtual) sources using the spatial gradients of travel time fields.

Fig. 12 (A) The target structure and receiver geometry (while triangles). Each receiver
also acts as a virtual source to simulate the scenario in ambient noise tomography (e.g.,
Shapiro, Campillo, Stehly, & Ritzwoller, 2005). Black crosses denote the location of grid
points used in inversion—the wave velocity at each location is described by one param-
eter. (B) The prior distribution in the original space (blue histogram) and the transformed
space (orange histogram)—as described by 2000 samples.
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In ADVI the initial Gaussian distribution in the unconstrained space is

simply set to be a standard Gaussian distributionN(θj0, I), and updated using
the ADAGRAD algorithm (Duchi, Hazan, & Singer, 2011) for 10,000 iter-

ations using the gradients from Eqs. (21) and (22). The final Gaussian distri-

bution is transformed back to the original space, from which 5000 samples

are generated to visualize the final results.

For normalizing flows we use six coupling flows which each use rational

quadratic splines (Durkan et al., 2019b) for the bijective function. Each

bijective function is parameterized by the output of a fully connected neural

network, which contains two hidden layers each of which contains 100 hid-

den units with Rectified Linear Unit activation functions. The prior pdf is

used as the initial distribution and is first transformed into the unconstrained

space, and normalizing flows are applied in this space. The flows are updated

using 3000 iterations, and at each iteration the expectation in Eq. (31) is esti-

mated using 10 samples. After the process we generate 2000 samples from

the initial (prior) distribution and transform them through the analytic flows

(including the transform in Eq. (24)) to obtain the final set of samples, whose

density provides an approximation of the posterior pdf.

For SVGDwe use a RBF kernel in which the scale factor σ is chosen to be
~d=

ffiffiffiffiffiffiffiffiffiffiffi
2logn

p
where ~d is the median of pairwise distances between all particles.

This choice is suggested by Liu and Wang (2016) based on the intuition thatP
j 6¼ikðmi,m jÞ 	 n expð� 1

2σ2
~d
2Þ ¼ 1 such that for particle mi the contri-

bution from its own gradient is balanced by the influence from all other

particles. We generate 800 particles from the prior distribution and first trans-

form them into the unconstrained space. Those particles are then updated

using Eq. (42) for 500 iterations and transformed back to the original space.

To demonstrate the convergence properties of these variational

methods, we compare the results with those obtained using the well-tested

and robust method of MH-McMC (Metropolis & Ulam, 1949). Gaussian

perturbations are used as the proposal distribution. We use a total of six

chains, each of which contains 2,000,000 iterations with a burn-in period

of 1,000,000 iterations. To reduce the correlation effects between successive

samples we only retain every 50th sample after the burn-in period. This

results in a total of 120,000 samples which are used to calculate statistics

of the estimated posterior pdf.

3.2.1 Results
Fig. 13 shows mean and standard deviation models obtained using the suite

of methods. Overall the mean models obtained using different methods
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Fig. 13 The mean (left panel) and standard deviation models (right panel) obtained
using ADVI, normalizing flows, SVGD, and MH-McMC, respectively. Red pluses are
referred to in the main text and in Fig. 14.
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show similar features. For example, all models show a low velocity anomaly

as in the target structure. The velocity of the mean (1.2 km/s) is slightly

higher than the target value (1.0 km/s), but since this value was found by

four independent methods this indicates that the mean value of the posterior

pdf is genuinely lies at higher values than the target. Between the location of

the receiver array and the low velocity anomaly there is a slightly lower

velocity loop, and since the means from different methods show consistent

features, the means probably reveal the true structure of the mean of the pos-

terior distribution. The mean velocity structure does not necessarily need to

be similar to the true velocity structure as it is the point-wise mean calculated

from different samples. The circular shape of the mean velocity structure

obtained from normalizing flows (Fig. 13C) is less symmetric compared

to those obtained using other methods. In normalizing flows a chain of

nonlinear transforms are optimized to directly reshape an initial distribution

toward the posterior distribution. It is highly likely that the high number of

parameters in those transforms have nonunique solutions, some of which are

not globally optimal. Converging to one of the latter solutions is likely to be

the cause of the irregularity in the results.

The standard deviationmodels obtained from normalizing flows, SVGD,

andMH-McMC show very similar features (Fig. 13D, F, and H). For exam-

ple, the middle low velocity anomaly has lower standard deviation sug-

gesting that the low velocity anomaly is well constrained. There are two

high uncertainty loops: one around the middle low velocity anomaly and

the other one between the low velocity anomaly and the receiver array.

The inner loop has also been observed in seismic tomographic results

obtained using reversible jump McMCwhich is due to the uncertainty cau-

sed by the trade-off between the velocity of the anomaly and its shape

(Galetti et al., 2015; Zhang et al., 2018). The latter high uncertainty loop

is associated with the lower velocity loop in the mean velocity model.

