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Abstract: It is a well-established principle that cross-correlating seismic observations at different
receiver locations can yield estimates of band-limited inter-receiver Green’s functions. This principle,
known as Green’s function retrieval or seismic interferometry, is a powerful technique that can
transform noise into signals which enable remote interrogation and imaging of the Earth’s subsurface.
In practice it is often necessary and even desirable to rely on noise already present in the environment.
Theory that underpins many applications of ambient noise interferometry assumes that the sources
of noise are uncorrelated in time. However, many real-world noise sources such as trains, highway
traffic and ocean waves are inherently correlated in space and time, in direct contradiction to the
these theoretical foundations. Applying standard interferometric techniques to recordings from
correlated energy sources makes the Green’s function liable to estimation errors that so far have not
been fully accounted for theoretically nor in practice. We show that these errors are significant for
common noise sources, always perturbing or entirely obscuring the phase one wishes to retrieve.
Our analysis explains why stacking may reduce the phase errors, but also shows that in commonly
encountered circumstances stacking will not remediate the problem. This analytical insight allowed
us to develop a novel workflow that significantly mitigates effects arising from the use of correlated
noise sources. Our methodology can be used in conjunction with already existing approaches, and
improves results from both correlated and uncorrelated ambient noise. Hence, we expect it to be
widely applicable in ambient noise studies.

Keywords: ambient noise; interferometry; correlated noise; error quantification; seismology; traffic;
trains; cars; processing

1. Introduction

The critical zone and Earth’s crust are constantly monitored across ecological and
geological disciplines due to their importance to terrestrial life, for industrial applications
and for advancing science. Remote sensing methods are commonly deployed, in which
physical energy fields are recorded on or above the Earth’s surface, and are used to
infer structure and properties of the subsurface. In particular, seismic interferometry is a
powerful technique which transforms previously discarded data, such as seismic energy
from earthquakes or from the ambient background noise field, into useful signals that
remotely illuminate subsurface Earth structures [1–3]. The origin of seismic interferometry
can be traced back to the seminal work of Claerbout [4] who showed that the reflection
response of a horizontally layered medium could be estimated from the autocorrelation of
its transmission response. Seismic, or more generally wavefield interferometry has since
become a rapidly evolving field of research [5–8], leading to fundamental advances in our
ability to image the Earth’s crust at global [9,10], regional [11–13] and industrially relevant
scales [14–16].

In general, interferometric methods rely on cross-correlating, convolving or decon-
volving pairs of recorded signals to extract information about the medium. The goal is to
estimate signals which would have been acquired if the receivers [17,18] or sources [1,2,19]
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been deployed at different locations or at different times [20–23]. Theoretically, the re-
sponse of a medium at a given location to an impulsive source at a different location is
described by Green’s functions which are associated with specific equations describing
the wave dynamics. The purpose of seismic interferometry is usually to estimate various
approximations to these Green’s functions.

