
1.  Introduction
Geoscientists build models of the subsurface to understand properties and processes in the Earth's interior. 
The models are usually parameterized in some way, so to constrain the models, we must solve a parameter 
estimation problem. Data are recorded which provide constraints, together with prior knowledge. However, 
since the physical relationships between parameters and data usually predict data given the parameters 
(known as the forward calculation) but not the reverse, the solution must be found using inverse theory.

Geophysical inverse problems usually have nonunique solutions due to noise in the data, to nonlinearity 
of the physical relationships between model parameters and data, and to fundamentally unconstrained 
combinations of parameters. Uncertainties in parameter estimates must therefore be quantified to inter-
pret inversion results correctly. Unfortunately, estimating uncertainty in nonlinear inverse problems can 
be computationally expensive, and the cost increases both with the number of parameters, and with the 
computational cost of the forward calculation. In this study, we therefore solve two different types of seis-
mic tomography problems which each have fewer than 100 parameters, and have relatively rapid forward 
functions (each evaluation takes on the order of seconds). This allows us to evaluate solutions sufficiently 
accurately to thoroughly test a new method of Geophysical inversion.

Geophysical inverse problems are traditionally solved by linearizing (approximating) the nonlinear phys-
ics, and using optimization methods which seek a model that minimizes the misfit between observed and 
predicted data (Aki & Lee, 1976; Dziewonski & Woodhouse, 1987; Iyer & Hirahara, 1993). However, despite 
their wide applications, linearized procedures cannot produce accurate estimates of uncertainty because 
data uncertainty distributions can deviate substantially from analytic forms of probability such as Gaussi-
ans or Uniform distributions that can be propagated through linearized methods efficiently, and since the 
distribution of possible models post inversion can be strongly affected by nonlinearity in the physics (Bo-
din & Sambridge, 2009; Galetti et al., 2015; Smith, 2013; Zhang et al., 2018). Methods based on nonlinear 
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Bayesian formulations of inverse problems have been introduced to provide more accurate uncertainty 
estimates. In such methods one finds a so-called probability density function (pdf) which describes the 
nonuniqueness of the parameters, by combining information independent of the data called prior informa-
tion with information in the data. These methods include Markov chain Monte Carlo (McMC) sampling 
methods (Bodin & Sambridge, 2009; Galetti et al., 2015; Malinverno & Leaney, 2000; Mosegaard & Taranto-
la, 1995; Sambridge, 1999; Zhang et al., 2018) and variational inference (Nawaz & Curtis, 2018, 2019; Nawaz 
et al., 2020; Zhang & Curtis, 2020a, 2020b).

McMC methods generate a set of samples from the posterior probability density function (Brooks et al., 2011), 
which can be used thereafter to derive useful statistics which describe that pdf (e.g., mean, standard devi-
ation, etc.). McMC methods are quite general from a theoretical point of view and have been applied to a 
range of geophysical inverse problems, for example, to surface wave dispersion inversion (Bodin et al., 2012; 
Galetti et al., 2017; Shen et al., 2012; Young et al., 2013; Zhang et al., 2018; Zhang, Hansteen, et al., 2020), 
seismic travel time tomography (Bodin & Sambridge, 2009; Fichtner et al., 2018; Galetti et al., 2015; Piana 
Agostinetti et al., 2015; Zhang, Roy, et al., 2020), full-waveform inversion (Gebraad et al., 2020; Khoshkholgh 
et al., 2020; Kotsi et al., 2020; Ray et al., 2016, 2017), gravity inversion (Bosch et al., 2006; Rossi, 2017), mag-
netotellurics inversion (Jones & Hutton, 1979), electromagnetic inversion (Minsley, 2011; Ray et al., 2013) 
and fluid flow history matching (Mohamed et al., 2010; Subbey et al., 2003). However, such solutions are 
acquired at significant expense, typically requiring days or weeks of computer run time, and hence cannot 
be applied in scenarios that require rapid solutions such as real-time monitoring (Cao et al., 2020; Duputel 
et al., 2009), or when many similar inversions must be performed (Käufl et al., 2016).

Variational inference provides a different way to solve Bayesian inference problems. The method seeks 
an optimal approximation to the posterior pdf within a predefined, expressive family of probability distri-
butions by minimizing the difference (often measured by the Kullback-Leibler divergence) between the 
approximating pdf and the posterior pdf (Blei et al., 2017). Since the method solves the inference problem 
using optimization rather than stochastic sampling, it can be more computationally efficient than Monte 
Carlo methods. Variational methods have been applied to invert for geological facies and petrophysical 
properties (Nawaz & Curtis,  2018,  2019; Nawaz et  al.,  2020), and for travel time tomography (Zhang & 
Curtis, 2020a; Zhao et al., 2020), full waveform inversion (Zhang & Curtis, 2020b) and seismic denoising 
(Siahkoohi et al., 2020). However, although variational inference can be relatively efficient, it still typically 
requires large compute times to obtain solutions for the problems, and therefore may not provide sufficient-
ly rapid solutions for real-time monitoring, nor for cases where many similar inversions are required.

Neural network-based methods offer another efficient alternative for certain classes of inverse problems 
that must be solved many times with new data of similar type. An initial set of Monte Carlo samples is gen-
erated from the pdf that describes the a priori information (the so-called prior pdf), and synthetic data are 
simulated computationally for each of these samples. Neural networks are flexible mappings which can be 
trained to emulate any specific inverse mapping from data to parameter space by fitting this set of examples 
of that mapping (called the training data set; Bishop, 2006). Thereafter, the trained neural networks inter-
polate the inverse mapping between the training examples, and can be evaluated efficiently for any new, 
measured data set to provide estimates of corresponding parameter values. Hence they can be used in appli-
cations that require solutions to many different inverse problems within the class of problems represented 
by the training data. Neural networks were first introduced to Geophysics by Röth and Tarantola (1994) to 
estimate subsurface velocity from active source seismic waveforms, and have been applied to seismic veloc-
ity inversion using earthquake data (Moya & Irikura, 2010) and semblance gathers (Araya-Polo et al., 2018) 
and to seismic anisotropy inversion (You et al., 2020). Laloy et al. (2021) introduced vector-to-image transfer 
networks to solve inverse problems and applied them to transient groundwater flow and ground penetrating 
radar tomographic problems. Mosser et al. (2020) used so-called generative adversarial networks to repa-
rameterize geologically correlated Earth structure with a relatively low number of parameters, and inverted 
for the structure that best fit synthetic seismic waveform data.

The above studies did not provide estimates of uncertainties since for each input data vector their neural 
networks only predict one parameter vector. Devilee et al. (1999) proposed the first geophysical probabilistic 
form of neural networks which provide discretized Bayesian posterior pdfs, and used them to invert surface 
wave dispersion data for crustal thickness maps and their uncertainties across Eurasia. In an alternative 
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formulation, mixture density networks (MDNs) output a probability distribution that is defined by a sum 
of analytic pdfs called kernels, such as Gaussian distributions, and can be trained to map data to corre-
sponding posterior pdfs (Bishop, 2006). MDNs have been applied to surface wave dispersion inversion (Cao 
et al., 2020; Earp et al., 2020; Meier et al., 2007a, 2007b), two-dimensional (2D) travel time tomography 
(Earp & Curtis, 2020), petrophysical inversion (Shahraeeni & Curtis, 2011; Shahraeeni et al., 2012), earth-
quake source parameter estimation (Käufl et  al.,  2014,  2015), Earth's radial seismic structure inversion 
(de Wit et al., 2013), pore pressure prediction (Karmakar & Maiti, 2019), mapping of lithology (Karmakar 
et al., 2018), wind prediction (Men et al., 2016), acoustic-articulatory inversion (Richmond, 2007) and nu-
clei detection (Koohababni et al., 2018). However MDNs become difficult to train in high dimensionality 
because of numerical instability, and they suffer from mode collapse which means that some modes (max-
ima) of the posterior pdf are missing in the results (Cui et al., 2019; Curro & Raquet, 2018; Hjorth & Nab-
ney, 1999; Makansi et al., 2019; Rupprecht et al., 2017). Consequently they are less effective when inferring 
correlations between parameters, so in practice usually very low (often single) dimensional marginal distri-
butions are inferred (Earp & Curtis, 2020; Earp et al., 2020; Meier et al., 2007a, 2007b).