This is probably caused by the lower ray path coverage in this region, so that

the mean velocity tends toward the mean of the prior (1.75 km/s) which is

lower than the true value and the uncertainty is higher. In comparison the

standard deviation from ADVI shows different results: higher uncertainty at

the location of the middle low velocity anomaly and lower uncertainty

between the low velocity anomaly and the receiver array (Fig. 13B).

Instead of the double high uncertainty loops exhibited by the other results,

the standard deviation only shows a slightly higher uncertainty loop around

the middle low velocity anomaly. This difference is probably caused by the

fact that in ADVI we use a Gaussian distribution to approximate the
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posterior pdf, whereas in practice the posterior pdf often assumes non-

Gaussian shapes due to the nonlinear relationship between velocity structure

and data. Note that outside of the receiver array all standard deviations show

high uncertainties because there is no ray coverage.

To further analyze the results in Fig. 14 we show marginal distributions

obtained using different methods at three locations (red pluses in Fig. 13):

Fig. 14 The marginal distributions at three locations: (0,0) km (left panel), (1.8,0) km
(middle panel) and (3,0) km (right panel) obtained using ADVI, normalizing flows,
SVGD, and MH-McMC, respectively. Red line denotes the location of the true value.
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point (0,0) km at the middle of the velocity structure, point (1.8,0) km, and

point (3.0,0) km which lie in the two high uncertainty loops. Due to

symmetries of the system the marginal distributions at the three locations

should reflect properties of most of the single-parameter marginal distribu-

tions. At point (0,0) km the marginal distributions are all very similar and

show a distribution concentrated at one side of the prior distribution

(Fig. 14A, D, G, and J). At point (1.8,0) km and (3.0,0) km the marginal

distributions from normalizing flows (Fig. 14E and F), SVGD (Fig. 14H

and I) and MH-McMC (Fig. 14K and L) show similar features and are close

to the prior distribution. This suggests that those regions are poorly con-

strained by the data and explain the double high uncertainty loops observed

in the standard deviation structure. Note that the marginal distributions from

SVGD and normalizing flows are less smooth than those obtained using

MH-McMC. In SVGD this is caused by the lower number of samples used

to approximate the distribution, whereas in normalizing flows it is due to the

nonuniqueness of the variational optimization problem. In comparison the

marginal distributions at point (1.8, 0) km and (3.0,0) km obtained using

ADVI show Gaussian-like distributions due to the implicit (transformed)

Gaussian assumption which fails to describe the true uncertainty structure.

3.2.2 Computational cost
In Table 1 we summarize the number of forward simulations required by

each method, which provides a good metric of the computational cost since

for each method the forward simulation is the most time-consuming part.

The results show that ADVI is the cheapest variational method, but we dem-

onstrated above that it may provide biased results due to the implicit

Gaussian assumption. Normalizing flows are slightly less efficient than

ADVI, but produced significantly more accurate results above. SVGD

requires approximately ten times more simulations than normalizing flows,

Table 1 The comparison of computational cost for all four methods.
Method Number of simulations Equivalent number of simulations

ADVI 10,000 10,870

Normalizing flows 30,000 32,609

SVGD 400,000 434,782

MH-McMC 12,000,000 12,000,000

The third column shows the equivalent number of simulations—these numbers are calculated as
described in the main text.
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but provides the most accurate results among the three variational methods.

In comparison MH-McMC requires far more simulations than all three var-

iational methods; however, the comparison is not fair in this case since

MH-McMC only requires forward function evaluations, whereas the vari-

ational methods also require derivatives of the (logarithm of the) posterior

pdf with respect to parameters (which in turn involves calculating derivatives

of forward function with respect to parameters). In these travel time exam-

ples, derivatives were calculated using ray paths, which were traced through

the travel time fields calculated by the fast marching method. For each for-

ward simulation, calculating derivatives required a computation equivalent

to approximately f ¼ 0.08 forward simulations. A fairer comparison with

the Monte Carlo method is therefore given in column 3 of Table 1 which

shows the “equivalent” number of simulations for each method, obtained

by multiplying the number of simulations for the three variational methods

by 1.08. In this case because of the efficient computation of derivatives, it

does not increase the computation cost of variational methods signifi-

cantly. Clearly this comparison will vary for different types of problems,

since factor f will also vary. We demonstrate this below for waveform

inversion problems for which f is approximately 2 (Liu & Tromp, 2006;

Tarantola, 1988).

Note that the above comparison is only valid for this specific example

and does not necessarily provide general guidance for the practical choice

of algorithms. For example, although ADVI provides biased results, it can

still be useful for weakly nonlinear problems in scenarios where efficiency

is important and a Gaussian distribution is sufficient for uncertainty analysis.