Two theoretical assumptions that underpin many interferometric methods are that
recorded energy comes from sources that are distributed isotropically in space around the
receivers, and that the time series emitted by the sources are statistically uncorrelated in
time between pairs of sources. The latter assumption precludes sources that are spatio-
temporally correlated. However, it is often necessary or even desirable to rely on noise
sources that are already present in the environment. This is especially true in areas of
the Earth where environmental constraints preclude the use of active artificial seismic
sources, or when we wish to illuminate large volumes of the Earth that require more
powerful sources than can be generated artificially. Sources of freely available ambient
noise abound in the Earth and interferometry has been successfully performed by cross-
correlating earthquake codas (the long tail of energy that is recorded after the initial
impulses from first-arriving seismic waves) which are assumed to act as an approximately
diffuse, reverberating wavefield approaching receivers from all directions [1], or using
recorded wavefields assumed to come from isotropic noise fields [2,3,24,25]. Many known
physical noise sources that contribute to ambient noise are in motion, e.g., storm sources,
ocean waves or wind [26], in addition to seismic energy deriving from man-made activities
such as shipping [27] or noise from traffic. Recently it has been recognized that highway
and/or railway traffic can comprise a dominant component of the ambient noise field, and
interferometry has been applied to highway traffic noise [28–30], railway noise [31–35],
and noise generated from waves breaking along coastlines [36], as illustrated in Figure 1.
However, all these sources of ambient noise are inherently correlated in time, which is
in direct contradiction to the theoretical assumptions outlined above. Although different
methodologies for mitigating non-ideal source distributions have been considered, for
example in [37–40], the effects of statistical correlation in ambient noise sources were
not considered, particularly in the important case of correlation induced by motion of
the source. The impact that source motion has on cross-correlational interferometry was
investigated in [41] but under the standard assumption of statistically uncorrelated ambient
noise. Importantly, the extent of the error in the interferometric estimates of the Green’s
function due to the assumption of uncorrelated noise sources has so far not been quantified,
and no general methods to reduce these errors have been published.
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Figure 1. Geometry of a boundary S of uncorrelated, impulsive sources (see Equation (1)) versus
a time-ordered train of impulsive sources (see Equation (4)). Blue triangles denote receivers and
source locations are represented by orange stars. Orange arrows in the source boundary indicate the
presence of a spatiotemporal correlation of sources along the boundary. The top-right panel shows
the main roads (solid black) and railways (black dashes) within an area of about 9000 km2 around
Bourges, France. A zone of 5 km on either side of each road (blue) and railway (orange) highlights
the prevalence of near-field traffic noise. The bottom panel shows oblique waves breaking against
the coast of Skeleton Bay, Namibia. These are common examples of correlated noise sources.
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In this paper, we present a unified theory of inter-receiver seismic interferometry that
encompasses correlated and uncorrelated noise sources in both the near and far fields,
including the case of moving sources. Our theoretical framework allows us to develop a
novel workflow that mitigates the spurious effects arising from the use of correlated noise
sources, leading to the retrieval of the Green’s function from a short-time recording of a
single correlated moving noise source. Moreover, our framework provides a systematic
insight into the mechanisms through which the correlation in the sources induces errors
in the estimates of the Green’s function and its phase. We quantify these errors and show
that they have a significant effect for commonly used noise sources, with spurious effects
that obscure the estimates of phase (and hence of wave travel times). Our novel method is
based on an appropriate randomization of the recorded traces which allows for an accurate
interferometric retrieval even from a single moving energy source. Furthermore, our
analysis explains why stacking multiple traces may reduce errors due to noise correlation
in the interferometric estimates, but also highlights limitations of this approach, and
identifies potentially commonly occurring circumstances in which it will fail. Our unified
methodology is applicable to both correlated and uncorrelated ambient noise, and is
particularly useful in cases where stacking does not improve the signal to noise ratio in
the retrieval.

In what follows we begin by briefly presenting the theoretical principles of standard
seismic interferometry for the case when individual recordings from static impulsive
sources are available, as well as for an ambient noise scenario. Subsequently, we highlight
the challenges in retrieving the interferometric inter-receiver Green’s function from am-
bient noise. The important case of performing interferometric retrieval from wavefields
generated by correlated moving sources is considered next, and the corrupting effect due
to the Doppler spread on the quality of the interferometric retrieval is discussed. We then
review the standard ensemble average approach in ambient noise interferometry, which is
referred to as stacking. Potential pitfalls of the retrieval through the stacking average are dis-
cussed in terms of the correlation structure of the source signature. Moreover, an analytical
decomposition of the ambient noise retrieval is derived which, based on the characteristic
correlation length of the source signature, separates the retrieval into a term comprising
predominantly coherent contributions that correctly approximate the inter-receiver phase,
and the crosstalk term associated with spurious incoherent contributions. These analytical
findings motivate the development of a novel and versatile technique, referred to as the
random windowing approach. In contrast to the standard stacking average, the random
windowing average does not rely on spatial localization of the correlation structure of
the source signature, and it can be used for interferometric phase retrieval from short
recordings of a correlated noise signal. We conclude by outlining a pseudo-algorithm for
carrying out the random windowing retrieval and present an example with the resulting
phases retrieved successfully from both correlated and uncorrelated ambient noise.

2. Theoretical Background

It is a well-established principle that cross-correlating seismic observations recorded at
different receiver locations yields seismic responses that under certain conditions, provide
useful estimates of the inter-receiver Green’s function of linear wave equations. This princi-
ple has been expressed in a variety of ways, often via the acoustic or elastic representation
theorems, and using either the convolution, deconvolution or cross-correlation of recorded
seismic traces. For our purposes, a cross-correlational Green’s function representation
theorem is used in line with [2,42], in a regime of volume-injection rate impulsive sources.