To estimate full posterior pdfs, Ardizzone et al. (2018) proposed to use invertible neural networks (INNs) to 
solve probabilistic inverse problems, and showed that the method can provide accurate approximations to 
multimodal, highly correlated posterior distributions. INNs provide bijective (two-way) mappings between 
inputs (models) and outputs (data), and can be trained to estimate posterior pdfs by introducing addition-
al latent variables in the outputs (data) side. They have been used to solve inverse problems in medicine 
(Ardizzone et  al.,  2018), astrophysics (Osborne et  al.,  2019), optical imaging (Adler et  al.,  2019; Moran 
et al., 2018) and morphology (Sahin & Gurevych, 2020). INNs have also been used to solve a variational 
problem to parameterize uncertainty for reservoir characterization (Rizzuti et al., 2020), and the idea of 
auxiliary variables has also been used in seismic full waveform inversion (Huang et al., 2018). In this study, 
we use INNs to solve seismic tomographic inverse problems.

The INN method proposed in Ardizzone et al. (2018) does not account for uncertainty in the results caused 
by data noise. To resolve this issue, in this study, we include the random data noise as additional model 
parameters. In addition, the method uses maximum mean discrepancy to measure differences between two 
distributions during training, and varies the network parameters so as to minimize this measure. However, 
this measure becomes less effective as the dimensionality increases because of the curse of dimensionality 
(Ramdas et al., 2015). We show that this can be overcome using a maximum likelihood criterion to train 
INNs.

In the next section, we describe the basic structure of INNs, and how they can be trained to solve Bayesi-
an inference problems. We then apply the method to two types of seismic inverse problems: spatially-1D 
surface wave dispersion depth inversion and spatially-2D travel time tomography, and compare the results 
with those obtained using McMC and MDNs. We demonstrate that INNs can provide comparable probabil-
istic results with those obtained using McMC, including correlations between parameters, whereas MDNs 
provide far less information about inter-parameter correlations. In our travel time tomography examples, 
the computational time of training INNs and MDNs, including generation of the synthetic training data, is 
comparable to one single run of McMC. We thus demonstrate that INNs can provide fast, accurate approx-
imations of posterior pdfs even if the problem is solved only once; thereafter they can be used to provide 
rapid solutions for subsequent problems within the same problem class.

2.  Methods
2.1.  Bayesian Inference

Bayesian methods update a prior probability density function (pdf)  p m  with new information from data 
dobs to produce a probability distribution of model parameters m post inversion, which is often called a 
posterior pdf and written as  obsp m d . According to Bayes’ theorem,


( ) ( )

( )
( )

obs
obs

obs

p p
p

p
d m m

m d
d

� (1)
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where p(dobs|m) is the likelihood which is the probability of observing data dobs if model m was true, and 
p(dobs) is a normalization factor called the evidence. The likelihood function is often assumed to follow a 
Gaussian probability density function around the data predicted synthetically (using known, usually non-
linear physical relationships) from model m, as this is assumed to be a reasonable approximation to the pdf 
of uncertainties or errors in measured data. Estimating the posterior distribution given prior information 
and the likelihood is called Bayesian inference.

2.2.  Invertible Neural Networks

Invertible neural networks (INN) are a class of networks that provide bijective mappings between inputs 
and outputs. A typical design of an INN contains a serial sequence of reversible blocks, each of which con-
sists of two coupled layers (Dinh et al., 2016; Kingma & Dhariwal, 2018). Each block's input vector u (for 
example, u can be the model vector) is split into two halves u1 and u2, which are transformed by an affine 
function with coefficients exp(si) and ti to produce the output (v1, v2):

v u u u

v u u u

1 1 2 2 2 2

2 2 1 1 1 1

 
 




exp s t

exp s t

( ( )) ( )

( ( )) ( )
� (2)

where ⊙ represents element-wise multiplication. This process is trivially invertible for any functions t and s:

u v u u

u v u u

2 2 1 1 1 1

1 1 2 2 2 2

  
  

( ( )) ( ( ))

( ( )) ( ( ))

t exp s

t exp s


� (3)

Importantly functions si and ti do not need to be invertible themselves. In this study, we use fully con-
nected neural networks or convolutional neural networks to represent trainable functions si and ti. To im-
prove interaction between parameters of the input vector, we add a permutation layer after each reversible 
block (Equation 2), which shuffles outputs of that block in a randomized, but fixed way as in Ardizzone 
et al. (2018).

2.3.  Solving Inverse Problems Using INNs

We first review the idea of using INNs to solve inverse problems as proposed by Ardizzone et al. (2018). 
INNs provide a natural way to solve inverse problems. For example, training an INN in the forward direc-
tion on a well-understood forward process d = F(m), one can obtain a solution to the inverse problem for 
free by running the trained network in the reverse direction. However, in practice inverse problems often 
have nonunique solutions. To account for uncertainties in the solution, additional latent variables z (Fig-
ure 1) can be introduced to the outputs d (Ardizzone et al., 2018). Though multiple models m can produce 
the same d, the idea of adding latent variables is that the pair comprising one model m and the augmented 
vector (d, z) is unique. So the purpose of adding latent variables z is that the relationship between the 
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Figure 1.  A conceptual figure of invertible neural networks. A latent random variable z is added to the outputs to 
account for uncertainties in the inputs m. The latent variable can follow any probability distribution, and is chosen to 
follow a standard Gaussian distribution in this study. The posterior distribution of m can be obtained by sampling z for 
a fixed measurement d and running the trained neural network backwards. To appropriately account for noise in the 
data, we include random data noise ϵ as additional model parameters.



Journal of Geophysical Research: Solid Earth

range of models and the space of augmented vectors becomes one-to-one. 
The networks therefore associate model parameters m to a unique pair 
(d, z) of measurements and latent variables, written as (d, z) = f(m; θ) 
where θ represents parameters of the neural networks. As in Ardizzone 
et al. (2018) one can train the neural network to approximate the forward 
process, that is f(m;θ)d ≈ F(m) where the subscript d represents the data 
part of the network output, and meanwhile ensure the latent variable z 
predicted by the network are distributed according to a chosen distribu-
tion, for example, a Gaussian distribution. The solution of the inverse 
problem can be obtained thereafter by running the network backwards 
given a specific measurement d* with latent variable z selected randomly 
from the same Gaussian distribution:

m d z

z 0 I





f

1
( , ; )

( , )

* 


� (4)

By taking many samples of (d*, z) where z is generated from the chosen 
Gaussian distribution and d* is held constant and repeated, the trained 
network transforms the distribution p(z) to the posterior distribution 
p(m|d*), which describes the distribution of models that can generate 

the exact data d* (we introduce data measurement uncertainties below). Though in Equation 4, we used a 
Gaussian distribution for the latent variable z, theoretically any other distributions can be used.