For very high dimensional problems such as 3D tomography and full-

waveform inversion, ADVI can become inefficient as the full covariance

matrix may require extremely large memory. In the above example, nor-

malizing flows would be a good choice given that it produces reasonably

accurate results yet requires the same order of computational cost as

ADVI. However we note that normalizing flows may require more human

interaction as it has many hyperparameters to tune – which specific flow to

use, how many flows to use, and if invertible neural networks are used then

the structure of the neural network needs elaborate design. For very high

dimensional problems we may require large neural networks, so the training

time cannot be neglected and may even dominate the whole calculation.

SVGD solves variational inference problem using a set of samples, which

provides a flexible way to approximate complex probability distributions
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but at the price of an increased number of forward function evaluations. The

method is fully parallelizable whichmakes it more efficient in real timewhen

combined with modern parallel computer architecture. However it remains

unclear how the method performs in very high dimensional space, as it

might be impossible to use hundreds of samples to approximate the posterior

pdf meaningfully in high dimensional problems.

In this example we only compared the computational cost of variational

methods with MH-McMC. In practice there are many ways to make

Monte Carlo methods more efficient, for example, reversible-jump McMC

(Bodin & Sambridge, 2009; Green, 1995; Malinverno, 2002), Hamiltonian

Monte Carlo (Duane et al., 1987; Fichtner, Zunino, & Gebraad, 2018;

Neal et al., 2011), Langevin Monte Carlo (Girolami & Calderhead, 2011;

Roberts et al., 1996), Sequential Monte Carlo (Liu & Chen, 1998;

Smith, 2013), slice sampling (Neal, 2003), physics informed Monte Carlo

(Khoshkholgh, Zunino, & Mosegaard, 2020), and parallel tempering

(Earl & Deem, 2005; Hukushima & Nemoto, 1996; Sambridge, 2013).

Nevertheless, Monte Carlo methods cannot be parallelized within a

Markov chain; several of these Monte Carlo methods require calculation

of gradients of the forward function which introduces an additional factor

f to the cost as described above, and the methods often become intractable

for large datasets which are usually expensive to simulate. In contrast, var-

iational methods can be parallelized at the sample level in each iteration—

for example, gradient calculation in ADVI, normalizing flows and SVGD

can be fully parallelized. In addition variational methods can be applied

to large datasets by using stochastic optimization (Kubrusly & Gravier,

1973; Robbins & Monro, 1951) and distributed optimization, which is

likely to make variational methods more efficient in practice for some types

of problems.

In travel time tomography the gradients of posterior pdf with respect to

model parameters can be calculated efficiently using the travel time field

obtained in the forward simulation. In the case that gradients are difficult

to calculate, MH-McMC may be more efficient than both variational

methods and many other Monte Carlo methods since MH-McMC does

not require gradient information. We also note that our comparison above

depends on subjective assessments of the point of convergence of each

method, so the absolute number of simulations required by each method

may not be accurate. Nevertheless they at least provide a reasonable insight

into the computational efficiency of each method.
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3.3 Full waveform inversion
Full waveform inversion (FWI) uses filtered versions of full seismic record-

ings to characterize properties of the subsurface, and can produce high-

resolution images of the Earth’s interior (Gauthier, Virieux, & Tarantola,

1986; Pratt, 1999; Tarantola, 1984, 1988; Tromp, Tape, & Liu, 2005).

The method has been used at industrial scale (Prieux, Brossier, Operto, &

Virieux, 2013; Warner et al., 2013), regional scale (Chen, Zhao, & Jordan,

2007; Fichtner, Kennett, Igel, & Bunge, 2009; Tape, Liu, Maggi, & Tromp,

2009), and global scale (Bozda�g et al., 2016; Fichtner, van Herwaarden,

et al., 2018; French & Romanowicz, 2014). Due to the high nonlinearity

and nonuniqueness of the problem, in traditional optimization-based

methods a good starting model is required to avoid converging to incorrect

solutions. A variety of misfit functions that can reduce multimodalities in the

posterior pdf have also been proposed (Bozda�g, Trampert, & Tromp, 2011;

Brossier, Operto, & Virieux, 2010; Fichtner, Kennett, Igel, & Bunge, 2008;

Gee & Jordan, 1992; Luo & Schuster, 1991; M�etivier, Brossier, M�erigot,
Oudet, & Virieux, 2016; Van Leeuwen & Mulder, 2010; Warner &

Guasch, 2016). In addition, to quantify uncertainties in the solution

Monte Carlo methods have recently been used to solve FWI problems

(Biswas & Sen, 2017; Gebraad et al., 2020; Guo et al., 2020; Ray et al.,

2017, 2016; Zhao & Sen, 2019).We now use variational inference methods,

specifically SVGD to solve FWI problems probabilistically, which we refer

to as variational full waveform inversion or VFWI, based on examples in

Zhang and Curtis (2020b, 2021).