Consider a medium of density ρ and sound speed c, and let Ĝ(x, x′, ω) denote the
frequency-domain response of the medium to an impulsive source located at x′ and
recorded at location x. Throughout, ·̂ denotes quantities in the frequency domain, and ·∗
denotes complex conjugation. Given a pair of receiver locations xA and xB we assume an
empirical estimate ĝ(xA, xB, ω) of the inter-receiver Green’s function Ĝ(xA, xB, ω) can be
represented as
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ĝ(xA, xB, ω) =
2
ρc

∫
S

Ĝ∗(xA, x′, ω)Ĝ(xB, x′, ω)dx′ , (1)

as in Wapenaar and Fokkema [2], where each x′ is an impulsive source location along the
boundary S (see leftmost panel in Figure 1). The integrand in Equation (1) is equivalent to
the convolution of the time-reversed trace recorded at xA with the trace recorded at xB, and
this operation corresponds to a cross-correlation in the time domain (this statement holds
exactly for recordings G(x, x′, t) defined for all time). Please note that ĝ in Equation (1) is
proportional to the spatial average of the integrand in the right-hand side of Equation (1)
over S; this interpretation will be helpful below.

The main theoretical requirements for Equation (1) to provide a good estimate of the
inter-receiver Green’s function are: (i) that the medium is lossless, (ii) that the source bound-
ary S encloses the receivers and that energy is emitted equally from all directions, (iii) that S
is sufficiently far from the receivers for the recorded energy flux to be emitted approximately
perpendicular to the boundary, and (iv) that individual recordings are acquired indepen-
dently for each impulsive source location x′ within S. Under these idealized conditions, the
empirical estimate ĝ(xA, xB, ω) provides a good approximation to the homogeneous inter-
receiver Green’s function [2], i.e., ĝ(xA, xB, ω) = Ĝ(xA, xB, ω)−Ĝ∗(xA, xB, ω) or, equiva-
lently g(xA, xB, t) = G(xA, xB, t)−G(xA, xB,−t) in the time domain. Wapenaar et al. [24]
discuss spurious effects that are introduced when the above theoretical assumptions are
violated. However, in practice artefacts due to the violation of these theoretical assump-
tions are usually assumed to be sufficiently weak to allow for retrieval of useful empirical
estimates of the Green’s function. In particular, seismic interferometry has been shown em-
pirically to be applicable in regimes where the medium illumination is one-sided [24,43–45].
Hence, while the boundary S in Equation (1) is typically assumed to be a closed contour
which is sufficiently distant from the receivers, we assume S to be a straight source-line
as depicted in the left insets of Figure 1. It is worth noting that while the amplitudes of
empirical Green’s function estimates are acknowledged to be unreliable, the phases of the
Green’s function recovered through such a procedure are assumed to be well approximated
(see for example, [2,46], and remarks under Equation (9) below).

The main practical obstacle in the context of ambient noise interferometry stems from
the fact that the medium’s response to impulsive sources is not readily available. Hence,
the information required for constructing the integrand in Equation (1) cannot be obtained
directly. Instead, Wapenaar and Fokkema [2] propose the ambient noise interferometric
relationship defined as

ĥ(xA, xB, ω) :=
2
ρc

p̂∗(xA, ω) p̂(xB, ω) , (2)

where p̂(x, ω) denotes ambient noise recorded at a receiver location x for frequency ω. It
is useful (and theoretically appropriate) to consider each recording p̂(x, ω) as a random
field which is obtained via the Fourier transform of a realization of a stochastic process
(a random mechanism) generating p(x, t) (these statements hold for t, ω ∈ R, we do not
delve into the accuracy of finite-time approximations of the Fourier transform). In such a
framework source locations x′ ∈ S are no longer required to be known explicitly. Instead,
the source characteristics are implicitly present in the ambient noise representation in
Equation (2) and they are accounted for, in principle, in the ambient noise recordings
represented via

p̂(x, ω) =
∫

S
F̂(x′, ω)Ĝ(x, x′, ω)dx′ , (3)

where F̂(x, ω) characterizes the unknown source signature. Wapenaar and Fokkema [2]
showed that provided that p̂(xA, ω) and p̂(xB, ω) are obtained from recordings of un-
correlated noise sources, taking the empirical average over a large number (N � 1) of
realizations of ĥ(xA, xB, ω) in Equation (2), referred to hereafter as stacking, leads to a good
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approximation (such an approximation is increasingly accurate for N, t → ∞ provided
that h(xA, xB, t) is ergodic which seems to be a reasonable assumption in practice). of the
phase of the inter-receiver Green’s function Ĝ(xA, xB, ω). However, as discussed in the
subsequent sections, the stacking average is likely to produce unsatisfactory results in the
presence of correlated noise sources even when long-time recordings are available.

In this paper, we delve deeper into the relationship between the retrievals ĝ(xA, xB, ω)
and ĥ(xA, xB, ω) in order to identify conditions under which the ambient noise retrieval
based on Equation (2) provides a satisfactory approximation of the retrieval Equation (1),
and to develop techniques that allow us to achieve this for both uncorrelated and correlated
noise sources.