Define the output distribution of the network in the forward direction to be q(d, z; θ):

 ( , ; ) ( ) / ( ; )fq p detJd z m m� (5)

where p(m) is the prior distribution of model m, and 
 



( ; )( ; )f

fJ mm
m

 is the Jacobian of the forward 

transform embodied in the network (Devore & Berk, 2012). Given those expressions, the training loss func-
tion  can be expressed as:

   


i

N
i i i i i i

f q p p

1

 d m d z d z( ; ) [ ( , ; ), ( ) ( )]  MMD� (6)

where each model vector corresponds to a single data vector and a single latent vector. These are grouped 
into sets or batches; each batch is labeled by superscript i, and N is the number of batches. p(di) is the prior 
distribution of data of the ith batch which is generated by applying the forward function F(m) over the pri-
or distribution p(mi), MMD represents the Maximum Mean Discrepancy which is a measure of difference 
between two distributions, and α is the relative weight of the MMD term. Note that this loss function only 
needs to be trained in the forward direction. MMD can be evaluated using only samples from the two distri-
butions in its arguments. For example, assume X and X′ are random variables with distribution p, and that 
Y and Y′ are random variables with distribution q, then the MMD can be expressed as:

    , , ,MMD[ , ] E [ ( , )] 2E [ ( , )] E [ ( , )]X X X Y Y Yp q k X X k X Y k Y Y� (7)

where k is a kernel function. Here, we use the Inverse Multiquadratic function k x x x x h( , ) / ( ( ) / )   1 1 2
2   

as it has heavier tails than a Gaussian kernel and provides meaningful gradients for outliers (Tolstikhin 
et al., 2017). The MMD equals zero if and only if p = q (Gretton et al., 2012). Figure 2 shows an example of 
MMD between two Uniform distributions which have the same mean value but different widths: one has 
a fixed width 1, while the other has various widths from 0.1 to 2.1. The MMD reaches zero when the two 
distributions are identical. Ardizzone et al. (2018) showed that when the loss in Equation 6 reaches zero, the 
neural network produces the posterior distribution p(m|d*) for a given measurement d* (see proof of this 
result in Appendix A). In practice to facilitate the convergence of training, a loss function is also included 
on the input side:
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Figure 2.  An example of Maximum Mean Discrepancy (MMD) between 
two Uniform distributions which have the same mean value but different 
widths: one has a fixed width 1, the other one has various widths from 
0.1 to 2.1 (horizontal axis in the figure). MMD reaches zero when the two 
distributions are identical.
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    


   
1

( ; ) MMD[ ( , ; ), ( ) ( )] MMD[ ( ; ), ( )]
N

i i i i i i i i

i
f q p p q pd m d z d z m m� (8)

where q p p J
i i i

f

i i
( ; ) ( ) ( )/| ( , ; )|m d z d z  1  is the input distribution predicted by the neural network acting 

in the inverse direction and β is the relative weight. In the training process the hyperparameters α and β 
are selected manually to give a balance between different terms and are kept the same for all batches. To 
train the network, the parameters θ are optimized using the ADAM method of stochastic gradient descent 
(Kingma & Ba, 2014) to minimize the loss function in Equation 8. After training, the network provides an 
approximation function f which maps a model to its corresponding data, as well as a distribution q(d, z) 
which provides an estimate of the true distribution p(d)p(z). For a specific measurement d*, the posterior 
distribution is obtained using Equation 4.

2.4.  Bayesian Inference Using INNs

The method described above only accounts for intrinsic uncertainties caused by nonlinearity of underlying 
physics and neglects uncertainties caused by data noise. This is because theoretically the method requires 
the likelihood function to be a delta function which cannot be achieved in practice due to noise in the data 
(see the proof in Appendix A).To appropriately account for noise in the data such that the estimated poste-
rior pdfs using INNs are consistent with the posterior pdfs in Bayesian inference, we treat random noise as 
additional model parameters (Figure 1), that is, we assume:

 


( )
( , )

Fd m
0 Σ


 

� (9)

where Σ is the covariance matrix of data noise. Although here, we assume that noise follows a Gaussian 
distribution, in principle any other noise distributions can be used. Note that this idea of treating noise as 
additional parameters has also been used in training MDNs (Earp et al., 2020), but in that case the inputs to 
the network were the standard deviations of measured data uncertainties. Although in principle, we could 
include a full covariance matrix, in this study, we assume Σ to be a diagonal matrix. The input dimension-
ality of the network now becomes (see Figure 1):

 (inputs) ( ) ( )dim dim dimm d� (10)

In this way the estimated posterior pdfs approximate the correct solution for Bayesian inference (see dis-
cussion in Appendix A). After training for a specific, noisy measurement dobs, the Bayesian posterior pdf in 
Equation 1 can be obtained similarly using Equation 4 with d* substituted with dobs. Since INNs require the 
same dimensionality of inputs and outputs, the dimensionality of z becomes:

dim dim dim

dim dim

dim

( ) ( ) ( )

( ) ( )

( )

z d

d

m

 
 


outputs

inputs� (11)

And because the network also needs to capture the distribution of noise parameter ϵ, the dimensionality of 
z will need to be higher than dim(m). In this case zeros can be padded to the input side to match the input 
and output dimensionalities.

Note that trained INNs also provide approximating forward functions. For example one can obtain the dis-
tribution of data with noise by running the network forward with noise parameter ϵ distributed according 
to its assumed distribution given a fixed model m. In our case, since we assumed Gaussian noise, the same 
distribution of data can actually be obtained by adding random noise to the synthetic data. However in cases 
in which noise distributions are not explicitly known, for example noise caused by assumptions in forward 
modeling, INNs provide a way to generate associated data distributions.
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Although MMD is an efficient method to discriminate between two distributions in low dimensionality, it 
becomes less efficient (requires many more samples) in high dimensionality (Ramdas et al., 2015). To im-
prove the efficiency of the method in such cases, we add a maximum likelihood term to the loss function. 
Define the probability distribution of (m, ϵ) as p(m, ϵ) = p(m)p(ϵ) where p(ϵ) is the distribution of noise 
parameter ϵ. The distribution of the network output (d, z) can be expressed as:

q p detJ

p f detJ

f
( , ; ) ( , )| ( , ; )|

( , ) ( , ; ) |

d z m d z

m d z

 





 













1

1

ff
1 ( , ; )|d z 

� (12)

where we have used the fact that (m, ϵ) = f−1(d, z). The distribution in Equation 12 is the likelihood function 
of data (d, z) given the network parameters θ. Thus, we can train the network by maximizing the likelihood 
function:

    


i

N
i i i i i i i

f q p p q

1

 d m d z d z( , ; ) [ ( , ; ), ( ) ( )] [ (   MMD MMD mm m

m d z

i i i i

i i i i

p p

log p f de

, ; ), ( ) ( )]

( ( , ) ( , ; ) |

 





  






, , ,

1
ttJ

f

i i

1 ( , ; )|)d z 
� (13)

where γ is the relative weight of the likelihood term. Maximizing this likelihood term with respect to the 
parameters θ of the network for all training data (d, z) ensures that the network transforms between distri-
butions p(m)p(ϵ) and p(d)p(z) (Bishop, 2006). Note that this likelihood term therefore achieves the same 
goal as the MMD terms alone, but is more effective in high dimensionality. We demonstrate the efficiency 
of the new loss function using our second example in the online supporting information.

Figure 3 shows a toy example application of the method. The training data (Figure 3a) are generated using 
a function y = x2 + ϵ where x ∼ Uniform(−1, 1) and  (0, 0.04)  . We train INNs to predict the posterior 
pdf p(x|y∗) for a given y∗ using methods described in Section 2.3 and 2.4. For example, Figure 3b shows the 
pdf predicted by the trained INN using the method in Section 2.4 (with ϵ) at y = 0.6 (orange histogram), 
which provides an accurate approximation to the results obtained by Markov chain Monte Carlo (blue 
line). In comparison Figure 3c shows the pdf at y = 0.6 predicted by the trained INN using the method in 
Section 2.3 (without ϵ). Figure 3d shows the zoomed-in distributions obtained using different methods. The 
results show that without adding noise parameters to the modeling process, the trained INN can produce 
biased results compared to McMC. Figure 3e shows the distribution of ϵ (orange histogram) predicted by the 
trained INN (with ϵ), which matches the true distribution (blue line) as expected. In Figure 3f, we show the 
data distribution predicted by the trained INN (with ϵ) when x = 0.5, which gives an accurate approximation 
to the true distribution (blue line). This example shows the potential of INNs to predict accurate posterior 
pdfs as well as to approximate probabilistic forward functions.