3.3.1 Transmission seismic FWI with strong prior information
We first apply SVGD to a transmission FWI problem in which seismic data

are recorded on a receiver array that lies above the structure to be imaged

given earthquake-like sources located underneath the structure. We use a

2D fully elastic target structure and data acquisition setup that is identical

to that used by Gebraad et al. (2020) such that the results obtained by

SVGD can be fairly compared to those that Gebraad et al. (2020) obtained

using Hamiltonian Monte Carlo (HMC). Fig. 15 shows the target Vp, Vs,

and density model. Seven sources with random moment tensors are located

at the bottom of the region. Similarly to Gebraad et al. (2020) we use a

Ricker wavelet source-time function with a dominant frequency of

50 Hz. Nineteen receivers are located at the depth of 10 m with a regular

spacing of 12.5 m. The model is discretized using a regular 200 � 100 grid
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of cells, within which a 180� 60 subgrid of cells have free parameters (black

dashed box in Fig. 15). This leads to a total of 180 � 60 � 3 ¼ 32, 400

free parameters. The waveform data are modeled using a fourth-order var-

iant of the staggered-grid finite difference scheme (Gebraad et al., 2020;

Fig. 15 The target structure of Vp, Vs, and density. Sources are located at the bottom of
the model with random moment tensors and receivers are located at the near surface
(black triangles). The black dashed line indicates the area that has free parameters. This
inverse problem setup is identical to that in Gebraad et al. (2020).
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Virieux, 1986). The gradients of the likelihood function with respect to

velocities and density are computed using the adjoint method (Fichtner,

Bunge, & Igel, 2006; Liu & Tromp, 2006; Plessix, 2006; Tarantola, 1988).

To reduce the complexity of the inverse problem and guide both

methods toward to correct solution we use a strong prior information as

in Gebraad et al. (2020): Uniform distributions in the interval of 2000 

100 m/s for Vp, 800 
 50 m/s for Vs and 1500 
 100 kg/m3 for density.

For the likelihood function, we assume a Gaussian distribution with a diag-

onal covariance matrix:

pðdobsjmÞ∝ exp � 1

2

X
i

dobsi � diðmÞ
σi

� 
2
" #

(52)

where i is the index of time samples and σi is the standard deviation of that

data point. To keep the inverse problem identical to that in Gebraad et al.

(2020), we set σi to be 1 μm2 and did not add any noise to the waveform

data. The effects of different values of σi on the solution are analyzed in

Gebraad et al. (2020).

Similarly to the previous section we use a RBF kernel for SVGD whose

scale factor is determined from the median of pairwise distances between all

particles. We generated 600 particles from the prior distribution and trans-

formed them into an unconstrained space using Eq. (24). Those particles are

then updated using Eq. (42) for 600 iterations, and are finally transformed

back to the original space.

Fig. 16 shows the mean and standard deviation structures obtained using

SVGD. Themean Vs model shows similar features to the true velocity struc-

ture, for example, the bottom high velocity structure and tilted layers above

that structure. The horizontal layers at the shallow part (<80 m) are not as

clearly observable as those in the true velocity structure, which probably

reflects the limits of the resolution of the data. By contrast, the mean Vp

model only recovers the bottom large-scale structure. This is probably

because when a simple unweighted L2 norm misfit function is used, seismic

waveforms are more sensitive to Vs than to Vp due to the higher amplitudes

of shear waves. Fig. 17 shows kernels (gradients of the misfit function) of Vp,

Vs and density calculated using the mean models in Fig. 16. The magnitude

of Vs and density kernels are significantly higher than that of Vp. As a result,

the Vp structure is not well constrained by the data. Themean density model

clearly shows horizontal and tilted layers except that the value of the lower

density titled layers is smaller than the true value. In comparison the bottom
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high density structure is not present in the mean model which is probably

because seismic waveforms are mainly sensitive to spatial gradients of

density.

Overall the standard deviation models show similar features to their asso-

ciated mean structure. For example, the standard deviation model of Vp

shows lower uncertainty at the location of the large scale high velocity struc-

ture. The Vs standard deviationmodel shows lower uncertainties at the loca-

tion of the horizontal high velocity layers and the bottom high velocity

structure. There are high uncertainties at the boundaries of tilted layers,

which suggests that the location of velocity layers is not well-constrained.

Note that a similar phenomenonwas also observed in the travel time tomog-

raphy examples in the previous section. Similarly there are high uncertainties

at those boundaries in the standard deviation model of density. Due to the

fact that seismic waveforms are mainly sensitive to density spatial gradients,

the bottom high density structure has high uncertainty.

To explore the effects that the number of particles have on the results, in

Fig. 18 we show the mean and standard deviation models of Vs obtained

using 400 particles and 600 particles, respectively. As expected, the results

show that when using 600 particle, we can obtain more accurate results.