To understand the need for the (statistical) averaging over multiple realizations of
the ambient noise recordings in the retrieval (2) for some fixed boundary S, substitute the
integral expression (3) for the noise recordings at receivers xA and xB into Equation (2) to
obtain

ĥ(xA, xB, ω) =
2
ρc

∫
S

∫
S

F̂∗(x′, ω)F̂(x′′, ω) Ĝ∗(xA, x′, ω)Ĝ(xB, x′′, ω)dx′′ dx′ . (4)

Please note that the above formula represents a product of two independent integrals
which are re-written in a form suitable for the subsequent analysis; to simplify notation,
we skip the explicit dependence of F̂ in Equation (4) on the particular recording of ambient
noise, but this remains implicit. The geometry corresponding to the retrieval based on,
respectively, Equations (1) and (4) is sketched on the left side of Figure 1. In contrast to
ĝ(xA, xB, ω) in Equation (1), where averaging over the source locations x′ ∈ S leads to the
cancellation of all phases except for the inter-receiver phase, the ambient noise retrieval
ĥ(xA, xB, ω) in Equation (4) does not represent a spatial average over S. Consequently, the
retrieval in Equation (4) is dominated by acausal and spurious information contained in
the integrand for x′ 6= x′′ (see middle panel of Figure 1).

It turns out that a reliable phase retrieval of the inter-receiver Green’s function
Ĝ(xA, xB, ω) from Equation (4) relies on an appropriate statistical average which cou-
ples the source characteristics F̂(x′, ω) and F̂(x′′, ω) for all x′, x′′ ∈ S to generate an integral
kernel which is localized in the neighborhood of x′ = x′′. As discussed in subsequent
sections, the suitable statistical average depends on the nature of the noise. In particular, for
correlated noise sources the (stacking) average over multiple realizations of Equation (2)
is largely unsatisfactory regardless of the amount of available data, and a more versatile
averaging approach must be used. Please note that while a constant medium density and
propagation speed have been assumed, the analysis presented still holds when these two
quantities are space-dependent.

In light of the above discussion, it is clear that the non-averaged relationship in
Equation (4) is dominated by contributions from incongruous source locations, and these
may lead to spurious contributions that completely obscure the phase of the inter-receiver
Green’s function. Consider, for example, the interferometric retrieval from a simulated
sequence of sources which generate seismic impulses in a time-ordered fashion; hereafter,
we refer to such a sequence as a train of sources. The train of sources is not to be confused
with a set of impulsive sources recorded one-by-one and used to calculate the retrieval
Equation (1); these two cases will be compared in what follows. In both cases we assume
that the signal is recorded by a pair of receivers deployed in the vicinity of source-line
S. To simulate the wavefield generated by trains of sources, we derived an analytical
two-dimensional model which is described in Appendix A. Figure 2 illustrates the situation
where the interferometric trace retrieved via Equation (4) from a train of sources differs
significantly from the retrieval obtained from individually recorded impulsive sources,
according to Equation (1). Both retrievals are based on sources on the same boundary S
and recorded over the same time interval, except that the impulses in the train of sources
are generated in a time-ordered sequence of physical locations which span S.
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Figure 2. Comparison of the interferometric estimate of the Green’s function from a simulated train
of sources as per Equation (4) (top), versus the estimate from a boundary of static point sources
(bottom) recorded individually, according to Equation (1). The left side panels show the waveforms
in time, while the panels to the right show the corresponding estimated phases (unwrapped). The
source train moves along the boundary line at 25 m/s (90 km/h) and emits sound in a frequency
range between 10 and 25 Hertz. The receiver pair is oriented perpendicularly to the source boundary
and 2000 m away from each other. Sound speed in the medium was set at 1000 m/s. The receiver
closest to the source boundary was 400 m away.

When the sources are individually recorded (bottom of Figure 2) the inter-receiver
Green’s function is retrieved accurately with the main arrival found around 2 s, which
corresponds to the inter-receiver travel time. In the top panels, the inter-receiver arrival is
completely obscured by spurious arrivals, and the phase does not reproduce the reference
estimate in the bottom panels.