3.  Synthetic Tests
3.1.  1D Surface Wave Dispersion Inversion

As a first experiment, we train an INN to predict posterior pdfs for 1D seismic velocity structure with depth, 
given surface wave dispersion data. The subsurface is parameterized using 10 regular layers with 0.1 km 
spacings for the shallower part (<0.5 km) and 0.2 km spacings for the deeper part (>0.5 km) since surface 
wave dispersion inversions are known to suffer diminishing spatial resolution with depth. For each layer, we 
specify a Uniform prior distribution for the shear wave velocity (Figure 4a), whose velocity range is set to be 
typical for the near surface (Zhang, Hansteen, et al., 2020). P-wave velocity and density are calculated from 
the shear velocity using Vp = 1.16Vs + 1.36 (Castagna et al., 1985) and   0.251.74 pV  (Brocher, 2005) where 
Vp and Vs are P and S wave velocity in km/s and ρ is density in g/cm3. We generate 100,000 models from 
the prior pdf and calculate Rayleigh wave dispersion curves corresponding to each model using a modal 
approximation method (Herrmann, 2013) over the period range 0.7–2.0 s with 0.1 s spacing (Figure 4b). We 
added Gaussian noise with a standard deviation of 5 m/s to those calculated dispersion curves, which is a 
typical noise level in near surface ambient noise studies (Zhang, Hansteen, et al., 2020). Note that to ensure 
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the computed dispersion curves are fundamental mode Rayleigh waves, within the prior pdf we ensured 
that the top layer has smallest shear velocity—otherwise the wave recorded on the Earth's surface would be 
a higher mode Rayleigh wave (Zhang, Hansteen, et al., 2020). We use 90 percent of those model and disper-
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Figure 3.  A toy example that uses invertible neural networks (INNs) to predict posterior pdfs. (a) Training dataset. (b) Posterior pdfs of x obtained using INN 
with ϵ (orange histogram) compared with the results obtained using McMC (blue histogram) when y = 0.6. (c) Same posterior pdfs as in (b) but obtained using 
INN without ϵ (red histogram). (d) Zoomed-in posterior pdfs obtained using different methods. (e) Noise parameter distribution obtained using INN with ϵ 
(orange histogram) and the true distribution (blue line). (f) The distribution of y predicted by INN with ϵ (orange histogram) and the true distribution (blue 
line) when x = 0.5.

Figure 4.  (a) Marginal prior distributions of shear velocities, and (b) the prior distribution of dispersion curves used to 
train neural networks.
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sion curve pairs as training data, and the remaining 10 percent as test data used for independent evaluation 
of network performance.

The INN was designed using four reversible blocks, each of which contains fully connected subnetworks 
(see details in Appendix B1), and was trained using the ADAM optimizer (Kingma & Ba, 2014). We assume 
the neural network has converged when both the training loss and test loss become stationary or when the 
test loss starts increasing. The trained neural network is then used to predict posterior pdfs by running the 
network backwards using 5,000 random values of z in Equation 4 with fixed data vector dobs, and we histo-
gram the resulting set of samples of m to approximate the posterior marginal distribution over each shear 
velocity. We show two examples of the set of predicted marginal posterior pdfs in Figures 5a and 5d. To bet-
ter understand the results, we compared them with those obtained using McMC and MDNs. For McMC, we 
use an adaptive Metropolis-Hastings algorithm (Haario et al., 2001; Salvatier et al., 2016) with 3 chains, each 
of which contains 250,000 samples including a burn-in period of 50,000 samples; the burn-in samples were 
ignored, and every 20th of the remaining 200,000 samples was included in the final set of McMC samples 
used for calculating statistics and marginal distributions. The results are shown in Figures 5b and 5e. For 
the MDN, we use 20 mixture Gaussian kernels and use a network design from Earp and Curtis (2020). The 
MDN network is then trained 20 times with random initialization and the network with best performance 
on the test data is used to produce final results. After training, we generate 5,000 samples from the MDN 
estimated posterior distribution and use them to calculate useful statistics and marginal distributions. The 
results are shown in Figures 5c and 5f.

Overall the three methods produce similar results for both examples. For example, in the top row the re-
sults show lower uncertainties at shallower depths (<0.8 km) due to the stronger prior information in the 
shallower part and the fact that surface waves are more sensitive to shallower structure. In the bottom row 
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Figure 5.  The marginal posterior distributions obtained using (a and d) an invertible neural networks (INN), (b and e) Markov chain Monte Carlo (McMC) and 
(c and f) mixture density networks (MDNs) for two different shear velocity structures. Red lines show the true shear velocity and black lines show the posterior 
mean velocity. At the right side of each panel, we plot marginal distributions for four layers: from top to bottom these are 0–0.1, 0.2–0.3, 0.5–0.7, and 0.9–1.1 km 
depth. Red dashed lines show the true velocity.
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the results of all three methods exhibit higher uncertainties in the third and fourth layers and the mean ve-
locities deviate from the true velocity. This is because surface waves are not sensitive to complex structures 
with thin low velocity zones (Jan van Heijst et al., 1994). However, marginal distributions from the MDNs 
show clear Gaussian shapes, whereas the results from INNs and McMC have non-Gaussian shapes. This 
suggests that MDNs are not accurately approximating non-Gaussian pdfs, and in comparison the INNs have 
produced more accurate results. Note that this limitation of MDNs cannot in general be resolved by increas-
ing the number of kernels as in these results only a few of the available kernels contribute to the final pdfs 
(all others are assigned near-zero weights), a property found also in previous studies (Cui et al., 2019; Curro 
& Raquet, 2018; Earp & Curtis, 2020; Hjorth & Nabney, 1999; Makansi et al., 2019; Rupprecht et al., 2017).

Figure 6 shows the correlation coefficients between parameters estimated using the three methods. The 
results from INNs and McMC show clear correlations between different parameters (Figures  6a,  6b,  6d 
and 6e), whereas the results from MDNs only show correlations for velocities of shallow layers in the top 
row. While this result probably occurs because we used a standard MDN which only contains kernels with 
diagonal covariance matrix, given the number of available kernels (20) it is certainly theoretically possi-
ble that the MDN could have represented the true correlations, at least approximately (e.g., in Figure 6c, 
the signs of correlations between the first, second and third layers are correct). Again, this relatively poor 
result is explained by the fact that MDNs tend to use only a few kernels to represent the solution (Cui 
et al., 2019; Curro & Raquet, 2018; Earp & Curtis, 2020; Hjorth & Nabney, 1999; Makansi et al., 2019; Rup-
precht et al., 2017). Although a MDN with full covariance matrix might produce better results, the problem 
becomes far more complex which can cause numerical instability and computationally expense due to the 
approximately squared number of network outputs that would be required (Williams, 1996).

In comparison INNs naturally estimate full correlation information. For example in our tests INNs provide 
the right correlation information for the first and second off-diagonal elements in the correlation matrix, 
that is, the correlation information between neighboring and every second neighboring layers (although 
the magnitudes are slightly lower than those from McMC). Even for more distant correlations, INNs still 
provide a reasonable approximation. For example, the results from INNs show correlations between the first 
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Figure 6.  Correlation coefficients between shear velocities of different layers obtained using (a and d) an invertible neural networks (INN), (b and e) Markov 
chain Monte Carlo (McMC) and (c and f) mixture density networks (MDNs) for the two different velocity profiles in Figure 5.
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and fourth layer that are similar to results from McMC. To further study correlation information between 
different parameters, in Figure 7, we show the bivariate marginal distributions of velocities at the second 
and fourth layer obtained using different methods for the two velocity profiles. The results from INN and 
McMC clearly show nonlinear trade-offs between the two parameters, whereas those obtained using MDN 
failed to find this information.

In the online supporting information, we show the histograms of residuals (Figure S1) obtained using dif-
ferent methods for the two examples in Figure 5. The residuals are calculated using the ensemble of posteri-
or samples obtained using different methods and are normalized by the noise level, so that the result should 
follow a standard Gaussian distribution N(0, 1). The results show that the residual histograms obtained 
using INNs and McMC are close to the standard Gaussian distribution, whereas those obtained using MDN 
are different from the standard Gaussian distribution. This further demonstrates that INNs can provide 
more accurate posterior estimates than MDNs.