Fig. 16 The mean and standard deviation of Vp, Vs, and density obtained using SVGD.
Black crosses are referred in the main text.
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Fig. 17 The kernel (gradients of the misfit function) of Vp, Vs, and density calculated using mean structures in Fig. 16. The magnitude of Vs
and density kernels are significantly higher than that of Vp kernel.
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Fig. 18 The mean (left) and standard deviation (right) of Vs obtained using SVGD with 400 and 600 particles, respectively.
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For example, the mean Vs model obtained using 400 particles only shows

the bottom high velocity structure and the tilted layers. The shallow hori-

zontal layers are smeared into each other. Similarly the standard deviation

model does not showmuch structure in the shallow part compared with that

obtained using 600 particles. This shows that the accuracy of the results of

SVGD improves with the number of particles (Liu, 2017).

To validate the results obtained using SVGD, we compared the results

with those obtained using HMC by Gebraad et al. (2020) (Fig. 19). The

mean and standard deviation structures obtained usingHMC are very similar

to those obtained using SVGD. For example, the mean Vp only shows the

bottom large scale structure whereas the mean Vs successfully recovers the

true structure. The mean density shows the horizontal and tilted layers and

fails to find the bottom high density structure. The standard deviations also

show similar features to associated mean structures. Since the two methods

are completely different, it is highly likely that these results represent the

true solution to this specific FWI problem. Note that the results from

SVGD are smoother than those from HMC, which is probably caused

by undersampling of both methods and lack of convergence of HMC

(Gebraad et al., 2020).

Fig. 19 The mean and standard deviation of Vp, Vs, and density obtained using HMC
from Gebraad et al. (2020).
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To further analyze the results, in Fig. 20 we show marginal distributions

of Vp, Vs, and density obtained using SVGD at three points (black crosses in

Fig. 19): (50, 68.75) m, (87.5, 68.75) m, and (125, 68.75) m. Overall the

results show high probability around the true value. At X ¼ 50 m the mar-

ginal distributions are wider than those at the other locations, which indi-

cates high uncertainties at this location. At X ¼ 125 m the true value of

density deviates from the values with highest probability as we have

Fig. 20 The marginal distributions of Vp, Vs, and density obtained using SVGD at the
depth of 68.75 m and at X ¼ 50 m, 87.5 m, and 125 m, respectively. Red lines denote
the true values.
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observed in the mean model due to the fact that seismic waveforms are

mainly sensitive to density spatial gradients. Note that the marginal distribu-

tions show nonsmoothness due to the undersampling of the posterior pdf (a

small number of particles).

Since SVGD is based on particles, the method can be computationally

expensive. For example, the above example requires 600 � 600 ¼ 360,

000 forward and adjoint simulations; whereas HMC took approximately

130,000 forward and adjoint simulations. Although in this case it appears

that HMC is slightly more efficient, in the above example HMC has clearly

not fully converged. While SVGD can be easily parallelized, it is difficult to

parallel a Markov chain due to the dependence between successive samples

(Neiswanger, Wang, & Xing, 2014). Also in practice HMC often requires

deliberate and tedious tuning to construct an efficientMarkov chain (see dis-

cussions in Gebraad et al., 2020) so the actual computational cost may be

significantly higher than the number of samples reported above. In contrast

SVGD is much easier to tune by using adaptive gradient ascent methods

(Duchi et al., 2011; Liu & Wang, 2016). In addition SVGD can be per-

formed on large datasets by using stochastic optimization by dividing large

datasets into minibatches (Liu & Wang, 2016). The same technique cannot

be used in McMC methods because it breaks the detailed balance required

byMcMC. To give an idea about the overall computational cost required by

SVGD, the above example took 6 days of computation parallelized across

16 Intel Xeon cores.

3.3.2 Reflection seismic FWI with realistic prior information
In the previous section we applied SVGD to a transmission FWI problem

with known, double-couple (earthquake-like) sources and strong prior

information on parameters. Unfortunately such strong prior information

about sources and parameters is never available in practice. To explore the

applicability of the method in practice, in this section we apply SVGD to

seismic reflection data generated by known near-surface sources with more

practically realistic prior information.

We solve a 2D acoustic FWI problem using the waveform data generated

from a part of the Marmousi model (Martin et al., 2006). The model is dis-

cretized in space using a 200 � 100 regular grid of cells. 10 sources are

located at 20 m depth and 200 receivers are located at the 360 m depth

(which represents the seabed) across the full horizontal extent of the model

with a regular spacing of 20 m (Fig. 21). Similarly to the previous section,

the waveform data are generated using the finite difference method and the
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gradients of the posterior pdf with respect to velocity parameters are com-

puted using the adjoint method.