In addition to the above issues, if the noise source is in motion, one must take into
account both the spatiotemporal correlations of the noise sources, as well as the Doppler
effect which shifts the energy emitted by the source at each frequency to a range of other
recorded frequencies, even if the source is monochromatic. The instantaneous frequency
ω̆(x, t′) of the train of sources recorded at location x and time t′ can be derived analytically
from Equation (3) when it is used to represent a continuously moving source, resulting in
the following expression (see the derivation of Equation (A23) in Appendix A)

ω̆(x, t′) =
ω̃

1− |v|c cos θx(t′)
, (5)

where ω̃ is the frequency emitted by the source, and θx(t′) is the angle between the line
from the instantaneous source location at time t′ to the receiver location x, and the source-
line S. Equation (5) agrees with the well-known expressions for the Doppler shift for the
instantaneous frequency when the source is moving directly towards, or away from, the
receiver. However, it is more general in that it quantifies the Doppler spread in the recorded
frequency in terms of the relative source-receiver position angle θx(t′), when the source
has an azimuthal velocity component. It is clear from Equation (5) that for a pair of distinct
receivers xA and xB, the corresponding relative position angles of the source θxA(t

′) and
θxB(t

′) will be different; this means that the same source emitting the single frequency ω̃
will be recorded with a different frequency at each location.
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Figure 3 illustrates the relationship between the instantaneous location of a moving
noise source and the recorded frequency ω̆ at each receiver xA and xB. As expected, the
recorded frequency is higher when the source is moving towards the receivers, and lower
as it moves away. Clearly, as can be deduced from Equation (5) and observed in Figure 3,
the only (instantaneous) location of the source that will lead to recording the true emitted
frequency occurs when the source is collinear with the pair of receivers, and the line
through xA and xB is perpendicular to the boundary S; depending on the geometry of
the problem, such a location need not exist. Thus, in general, the frequency emitted by a
moving noise source and recorded at the receivers will differ from the true frequency ω̃,
and the frequency bias will be different at xA and xB at all instantaneous locations except
when the source is collinear with the receiver pair.
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Figure 3. Relationship between source location and instantaneous frequency recorded at two different
receiver locations xA, and xB. The simulated source was travelling at 30 m/s (108 km/h) and the
medium speed was set at 1000 m/s. For illustration purposes the source was set to be monochromatic,
emitting noise at a fixed frequency of 25 Hz. The limiting values for the Doppler spread, given by
25/(1± |v|/c) Hz, are marked with vertical dotted lines.

This has important implications for seismic interferometry, since recordings at any
particular frequency will usually have been emitted at different source locations. For
example, in Figure 3 the spectrum value recorded at 24.5 Hz would have been emitted by
a source that was 800 m along the boundary for receiver xA, but only 400 m for receiver
xB. Given that interferometry is performed frequency by frequency, this inconsistency
in the recorded frequency is conceptually equivalent to introducing further spurious
contributions from spatially incongruous source locations. Moreover, in the case of a
more realistic broadband source the spread and consequent interaction among different
frequencies becomes compounded, with multiple source locations along the boundary
S introducing spatially incongruous contributions for every recorded frequency. Hence,
the Doppler shift associated with moving noise sources further compounds the spurious
effects inherent to ambient noise interferometry if we use the retrieval (2).

Equation (5) shows that the Doppler shift is amplified for higher frequencies, as well as
increasing source train speeds. In addition, larger inter-receiver distances, as well as near-
field recordings, will increase the discrepancies in frequencies recorded xA and xB, resulting
in further deterioration of the interferometric retrieval. Some of the potential obstacles for
retrieving inter-receiver Green’s functions from sources in motion have been considered
theoretically by Sabra in [41], where the inconsistency induced by the differential Doppler
effect at the receivers is mitigated via a stationary phase approximation, consistent with the
discussion above, but under the assumption that the ambient noise sources are statistically
uncorrelated in time. More recent work by Liu et al. [35], applies standard ambient noise



Remote Sens. 2021, 13, 2703 8 of 37

interferometry (2) to an expression for the wavefield generated by a train, and the potential
retrievable wave types are discussed using intuitive ray-path arguments which are then
tested on train recordings. However, the explicit role of the source speed in the retrieval,
and systematic methods for mitigating these effects have not been addressed (and the
Doppler effect is not considered in the latter study).

In summary, the crosstalk terms associated with the integrand in Equation (2) for
x′ 6= x′′ emerge naturally in systematic ambient noise interferometry analysis but their
effects are commonly removed from considerations by imposing the assumption that the
ambient noise field is uncorrelated; such an assumption greatly simplifies the theoretical
retrieval procedure but it is often unrealistic. This is the case, for example, when performing
traffic or railway noise interferometry. Moreover, ambient noise interferometry (2) using
moving point sources must contend with the Doppler effect in addition to the unavoidable
correlations between the noise sources.