Overall INNs provide more accurate approximations to the results obtained using McMC compared to those 
obtained using MDNs. After training, both INNs and MDNs provide very efficient calculations of posterior 
distributions. For example, the above tests took about 2 s to predict posterior distributions using a trained 
INN or MDN on a typical desktop, whereas McMC took about 3 h on the same machine. Thus trained INNs 
can be applied in scenarios where many repeated inversions are necessary to provide accurate shear veloc-
ity posterior distributions of the subsurface variations over space (Devilee et al., 1999; Meier et al., 2007a; 
Zhang, Hansteen, et al., 2020) or over time (Cao et al., 2020). We discuss the compute power required for 
training the INN in the Discussion section below.

3.2.  Travel Time Tomography

We next examine performance of the methods on a 2D travel time tomographic problem similar to those 
which appear in ambient noise tomography (Shapiro et al., 2005). We solve a problem similar to that de-
scribed in Earp and Curtis (2020) so that the results can be compared with theirs obtained using MDNs. 
A total of 16 receivers are used in our study, each of which also acts as a virtual source (Figure 8a). The 
velocity model is parametrized using a 9 × 9 regular grid (Figure 8a); for ease of visual interpretation, we 
interpolate between the cell centers to construct smooth tomographic maps (e.g., Figure 9). At each grid 
point the prior distribution of velocity is set to be a Uniform distribution in the range 0.5–2.5 km/s. We 
generate 200,000 velocity models from the prior distribution, for each of which the inter-receiver travel time 
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Figure 7.  The bivariate marginal distributions of velocities at the second (horizontal axis) and fourth layer (vertical 
axis) obtained using invertible neural networks (INN), Markov chain Monte Carlo (McMC), and mixture density 
networks (MDN), respectively, for the two velocity profiles in Figure 5.
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data (Figure 8b) are calculated using a fast marching method (Rawlinson & Sambridge, 2004) with 0.05 s 
standard deviation Gaussian noise added. Note that we added a halo of cells with random velocities around 
the receiver array; these will not be imaged but do allow waves to travel both outside and inside of the array 
during inter-receiver propagation. Again, we use 90% of those data as training data and the remaining 10 
percent as test data.

For the INN, we use a network that contains eight reversible blocks (details in Appendix B2) trained using 
the ADAM optimizer (Kingma & Ba, 2014). To better understand the method, we compared the results with 
those obtained using MDNs and McMC. We train MDNs of the same network design as described in Earp 
and Curtis (2020) with 100 Gaussian kernels. Again the MDN network is trained 20 times with random ini-
tialization, and the network with best performance on test data is used to produce final results. For McMC, 
we use a standard adaptive Metropolis-Hastings algorithm with a total of six chains, each of which contains 
1,600,000 samples including a burn-in period of 600,000. Again the burn-in samples were ignored, and 
every twentieth of the remaining 1,000,000 samples was included in the final set of McMC samples used for 
calculating statistics and marginal distributions.

As a first example, we show results for data generated using a smooth velocity model which contains a low 
velocity anomaly in the center within a homogeneous background (Figure 9a), similar to the test model in 
(Earp & Curtis, 2020; Galetti et al., 2015; Zhang et al., 2018; Zhang & Curtis, 2020a). This model is deliber-
ately simple (which permits some degree of intuition about the tomographic solution), but the tomography 
problem is nevertheless substantially nonlinear (Galetti et al., 2015). The model also consists of both per-
fectly smooth regions and a sharp, spatially coherent boundary, whereas smooth regions are not represented 
by any randomly-selected training example (they are all of similar roughness to that in Figure 8a) so any 
reasonable solution must be interpolated between training examples. The example also presents the com-
plication that the true model is defined on a relatively high resolution grid so that the circular boundary is 
not representable in the lower resolution parameterizations used for tomography (and for the set of training 
examples above). Zhang and Curtis (2020a) showed that the Bayesian solution to this problem varies signif-
icantly depending on the parameterization adopted, so in this example, we use identical parameterizations 
for each of the three methods.

The travel time data are calculated using the high resolution grid (81 × 81), and are fed into the trained INNs 
and MDNs to predict posterior pdfs, and are also inverted using McMC to generate posterior samples. Over-
all the three methods produce similar mean (Figures 9b–9d) and standard deviation models (Figure 9e, 9f 
and 9j). For example, all mean models show the middle low velocity anomaly, and small velocity variations 
around the anomaly which might be caused by lower resolution in those areas or by the random noise 
added to the data. Note also that, we do not expect the mean model to match the true model. The mean is a 
statistic of the family of all models that might be true given the data; together with the standard deviation, it 
helps us to describe that family (the goal of uncertainty analysis). Hence the mean is not an estimator of the 
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Figure 8.  Experimental design for 2D travel time tomography. (a) Receiver locations (black triangles) and an example 
of a random velocity model. Each receiver also acts as a virtual source to mimic an ambient noise tomography 
experiment. (b) An example travel time field.
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Figure 9.  (a) The true velocity model. (b–d) show the mean velocity models obtained using invertible neural networks (INN), Markov chain Monte Carlo 
(McMC), and mixture density networks (MDN) respectively. (e–g) show the standard deviation at each point obtained using the three methods respectively. (h–
j) show the correlation coefficient matrices obtained using the three methods respectively. Red pluses show locations referred to in the text, at which marginal 
probability distributions are shown in Figure 10.
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true model, and particularly in nonlinear problems it is expected to deviate from the true model. All stand-
ard deviation models show low uncertainties across the central anomaly and higher uncertainties around 
the anomaly and in the four corners of the grid. Note that some detailed structure present in the results of 
McMC cannot be clearly observed in the results of INNs and MDNs. For example, there are four higher 
standard deviation anomalies above, below, left and right of the central anomaly, which are not clearly 
visible in the results of INNs and MDNs. This is probably because of cost function residuals remaining after 
training the INNs and MDNs.

Note that this is a high (81) dimensional problem, and there is minimal information in the uniformly-dis-
tributed prior pdf. The curse of dimensionality therefore implies that a huge number of samples would be 
needed to sample the parameter space adequately to explore all significant areas of the tomographic solu-
tion (Curtis & Lomax, 2001). Even sampling at only 2 samples per dimension would require 281 = 2.4 × 1024 
samples. Therefore the training sets used are extremely small (far closer to 1 than to 2 samples per dimen-
sion), and even after 1.6 million samples the McMC method may not have converged to a statistically stable 
solution as it is difficult to assess convergence of McMC (Brooks et al., 2011). Therefore in this problem, we 
do not know the exact Bayesian solution, nor which of the three solutions in Figure 9 is the most accurate. 
Nevertheless, the broad character of all three sets of means and standard deviations matches those found 
previously (papers cited above) so we have reasonable confidence in these statistics.

The correlation coefficient matrices obtained using INNs and McMC show similar results (Figures  9h 
and 9i). For example, there are negative correlations between neighboring cells and positive correlations 
between every second neighboring cells. In comparison the results obtained using MDNs do not show any 
correlation information. This is probably because MDNs become numerically unstable in high dimension-
ality and again use only a few kernels to represent the solution (Cui et al., 2019; Curro & Raquet, 2018; Earp 
& Curtis, 2020; Hjorth & Nabney, 1999; Makansi et al., 2019; Rupprecht et al., 2017).