Instead of using strong prior information (a Uniform distribution over an

interval of 0.2 km/s) as in the previous section, we impose ten times weaker

prior information to the velocity: a Uniform distribution over an interval

width of 2 km/s at each depth (Fig. 21B). We also impose a lower bound

on the velocity to ensure that the rock velocity is higher than that in the

water (1.5 km/s). The velocity of the water layer is fixed to be the true

velocity (1.5 km/s) in the inversion as is standard in practical marine seismic

FWI. Fig. 22 shows the mean of the prior distribution and a random particle

generated from the prior distribution. We simulate waveform data using a

Fig. 22 (A) The mean of the prior distribution and (B) a random sample generated from
the prior pdf.

Fig. 21 (A) Part of the Marmousi model (Martin et al., 2006) which is used as the target
velocity structure. 10 sources (stars) are located at the depth of 20 m and 200 receivers
(not shown) are equally spaced at a depth of 360 m across the horizontal extent of the
model (this depth represents the seabed). (B) Prior distribution used in the inversion: a
Uniform distribution with a width of 2 km/s at each depth. Note that an extra lower
bound is also imposed to the velocity to ensure that the rock velocity is higher than
the velocity in water (1.5 km/s).
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Ricker wavelet with a dominant frequency of 10 Hz. Uncorrelated Gaussian

noise with a standard deviation of 0.1 amplitude units is added to the data.

For the likelihood function we use the same Gaussian distribution as

described in Eq. (52) where σi is set to be the true value. For standard

optimization-based FWI this problem is difficult because the reference

parameter values from which the inversion begins (which in practice would

normally be the mean structure) is very different from the target.

Zhang and Curtis (2021) showed that one can improve accuracy of the

inversion results by performing an inversion using low frequency data first,

and using the results of the low frequency inversion as the starting distribu-

tion for high frequency inversions. Therefore, we first perform SVGD on

low frequency data generated by a Ricker wavelet with a dominant fre-

quency of 4 Hz with the same Gaussian noise as above added to the data

(a standard deviation of 0.1). The inversion is conducted using 600 particles

that are initially generated from the prior distribution (e.g., Fig. 22B) and the

matrix kernel described in Eq. (44) where Q�1 ¼ diag(var(m)) and var(m)

is the variance computed across those particles. For parameters with higher

variance this kernel applies higher weights to the posterior gradients, and

also enables more distant interactions with other particles. As in the pre-

vious section we first transform those particles to an unconstrained space

using Eq. (24) and update them using Eq. (42) for 600 iterations. Those

particles are then used as the starting particles for the high frequency inver-

sion and are updated for another 300 iterations. The mean and standard

deviation are calculated after transforming those particles back to the orig-

inal parameter space.

Fig. 23 shows the mean and standard deviation structures obtained using

the above strategy. A comparison of the results to those obtained using only

low frequency data and only high frequency data is discussed in Zhang and

Fig. 23 The mean structure and its point-wise standard deviation obtained using SVGD
given high frequency data and using particles from low frequency inversion as the
starting distribution.
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Curtis (2021). Overall the mean exhibits similar features to the target struc-

ture, except that the deeper part (>2 km) is slightly different from the target

structure because of the poor illumination. The standard deviation has qual-

itatively similar features to the mean as we observed in the previous section.

For example, in the near surface (<1 km) the low velocity anomalies are

associated with lower uncertainty, and in the deeper part (>1 km) there

are lower uncertainties at the location of high velocity anomalies. This phe-

nomenon probably reveals the fact that waves spend comparatively longer in

low velocity area which results in higher sensitivity. Note that due to the

stronger prior information and better data coverage, the shallower part

(<1 km) has lower uncertainty compared to the deeper part.

To further analyze the results, in Fig. 24 we show marginal distributions

at four locations (white pluses in Fig. 23): (2.0, 0.6) km, (2.0, 1.2) km, (2.0,

1.8) km, and (2.0, 2.4) km. Overall the true velocity values are around the

high probability area, except that at the depth of 2.4 km the true value

slightly deviates from the value with highest probability because of the poor

illumination. At the deeper locations (1.8 and 2.4 km) the marginal

distributions show complex, multimodal distributions which reflects the

complexity of this inverse problem.

The above inversion took about 10,055 CPUhours for the total 900 iter-

ations and required approximately 111.7 hours to run on 90 Intel Xeon

CPU cores. In practice for larger datasets the method can be implemented

using stochastic minibatch optimization. In addition, since the method does

not require strong prior information, it could also be used to provide a good

starting model for standard linearized FWI by using a small part of a large

Fig. 24 The marginal distributions at the horizontal location of 2 km and the depth of
0.6 km, 1.2 km, 1.8 km, and 2.4 km obtained using SVGD given high frequency data and
using particles from low frequency inversion as the starting distribution. Red lines
denote the true values.
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dataset. In addition, one may be able to perform the method on data types

that require lower computational cost first, e.g., travel time tomography, and

use those results as the starting distribution for VFWI to improve efficiency.