We discuss consequences of these issues in detail in the following section, where
we point out that the delta-correlated assumption is unnecessarily restrictive, and that
excluding near-diagonal terms reduces uncertainty in the retrieved amplitudes. We show
in detail how the success of the standard stacking procedure depends on the properties
of the source signature and on the source speed in cases where the noise sources are in
motion. Moreover, we show how this standard stacking technique may fail, and propose
an alternative workflow in Section 4 which proves to be successful at isolating terms from
the incongruous crosstalk terms, leading to the extraction of the underlying inter-receiver
phase regardless of the presence of correlation in the ambient noise field. Finally, for
the scenario where the presence of correlation is caused by motion of the source, the
workflow presented implicitly mitigates spurious contributions due the Doppler spread as
explained above.

3. When and Why Stacking Works

A commonly used averaging procedure in ambient noise interferometry, referred to as
stacking, relies on the arithmetic average over several interferometric retrievals ĥ(xA, xB, ω)
in Equation (2)—e.g., [2]. Here, we define stacking more formally as the operation consisting
of taking the statistical average of functions evaluated on an ensemble of recordings of the
ambient noise field over some time interval; we denote such an ensemble average by 〈 · 〉.
Below, we formally link the interferometric retrieval (2) to the retrieval (1) and determine
conditions leading to the likely failure of the stacking average retrieval when the ambient
noise field is correlated.

Application of the stacking average operator to the ambient noise retrieval represented
via Equation (4) leads to

〈
ĥ(xA, xB, ω)

〉
=

2
ρc

∫
S

∫
S

〈
F̂∗ F̂

〉
(x′, x′′, ω) Ĝ∗(xA, x′, ω)Ĝ(xB, x′′, ω)dx′ dx′′ , (6)

where 〈
F̂∗ F̂

〉
(x′, x′′, ω) :=

〈
F̂∗(x′, ω)F̂(x′′, ω)

〉
(7)

is referred to as the kernel of the stacking average or simply as the stacking average kernel. This
is determined by the correlation structure of the noise source characteristics F̂. Recall that
for brevity of notation we consistently skip the explicit dependence of F̂ in Equation (6)
on the particular recording of ambient noise, and that for any fixed x and ω, the source
signature F̂(x, ω) should be thought of as a random variable, since it is associated with the
Fourier transform of the ambient noise recording p(x, t). The stacking average 〈 · 〉 is linear
by construction and we assume that the order of integration is irrelevant (Fubini’s theorem
is satisfied). Please note that the averaging in

〈
ĥ(xA, xB, ω)

〉
effectively couples the two

integrals which contribute to the single-recording ambient noise retrieval ĥ(xA, xB, ω) in
Equation (4). The formula in Equation (6) formally highlights the link between ĝ(xA, xB, ω)
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in Equation (1), the stacked ambient noise retrieval
〈

ĥ(xA, xB, ω)
〉
, and the properties of

the stacking average kernel
〈

F̂∗ F̂
〉
. Clearly, the properties of the kernel of the stacking

average control the discrepancy between
〈

ĥ(xA, xB, ω)
〉

and ĝ(xA, xB, ω), which one is
interested in minimizing.

In particular, the common interferometric assumption that the ambient noise field is
uncorrelated leads to the stacking average kernel in Equation (6) of the form〈

F̂∗ F̂
〉
(x′, x′′, ω) ∝ δ(x′ − x′′)|ŝ(ω)|2 , (8)

where ŝ(ω) is the power spectrum of the ambient noise source. There is a further implicit
assumption in Equation (8) that the power spectrum of the source does not depend on the
spatial variables. Clearly, if Equation (8) holds, evaluating the integrals in Equation (6)
leads to 〈

ĥ(xA, xB, ω)
〉

∝ ĝ(xA, xB, ω)|ŝ(ω)|2 , (9)

where ĝ(xA, xB, ω) represents the retrieval from individually recorded discrete sources
defined by Equation (1). The result in Equation (9) implies that even in the idealized
scenario when Equation (8) holds, ambient noise interferometry does not generally allow
for accurate retrieval of the amplitude of the Green’s function due to the presence of the
noise power spectrum |ŝ(ω)|2, and the lack of individual source recordings which could
allow for a source-specific spectrum correction. On the other hand, the estimated phase
remains unaffected by the presence of the real factor |ŝ(ω)|2 in Equation (9). Note also
that in practice, one has to consider empirical averages in Equations (6)–(8) based on a
finite number of ambient noise recordings instead of the abstract stacking in terms of the
statistical average over an ‘infinite’ number of recordings implied by the operator 〈 · 〉. In
such a case, if the relationship in Equation (8) holds in the limit of averaging over several
samples tending to infinity, it can be shown that the acausal contributions from off-diagonal,
incongruent source locations (i.e., when x′ 6= x′′) decay with the number of samples and
Equation (9) holds asymptotically; we postpone these more technical details to another
publication. A related derivation of a bound on the signal to noise ratio can be found in
Appendix B of [47].