To further analyze the results, Figure 10 shows marginal pdfs obtained by histogramming samples from 
the solutions of each of the three methods at three locations: (1,0), (2,0), and (3,0). Overall the results show 
similar marginal distributions, which suggests that both INNs and MDNs can produce reasonable estimates 
of marginal distributions. However, the distributions obtained from different methods still show slightly 
different shapes which is probably caused by training residuals in INNs and MDNs. The upper row of 
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Figure 10.  The marginal distributions at three points (red pluses in Figure 9) derived using different methods. (a–c) 
show the marginal distributions at point (1,0) obtained using invertible neural networks (INN), Markov chain Monte 
Carlo (McMC), and mixture density networks (MDN) respectively. (d–f) show similar marginal distributions at point 
(2,0), and (g–i) show results for point (3,0). Red dashed line show the location of true value.
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Figure 13 shows the bivariate marginal distributions of velocities at location (2,0) and (3,0) obtained using 
the three methods. The results obtained using INN and McMC show clear correlation information between 
the two velocities; whereas those obtained using MDN do not. Similarly to the surface wave dispersion in-
version examples, the distribution of normalized residuals obtained using INN and McMC are close to the 
standard Gaussian distribution (upper row in Figure S2); whereas that obtained using MDN is different. 
This again indicates that INNs can generate more accurate results than MDNs.
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Figure 11.  A random heterogeneous velocity example. Key as in Figure 9.
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To explore generalization properties of the trained neural networks we show another example using data 
generated from a random velocity model in Figures 11a. Similarly to the first example, the travel time data 
are calculated using a denser grid (81 × 81). Overall the three methods produce similar mean and standard 
deviation models. The mean velocity models are largely the same as the true model. The standard deviation 
models show low uncertainties at the location of the high velocity anomaly at the east side of the area and 
at the location of the low velocity anomaly at the west side between Y = 0 km and Y = 2 km, and high un-
certainties in the center. Due to training residuals and possible lack of convergence of McMC the standard 
deviation models show other details that differ between methods. For example, the central high uncertainly 
anomaly adopts different shapes in the three results. Nevertheless, overall the results are fairly consistent.

The correlation coefficient matrices show similar results to the first example: the results from INNs and 
McMC show negative correlations between neighboring cells and positive correlations between every sec-
ond neighboring cell, whereas the results from MDNs shows no correlation information. In Figure 12, we 
show marginal distributions at the same locations as for the first example. The results from MDNs are 
clearly approximately Gaussian, whereas the results from INNs show non-Gaussian shapes which provide 
more accurate approximations to results of McMC. Similarly to the first example, the bivariate marginal dis-
tributions (the bottom row in Figure 13) obtained using INN and McMC show clear trade-offs between the 
two parameters at the two locations; whereas those obtained using MDN failed to produce this information. 
Similarly to above the distributions of normalized residuals obtained using INN and McMC are close to the 
standard Gaussian distribution (bottom row in Figure S2); whereas that obtained using MDN is different.

To demonstrate the effectiveness of the new loss function in Equation 13, we train another INN using the 
same network design and same training procedure but with the loss function in Equation 8. The results 
predicted by this INN are shown in Figures S3 and S4. Although the mean models are very similar to those 
presented here, the standard deviation structure and the correlation matrices are significantly different. 
They failed to produce reliable estimates for uncertainties and correlation information between distant 
parameters. This clearly demonstrates the effectiveness of the new loss function.

Again the trained INNs and MDNs provide very efficient estimates of the posterior pdfs. For example,  
using a typical desktop computer the above trained MDN and INN takes about 3 s to produce a prediction 
of posterior pdfs–slightly longer than that required for 1D surface wave dispersion inversion because of the 
larger networks used here. In comparison McMC takes about 3 days on the same machine to generate the 
above results.
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Figure 12.  The marginal distributions at three points (red pluses in Figure 11) derived using different methods. Key as 
in Figure 10.
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4.  Application to Field Data
We apply the above method to ambient noise data of South England, which has complex geological struc-
tures compared to the rest of the British Isles (Galetti et  al.,  2017; Nicolson et  al.,  2012,  2014). We use 
ambient noise data that were recorded using 15 stations in 2006–2007 and in 2010 (Figure 14). The two 
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Figure 13.  The bivariate marginal distributions between velocities at two locations: (2,0) km and (3,0) km obtained 
using invertible neural networks (INN), Markov chain Monte Carlo (McMC), and mixture density networks (MDN) for 
the two models in Figures 9 and 11 in upper and lower rows, respectively.

Figure 14.  The receivers (red triangles) used in this study. The red dashed line box in the inset map denotes the 
location of the study area.
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horizontal components of the data (N and E) were first rotated to the transverse and radial directions, and 
the obtained transverse data were cross correlated to produce love waves between different station pairs. 
Travel times of group velocity at different periods between different station pairs were then estimated from 
those love waves. The details of the data processing procedure can be found in Galetti et al. (2017). In this 
example, we study the group velocity map at 10 s.

For tomography, we use a 9 × 10 regular grid of cells with a spacing of 0.4° in both latitude and longitude 
directions to parameterize the velocity model. The prior pdf for velocity is set to be a Uniform distribution 
between 1.8 and 3.8 km/s, of which the lower and upper bound were chosen to be 0.5 km/s lower and high-
er than the minimum and maximum average velocities measured between all available station pairs when 
assuming a great circle ray path. For the likelihood function, we use a Gaussian distribution to represent the 
data noise, which is estimated from independent travel time measurements by randomly stacking different 
subsets of daily cross correlations (Galetti et al., 2017).

For comparison, we solve the tomographic problem using both INN and McMC. For INN, we use the same 
network design as used in the previous tomographic example and train the network in the same way. For 
training data, we generate 200,000 velocity models from the prior pdf, and for each model the inter-station 
travel time data are calculated using the fast marching method. The corresponding noise for those travel 
time data is generated from Gaussian distributions whose standard deviation is set to be the value estimated 
from the data. Again 90 percent of them are used as training data and the remaining 10 percent are used 
as test data. The trained INN is then used to estimate the posterior pdf for the observed data using Equa-
tion 4. For McMC similarly to the previous example, we run 6 independent chains, each of which contains 
1,600,000 samples including a burn-in period of 600,000. The burn-in samples were discarded and every 
twentieth of the remaining samples was collected as the final set of McMC samples.

Figure 15 shows the mean, standard deviation and correlation coefficient matrix obtained using INN and 
McMC respectively. Overall the two methods produce very similar results. For example, both results show a 
low velocity anomaly at latitude 53.0° and longitude −2.1°, which extends down to the south and connects 
with another low velocity anomaly. This anomaly has also been observed in the results obtained using 
reversible-jump McMC (Galetti et al.,  2017) and variational inference (Zhao et al., 2020), and is related 
to the Cheshire Basin. Another low velocity anomaly is also found in the southeast corresponding to the 
Anglian Basin. Both standard deviation models show lower uncertainties at the location of the first low 
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Figure 15.  The mean, standard deviation and correlation matrix of the tomographic solution across southern England obtained using INN (upper row) and 
McMC (bottom row) respectively. The red pluses show the locations referred to in the text, at which marginal distributions are shown in Figure 16.
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velocity anomaly, and higher uncertainties at the location of the southeastern low velocity anomaly which 
is probably due to the lower data coverage across the latter area. Similarly there is a high velocity anomaly 
in the northeast associated with lower uncertainties. Compared to the synthetic example, the correlation 
coefficient matrices only show strong correlation between neighboring cells (the red off-diagonal elements 
in Figure 15) which is probably caused by uneven data coverage and higher noise in the data.

In Figure 16, we show marginal distributions obtained using INN and McMC at latitude 52.6 and longitude 
−3.0, −2.2, −1.4, and −0.6 (red pluses in Figure 15). For most of the locations the marginal distributions 
obtained using INN and McMC are similar. At the location of longitude −1.4 the marginal distribution 
obtained using INN shows a wider distribution compared to that obtained using McMC, which is probably 
explained by the training residual. This also explains the subtle difference presented in the standard devia-
tion models obtained using INN and McMC in Figure 15.

We thus draw similar conclusion as in the synthetic example: the INN can provide an accurate approxi-
mation to the results obtained using McMC. Once the network is trained, it can produce predictions of the 
posterior pdf for new data very quickly. For example, the above example takes 3 s to produce a prediction on 
our desktop computer (32 Intel Xeon CPUs), whereas McMC takes about 40 h to run on the same machine.