4. Discussion

In this study prior probabilities are simply set as uniform distributions.

While Uniform prior probabilities are simple to impose and are useful to

explore properties of different methods, they may cause complex posterior

pdfs which are hard to explore. In practice in cases where we have more

knowledge about the subsurface, a more informative prior distribution

should ideally be used. For example, some prior regularization can be used

to produce smoother models (MacKay, 2003), or a Gaussian process may be

used to inject prior information with adaptable complexity into inference

scheme (Ray & Myer, 2019). Neural networks can also be used to encode

geological information into prior distributions (Laloy, H�erault, Lee,

Jacques, & Linde, 2017; Mosser, Dubrule, & Blunt, 2020). For likelihood

functions we simply used Gaussian distributions with a known, fixed data

noise level. In practice this noise level might be estimated from data using

the maximum likelihood method (Ray et al., 2016; Sambridge, 2013) or

a variety of other methods (Bensen, Ritzwoller, & Yang, 2009; Nicolson,

Curtis, & Baptie, 2014; Nicolson, Curtis, Baptie, & Galetti, 2012;

Weaver, Hadziioannou, Larose, & Campillo, 2011; Yao & Van Der Hilst,

2009). It may also be possible to estimate the noise level in variational

methods using a hierarchical Bayesian formulation (Ranganath, Tran, &

Blei, 2016). To further improve the results a non-Gaussian likelihood func-

tion might also be used at little or no additional cost to the method.

In above examples we used a fixed regular grid of cells to parameterize

the subsurface which can cause overfitting or underfitting of the data. For

instance, in the travel time tomography example we observed a lower veloc-

ity loop with high uncertainty between the middle velocity anomaly and the

receiver array (Fig. 13), which may be caused by overfitting as there is no

such structure in the true model. To resolve this issue, an optimal grid might

be sought. This can be achieved by applying a series of different grids and

selecting the best one based on Bayesian or other model selection theories

(Arnold & Curtis, 2018; Curtis & Snieder, 1997; Walter & Pronzato, 1997).

For example, the ELBO calculated implicitly in variational methods can be

used as a model selection criterion (Bernardo et al., 2003; McGrory &
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Titterington, 2007; Sato, 2001). However, we note that the statistical theory

behind such a design criterion is currently under explored, especially com-

pared to McMC methods: in McMC a variety of well-established methods

are available to perform model selection, for example, reversible-jump

McMC (Green, 1995), sequential Monte Carlo (Smith, 2013) and nested

sampling (Feroz & Hobson, 2008; Skilling, 2004). Further research is

required to develop appropriate model selection in variational inference.

Apart from regularly gridded cells, we note that other more advanced param-

eterizations can be used in variational methods to provide more flexibility,

such as Voronoi cells (Bodin& Sambridge, 2009; Zhang et al., 2018), wavelet

parameterization (Fang & Zhang, 2014; Hawkins & Sambridge, 2015;

Zhang & Zhang, 2015), Johnson-Mehl tessellation (Belhadj, Romary,

Gesret, Noble, & Figliuzzi, 2018) and Delaunay and Clough-Tocher para-

meterizations (Curtis & Snieder, 1997; Hawkins, Bodin, Sambridge,

Choblet, & Husson, 2019).

While we focused on variational inference using KL divergence to mea-

sure difference between two distributions, it is also possible to use other

measures of divergence. For example, Minka (2013) proposed the expecta-

tion propagation method by using KL divergence in the other direction, that

is KL[pjjq] rather than KL[qjjp]. Other more general divergences, such as

α-divergence (Amari, 1985) and f-divergence (Ali & Silvey, 1966) have also

been employed within variational inference (Bamler, Zhang, Opper, &

Mandt, 2017; Hernandez-Lobato et al., 2016; Li & Turner, 2016; Wang,

Liu, & Liu, 2018). Stein’s discrepancy provides another measure of differ-

ence between two distributions (Gorham & Mackey, 2015; Liu, Lee, &

Jordan, 2016; Stein et al., 1972) and can also be used to develop variational

methods (Liu, Ramachandran, Liu, & Peng, 2017; Ranganath, Altosaar,

Tran, & Blei, 2016).

Since the ELBO is a nonconvex objective function, variational inference

can converge to a local optimum. For instance, in our travel time tomog-

raphy example the results obtained using normalizing flows show irregular-

ities and nonsmoothness, which likely reflects convergence to a local

optimum. To reduce this issue, more advanced optimization methods can

be used, for example, variational tempering (Mandt, McInerney, Abrol,

Ranganath, & Blei, 2016), the trust-region method (Theis & Hoffman,

2015) or population variational inference (Kucukelbir & Blei, 2014).