The requirement that ambient noise be delta-correlated in space is restrictive and it is
often unrealistic to assume such an approximation in applications. As pointed out in [48],
most sources in practice are, unsurprisingly, neither fully correlated nor fully uncorre-
lated. Although some advances have been made in the context of simultaneously acting
sources [40,49] based on deconvolution techniques to tackle the resulting underdetermined
systems, further investigation of such a deconvolution setup is required. Nevertheless, the
relationship in Equations (8) and (9) is desirable, as it allows for the retrieval of correct
phases of the associated Green’s functions from Equation (6). Therefore, in what follows
we consider approaches which resemble the relationship in Equation (8) but without the
requirement for the spatially uncorrelated noise sources. The remainder of this section
is devoted to the analysis of the stacking average through the properties of the stacking
average kernel

〈
F̂∗ F̂

〉
in Equation (7). A new approach, which exploits a different averag-

ing kernel and applies to both correlated and uncorrelated noise sources, is proposed and
analyzed in Section 4.

To gain a theoretical insight into the ambient noise retrieval, we decompose Equation (4) as

ĥ(xA, xB, ω) = ĝε(xA, xB, ω) + x̂ε(xA, xB, ω) , (10)

where ε > 0 and
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ĝε(xA, xB, ω) =
2
ρc

∫
x′∈S

∫
x′′∈S

|x′− x′′ |< ε

F̂∗(x′, ω)F̂(x′′, ω) Ĝ∗(xA, x′, ω)Ĝ(xB, x′′, ω) dx′′ dx′ , (11)

and

x̂ε(xA, xB, ω) =
2
ρc

∫
x′∈S

∫
x′′∈S

|x′− x′′ |> ε

F̂∗(x′, ω)F̂(x′′, ω) Ĝ∗(xA, x′, ω)Ĝ(xB, x′′, ω) dx′′ dx′ .

(12)
The term ĝε(xA, xB, ω), referred to hereafter as the ε-diagonal term, accounts for the

contributions from sources such that |x′ − x′′| < ε, and one might consider sufficiently
small ε > 0, in order to minimize the contribution from acausal arrivals from incongruous
source locations in ĝε. The decomposition in Equation (10) holds for any choice of ε > 0
but taking ε → 0 does not necessarily remove all acausal arrivals from ĝε for moving
noise sources, as explained in the discussion in Section 2. However, the aim of the above
decomposition is to find an appropriate choice of the spatial correlation length cut-off ε
so that ĝε is dominated by the coherent terms, whereas x̂ε is dominated by the acausal
contributions due to incongruous source locations. Please note that the decomposition in
Equation (10) could be applied to the integral with respect to x′ instead of x′′ without loss
of generality.

Finally, we consider the stacking average of the decomposition in Equation (10)
given by 〈

ĥ(xA, xB, ω)
〉
=
〈

ĝε(xA, xB, ω)
〉
+
〈

x̂ε(xA, xB, ω)
〉

(13)

with the aim of linking the characteristics of the stacking average kernel
〈

F̂∗ F̂
〉
(x′, x′′, ω) =〈

F̂∗(x′, ω)F̂(x′′, ω)
〉

to the spatial correlation length cut-off ε in the above decomposition.
Please note that in this section no specific assumptions have been made about the source or
its spectrum, as the representation (3) used to arrive at Equations (10) and (13) is general.

Interferometric Retrieval from Spatially Correlated Noise Due to a Moving Source

To show the utility of the ε-diagonal decomposition (10) in interferometric analysis, we
consider a specific but common example of a broadband source train travelling at speed v 6=
0 and emitting sound within the frequency band

[
ω̃min, ω̃max

]
, such that the phases for

different emitted frequencies are random and independent from each other (we address
correlation of the phase across different frequencies below), i.e., for each frequency ω̃
emitted by the source, there is a corresponding random phase shift θω̃ uniformly distributed
between 0 and 2π, and we assume that the phase shifts θω̃ and θω̃′ are independent
whenever ω̃ 6= ω̃′. In such a case we find (see Equation (A34) for details) that the stacking
average kernel in Equation (7) is given by