5.  Discussion
Although trained neural networks provide efficient estimates of posterior pdfs, the methods require large 
numbers of training data to be created in advance, and training itself can still be computationally expensive. 
For example, on our desktop computer (32 Intel Xeon CPUs) it takes about 0.3 h to generate 100,000 surface 
wave dispersion curves using one CPU core, 1.1 h to generate 200,000 travel time data for the synthetic 
example and 0.7 h for the field data example using 3 CPU cores. However the training data only need to be 
calculated once; even if additional prior information becomes available we can update the prior pdf using 
the prior replacement method (Walker & Curtis, 2014) or the resampling method (Sambridge, 1999) rather 
than generating entirely new training samples. However, in that case although the prior samples can be 
augmented easily, retraining of the neural network on the new data is still required.

Neural networks can take between hours and days to train. For example, the above MDNs take 15 min to 
train for 1D surface wave dispersion inversion and 3 h to train for the synthetic 2D travel time tomography 
example using one NVIDIA Tesla K80 GPU. For comparison, the above INNs take 6 h to train for 1D surface 
wave dispersion inversion, 19 h to train for the synthetic travel time tomography example and 13.5 h for the 
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Figure 16.  The marginal distributions at latitude 52.6 and longitude −3.0, −2.2, −1.4, and −0.6 (red pluses in 
Figure 15) obtained using INN (upper row) and McMC (bottom row) respectively.
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real data example using the same GPU. Table 1 summaries the computational cost of different methods for 
different tasks, including the training time (GPU hours) and data generation time (CPU hours). So although 
INNs improve the prediction accuracy of the posterior pdfs compared to MDN's, they take longer to train. 
This is because INNs are trained in both directions which generally requires larger networks to represent 
the forward and inverse process at the same time, and bidirectional training also intrinsically requires more 
computation and hence training time. However, training only needs to be done once: after training both 
types of neural network can predict posterior pdfs in seconds. Computational efficiency is therefore gained 
when trained neural networks are applied many times, for example, in real-time monitoring scenarios (Cao 
et al., 2020) or in highly parallelized (task-farmed) inference problems. Note that, here, we only compare 
the computational cost for one single training of INNs and MDNs, and for one single run of McMC. In prac-
tice both INNs and MDNs require additional training effort to tune the network architectures and training 
hyperparameters, and McMC also requires hyperparameter tuning, which makes comparison of the real 
cost required by each method difficult. Nevertheless the comparison presented here still provides valuable 
information about the different methods.

Even if the networks will only be applied once, it may be that they provide a more efficient solution than 
standard McMC, because of the generalization property of neural networks. Essentially training networks 
is equivalent to performing a regression of the functional form of each network to the training data. Once 
that regression has been accomplished, the functional form approximately interpolates between examples 
in the training set, providing estimates of forward evaluations of infinitely many other model samples. 
This property implies that in some problems it may not be necessary to evaluate as many samples to train 
a neural network as would be required to characterize the solution using Monte Carlo or other purely  
sample-based methods. However, note that this functional form is only valid within the prior range since 
there is no training data outside of the range of the prior distribution.

For example, in the above synthetic travel time tomography problems, the 1.6 million McMC samples re-
quired 3 days to evaluate, while the total times required to calculate training examples and train the MDN 
and INN were 4.3 and 20.1 h, respectively. Hence in this example both the MDN and the INN were more 
efficient than McMC even for one single inversion. Of course, the computational time strongly depends 
on hardware used in each case. In the above study different hardware is used for neural network training 
and McMC because McMC is difficult to parallelize (Neiswanger et al., 2013), and hence it is difficult to 
take advantage of GPUs. It may also be the case that if we had used more efficient McMC methods such as 
Hamiltonian Monte Carlo (Duane et al., 1987; Fichtner et al., 2018; Neal, 2011) or Langevin Monte Carlo 
(Grenander & Miller, 1994) we could have improved the McMC performance to outstrip the two neural net-
work methods. Nevertheless, this work demonstrates at least that neural network inversion can be compet-
itive with Monte Carlo methods even for a single inversion, but additionally that they allow all subsequent 
inversions using the same prior information to be carried out almost for free.

Since INNs are trained bidirectionally, they also provide approximate forward functions. For example, for a 
given model m and different data noise ϵ, the trained network can produce a distribution of data by feeding 
them into the network in the forward direction – this provides an approximation to the process described 
in Equation 9. In Appendix C, we show data distributions predicted by trained INNs for both surface wave 
dispersion curves and travel times for models described in Section 3, and compared with solutions obtained 
by standard numerical modeling methods. The results show that trained INNs can also provide good approxi-
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Experiment

Surface wave inversion Travel time tomography Field data

CPU hours GPU hours CPU hours GPU hours CPU hours GPU hours

INNs 0.3 6.0 3.3 19.0 2.1 13.5

MDN 0.3 0.25 3.3 3.0 NA NA

McMC 4.5 NA 210.0 NA 120.0 NA

Abbreviations: INN, invertible neural networks; McMc, Markov chain Monte Carlo; MDN, mixture density networks.

Table 1 
Comparison of Computational Cost Required by Different Methods
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mations to the standard forward modeling methods. In this case since the standard methods calculate disper-
sion curves and travel time data in seconds, INNs do not provide any benefits. However, for problems whose 
forward modeling is computationally expensive (e.g., 3D applications or full waveform modeling), INNs 
might provide a faster approximate forward function, and we note that neural networks have already been 
used to solve seismic forward modeling problems (Richardson, 2018; Song et al., 2020; Moseley et al., 2020).

In this study, we used independent Uniform distributions for each cell which can become ineffective for 
large inverse problems (Curtis & Lomax, 2001; de Pasquale & Linde, 2017; Earp & Curtis, 2020). If appropri-
ate, the space of models that remain possible in the Bayesian solution can be reduced using a smooth prior 
pdf (Earp & Curtis, 2020) or structure-based prior pdfs (de Pasquale & Linde, 2017), or other more advanced 
prior pdfs can be used to improve computationally efficiency (Caers,  2018; de Pasquale & Linde,  2017; 
Mosser et al., 2020; Nawaz et al., 2020; Ray & Myer, 2019; Walker & Curtis, 2014; Zunino et al., 2015). We 
also used a fixed regular grid of cells to parametrize the subsurface, but to increase flexibility we could 
use other parametrizations, such as Delauney triangulation (Curtis & Snieder,  1997), Voronoi diagrams 
(Bodin & Sambridge, 2009; Sambridge et al., 1995), wavelet representations (Fang et al., 2015; Zhang & 
Zhang, 2015) or other advanced parametrizations (Hawkins et al., 2019). The parametrization itself might 
also be predicted by neural networks along with the parameter values as in reversible-jump McMC (Bodin 
& Sambridge, 2009; Green, 1995), for example, Gaussian processes, which can be treated as infinite, single 
layer neural networks (Neal, 2012), have been used with the reversible jump algorithm to predict both the 
parameterization and parameter values (Ray & Myer, 2019).

In this study, we applied INNs to surface wave dispersion inversion and 2D travel time tomography, which 
usually do not show strong multimodality when using a fixed parameterization (Zhang & Curtis, 2020a; 
Zhao et al., 2020). However, we note that theoretically INNs can be applied to predict any posterior distri-
butions, including multimodal distributions. Therefore, future research should apply INNs to problems that 
commonly have multimodal posterior distributions, for example, resistivity inversion (Ray et al., 2013) and 
full-waveform inversion (Zhang & Curtis, 2021).

INNs provide full posterior pdfs which might be impossible for very high dimensional problems, for example, 
full waveform electromagnetic or seismic inversion, because this may require a network that is too large to fit 
in memory and may need significantly more time to train. In this case one can train INNs to predict marginal 
distributions of only a few parameters, as was performed in Earp and Curtis (2020) in cases where dominant 
correlations were expected between parameters in some neighborhood of each other. Advanced prior infor-
mation which uses neural networks to reparameterize geologically correlated Earth structure with a lower 
number of parameters may also be used to reduce the dimensionality (Laloy et al., 2017; Mosser et al., 2020).