Different variational methods may also be combined together to increase

robustness. For example, the probability distribution obtained using ADVI

can be used as a starting distribution for normalizing flows and SVGD.
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Monte Carlo sampling methods and variational inference are different

methods that can be used to solve similar problems. Monte Carlo methods

are usually applied using Markov chains, which generate a chain of samples

that approximately follow the posterior pdf; variational inference seeks an

optimal approximation to the posterior pdf within a predefined family of

probability distributions. Monte Carlo methods are well-understood and

are guaranteed to converge to the true posterior pdf asymptotically as the

number of samples tends to infinity (Robert & Casella, 2013), whereas

the theoretical aspects of accuracy and convergence of variational inference

are still unknown. The two methods can be used together to combine the

merits of both. For example, a variational approximation can be used to

build proposal distributions for Metropolis-Hastings algorithms to improve

their efficiency (De Freitas, Højen-Sørensen, Jordan, & Russell, 2001), or

McMC steps can be incorporated into variational inference to improve

accuracy (Salimans, Kingma, & Welling, 2015). Further research on the

interface between the two methods is certainly an interesting topic.

We have applied variational inference methods to petrophysical inver-

sion, 2D travel time tomography, and 2D FWI, and demonstrated their effi-

ciency in solving these problems. However, it remains a challenge to apply

variational methods to very high dimensional inverse problems, e.g., 3D

FWI. In such cases the forward modeling itself is usually computationally

extremely expensive. For methods like normalizing flows we may end up

with very large neural networks, which can occupy huge memory and

become very difficult to train. For SVGD we are likely to need many more

particles than used herein, which may demand more resources than one can

afford. In addition kernel metrics used in SVGD may become inefficient in

high dimensional space due to the curse of dimensionality (Wainwright,

2019). Therefore further work is required to explore the properties of var-

iational methods in a range of high dimensional, practical applications.

5. Conclusion

In this chapter we reviewed the basic concepts of variational inference,

and discussed four specific methods: mean-field approximation, automatic

differential variational inference (ADVI), normalizing flows and Stein var-

iational gradient descent (SVGD). Mean-field approximations can provide

very efficient methods, but they assume mutually independent parameters.

ADVI uses a Gaussian distribution to approximate the posterior distribution,

again leading to a reasonably efficient method but results that may be biased.
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Both normalizing flows and SVGD use a series of invertible transforms to

transform an initial distribution to an approximation to the posterior distri-

bution. Normalizing flows use a series of analytical invertible transforms,

whereas SVGD uses an implicit transform to rearrange a set of particles from

an initial distribution to represent the posterior distribution. We reviewed

previous applications of the methods to a range of different examples:

petrophysical inversion, travel time tomography and full-waveform inver-

sion (FWI). In travel time tomography example we compared the results

from ADVI, normalizing flows, and SVGD with those obtained using

Monte Carlo methods. The results show that ADVI is the cheapest method

but provides biased results due to the implicit Gaussian assumption. In com-

parison, normalizing flows, and SVGD can provide more accurate approx-

imations to the results from the Monte Carlo method. Normalizing flows

further improved efficiency of the inversion compared with SVGD. To fur-

ther demonstrate variational methods, we applied SVGD to full-waveform

inversion (FWI) problems and demonstrated that SVGD can produce accu-

rate results to FWI problems, similar to those from Monte Carlo where the

comparison has beenmade.We conclude that variational inference is an effi-

cient and valuable tool to solve Geophysical inverse problems. We also note

that variational inference is still in a phase of rapid development, for exam-

ple, to solve the variational optimization problem more efficiently and to

make the method more feasible to large scale inverse problems, so the

method may become more accurate and more efficient in the near future.

Glossary
forward function a function that predicts data for any particular values of model

parameters

inversion the process that infers the value of model parameters from measurements or

observations

prior pdf a probability density function of model parameters which describes information

that is independent of the data

likelihood function a probability density function that defines the probability of observing

certain data give a specific set of model parameters

posterior pdf a probability density function which describes the uncertainty of model

parameters by combining the prior information and the information from the data

evidence the probability distribution of observed data marginalized over the model

parameters

ELBO a lower bound for the evidence

Bayesian inference a method that uses Bayes’ theorem to infer the posterior probability

distribution of model parameters given the observed data

variational inference a method that uses optimization to solve Bayesian inference problem
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KL divergence the Kullback–Leibler divergence is a measure of difference between two

probability distributions

variational family a family of probability density functions from which one seeks an opti-

mal approximation to the posterior probability density function

mean field approximation probability density functions that assume mutually indepen-

dent parameters

ADVI automatic differential variational inference, a method that seeks an optimal Gaussian

distribution to approximate the posterior probability distribution

normalizing flow an invertible transformwhich transforms an initial distribution to a target

distribution

SVGD Stein variational gradient descent, a method that optimizes a set of model samples to

approximate the posterior probability distribution
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