In this study, we used coupling layers to implement invertible neural networks which might affect the expres-
siveness of the network. Other designs of invertible networks may be used as alternatives, for example, in-
vertible residual networks (Behrmann et al., 2019) or Hamiltonian neural networks (Greydanus et al., 2019). 
Future research that makes a fair comparison between different architectures would be a useful contribution.

6.  Conclusion
In this study, we introduced INNs to solve geophysical Bayesian inference problems. INNs are a class of 
neural networks that provide bijective mappings between inputs and outputs and can be trained to produce 
estimates of posterior probability density functions efficiently by introducing additional latent variables on 
the output (data) side. We applied the method to two types of problems: 1D surface wave dispersion inver-
sion and 2D travel time tomography, and compared the results with those obtained using McMC and MDNs. 
The results show that INNs can provide accurate approximations of posterior pdfs obtained by McMC, 
including correlation information between parameters which is difficult to obtain using standard MDNs. 
The marginal distributions from INNs can also provide clearly non-Gaussian forms which are more similar 
to those obtained by McMC than the results obtained by MDNs. After training, INNs can predict posterior 
pdfs in seconds, and therefore can be used to provide accurate estimates of posterior pdfs in rapid, real-time 
monitoring scenarios. Even accounting for training time, neural networks can be more efficient than Monte 
Carlo methods in applications to single inverse problems. It remains to be seen how far this latter result can 
be generalized to problems other than those tested here.
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Appendix A:  Proof of Convergence
We follow the proof of Ardizzone et al. (2018) to prove the convergence of the method described in Sec-
tion 2.3. Denote the prior probability distribution of data as p(d), the chosen probability distribution of 
latent variables as p(z) and the joint probability distribution of network output as q(d, z). For a given meas-
urement d*, define the posterior distribution p(m|d*) as the distribution of models {m} which generate the 
exact data d*.
Theorem If an INN f(m)  =  (d, z) is trained such that both the loss function   ( )d dfd m ‖ ‖ and 

 [ ( , ), ( ) ( )]z MMD q p pd z d z  equal zero, sampling according to Equation 4 produces the posterior p(m|d*) 
for a given measurement d*.

Proof: Because MMD only equals zero when the two distributions are identical (Gretton et al., 2012), the 
loss function  0z  implies that:

( , ) ( ) ( )q p pd z d z� (A1)

Suppose we take the posterior distribution p(m|d*) for a given d*, and transform it through the forward 
process of our perfectly trained INN. This results in a joint distribution q*(d, z). According to the defi-
nition of p(m|d*) and the fact that  0d , the distribution of network output d (marginalized over z) is  
q*(d) = δ(d −d*). Due to the fact that  0z , d and z are independent and the output distribution of z is 
still p(z). The distribution q*(d, z) can therefore be expressed as

q p*( , ) ( *) ( )d z d d z � (A2)

This implies that we can transform the distribution δ(d −d*)p(z) to the posterior p(m|d*) through the 
backward process of the INN. Equivalently speaking, we can repeatedly input d* with randomly sampled z 
from p(z) to the backward process of the INN, and obtain the posterior distribution p(m|d*). End of proof.

Note that the above proof relies on the definition that the posterior distribution p(m|d*) is the distribution 
of models that generate the exact data d*. In Bayes theorem this means that the likelihood function is  
δ(d −d*), which is not true in reality as observed data always contain noise. This issue can be resolved by 
treating noise as a part of the forward modeling process, that is,

   ( )sim Fd d m � (A3)

where d represents the observed, noisy data, dsim is the simulated data using forward function F(m), and 
ϵ is random noise generated from some distribution. In this way the method, and the above proof, can be 
invoked without any change.

Appendix B:  Network Configuration
Table B1 summarizes the training datasets and model and data dimensionalities used in 1D surface wave 
dispersion inversion and 2D travel time tomography. Note that in practice zeros are padded to the inputs to 
ensure the same dimensionality.
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Experiment Training data dim(inputs) dim(d) dim(z)

Surface wave inversion 100,000 24 14 22

Travel time tomography 200,000 241 120 181

Field data 200,000 121 31 99

Table B1 
Training Data and Model and Data Dimensionalities Used in Different Experiments
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Appendix B1:  Network Configuration for Surface Wave Dispersion Inversion
INN: 4 reversible blocks, each of which contains two coupling layers as described by Equation 2. Each affine 
function (i.e., si and ti) is implemented using a neural network with 3 fully connected layers each of which 
contains 512 hidden units with RELU activation functions. The ADAM optimizer is used with a batch size 
of 1000.

MDN: 20 mixture Gaussian kernels, 4 fully connected layers with RELU activation functions. The sizes of 
layers are 200, 300, 200, and 200 respectively. The ADAM optimizer is used with a batch size of 1000.

Appendix B2:  Network Configuration for Travel Time Tomography
INN: 8 reversible blocks as described in Equation 2. Each affine function (i.e., si and ti) is implemented using 
one convolutional layer with 32 channels for the first four blocks, and one fully connected layer containing 
1024 hidden units for the remaining blocks. The ADAM optimizer is used with a batch size of 1000.

MDN: 100 mixture Gaussian kernels, 7 layers in total containing 3 convolutional layers and 4 fully connect-
ed layers. The number of channels of the 3 convolutional layers are 128, 128 and 64 respectively. The size 
of the 4 fully connected layers are 800, 150, 600, and 1,500 respectively. The ADAM optimizer is used with 
a batch size of 1000.

Appendix C:  Approximate Forward Modeling Function Using INNs
Since INNs are trained bidirectionally, they also provide approximate forward functions. For example, one 
can obtain the distribution of data with noise for a fixed model m by running the network forward with 
noise parameter ϵ (Figure 1) distributed according to its assumed distribution. Figure C1 shows phase ve-
locity distributions obtained from INNs for those shear velocity models used in the surface wave dispersion 
inversion experiment at 5 different periods, and compares the results with those obtained using standard 
forward modeling methods using Equation 9, which we refer to as true distributions. The noise of each 
phase velocity is assumed to follow a Gaussian distribution with a standard deviation of 5 m/s. The results 
show that the distributions predicted by INNs from the training samples alone, can provide good approx-
imations to those obtained by the forward models themselves. Note that because of training residuals the 
distributions obtained from INNs are slightly different from the true distributions.

Similarly the upper and lower rows in Figure C2 show distributions of travel times for 5 randomly selected 
(virtual) source-receiver pairs predicted by INNs for the two velocity models in Figures 9 and 11 respective-
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Figure C1.  Distributions of phase velocities with random noise predicted by INNs (orange histograms) for a specific 
shear velocity model at periods 0.8, 1.0, 1.2, 1.4 and 1.6 s. The distributions in upper and lower rows correspond to the 
upper and lower models respectively, shown by red lines in Figure 5. Blue lines show true distributions obtained using 
the standard forward modeling method with random noise added to the synthetic data.
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ly. The noise of each travel time is assumed to follow a Gaussian distribution with a standard deviation of 
0.05 s. The results show that distributions obtained from INNs are largely similar to the true distributions 
(those obtained using standard forward modeling method). However, there are still differences between the 
two distributions caused by training residuals that remain for the trained INNs.

Data Availability Statement
The data and codes used in this study are available at Edinburgh DataShare (https://datashare.ed.ac.uk/
handle/10283/3886).
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Figure C2.  Travel time distributions for 5 randomly selected (virtual) source-receiver pairs predicted by INNs (orange 
histograms) for (upper row) the smooth velocity model in Figure 9a and (lower row) the random velocity model in 
Figure 11a. Blue lines show true distributions obtained using the standard forward modeling method with random 
noise added to the synthetic data.
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