〈
F̂∗ F̂

〉
(x′, x′′, ω) = cos

(
¯̃ω
|x′′ − x′|
|v|

)
sinc

(
1
2 ∆ω̃

|x′′ − x′|
|v|

)
|ŝ(ω)|2, (14)

which depends on the train speed v 6= 0, the mean emitted frequency ¯̃ω := 1
2 (ω̃max + ω̃min)

and the bandwidth ∆ω̃ := ω̃max − ω̃min, and where sinc(x) := sin(x)/x. The model and the
resulting stacking average kernel (14) implicitly take account of the Doppler effect (see model
derivations in Appendix A). Expression (14) for the kernel holds for non-monochromatic
sources travelling at speeds v 6= 0, and for sources whose spectrum can be represented in the
form Equation (A27). In the limit of ∆ω̃ → 0, i.e., when the source is monochromatic with
frequency ω̃, this kernel reduces to

〈
F̂∗ F̂

〉
(x′, x′′, ω) = cos(ω̃(|x′′ − x′|)|ŝ(ω)|2)/|v| which

is no longer localized. See remarks under Equation (A24) in Appendix A concerning a more
general model that allows for appropriate localization. For simplicity, we consider the
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parametrization of the straight boundary S given by x = ( x, 0 ), where x = 0 corresponds
to the location where the line through the receiver pair intersects the boundary S, so that
x′ = ( x′, 0 ) and similarly x′′ = ( x′′, 0 ). Using this parametrization we have that |x′ −
x′′| = |x′ − x′′| in Equation (14). For further details see Equation (A35) and accompanying
remarks in Appendix B.

The movement of the noise source allows us to parameterize any locations x′, x′′ ∈ S
via the travel time so that x′ = ( |v|t′ , 0 ) and x′′ = ( |v|t′′, 0 ). The analytical expression
for the stacking average kernel associated with a broadband correlated train of sources
allows one to identify the approximate correlation length beyond which the envelope of
the kernel (14) decays rapidly. The unwanted long-range correlations contributing to the
kernel away from the neighborhood of x′ = x′′, x′, x′′ ∈ S, represent the main contribution
to
〈

ĥ(xA, xB, ω)
〉

in Equation (13) from the acausal arrivals. Based on Equation (14), we set
the spatial correlation length cut-off ε to twice the value of the first zero of the envelope of
the stacking average kernel (see the bottom panel of Figure 4), which is given by

ε =
|v|

ω̃max − ω̃min
, (15)

for non-monochromatic sources travelling at speeds v 6= 0. Figure 4 shows the numerically
approximated stacking average kernel

〈
F̂∗ F̂

〉
(x′, x′′, ω) and its exact form (14). The rate of

decay of the source kernel in terms of the spatial discrepancy |x′ − x′′| is controlled by the
envelope of the sinc(x) factor in Equation (14). As noted before, the spatial discrepancy
can be represented in terms of the travel times so that |x′ − x′′| = |t′ − t′′||v|, where v is
the train speed. Although the choice of the spatial correlation cut-off length ε has so far
been somewhat arbitrary, the main principle in its determination is to use the structure
of the stacking average kernel

〈
F̂∗ F̂

〉
in order to approximately identify the correlation

length beyond which the crosstalk terms dominate the correlation structure represented by〈
F̂∗ F̂

〉
.

Please note that while the decomposition (10) and its stacking average Equation (13)
are given in the frequency domain to highlight the interaction between incongruous source
locations, the corresponding stacking average decomposition in the time domain is given by

h(xA, xB, t) = gε(xA, xB, t) + xε(xA, xB, t) , (16)

and its stacking average is given by〈
h(xA, xB, t)

〉
=
〈

gε(xA, xB, t)
〉
+
〈

xε(xA, xB, t)
〉

. (17)

The above time-domain decompositions hold due to the linearity of the inverse
Fourier transform; as is standard in the interferometric literature, we assume throughout
that h is square-integrable in t ∈ R (so that the Fourier transform is well-defined on
h ∈ L2(R)) and that F̂ and Ĝ are such that Fubini’s theorem holds throughout. Thus,
the diagonal band decompositions of h and ĥ are dual to each other and they can be
considered interchangeably.

The formulation of the ε-diagonal decomposition in the time domain (i.e., representa-
tion (16)) lends itself directly to the analysis based on time series recordings provided that
a suitable spatial correlation length cut-off ε can be determined. When the noise source
is in motion, as in the case considered here, the spatial correlation length cut-off ε has a
temporal counterpart Tε = ε/|v| for v 6= 0. In Section 4, we will focus on a procedure for
recovering the ε-diagonal band structure, analogous to that in 〈gε〉 in Equation (17), from a
single short recording when the value of the spatial correlation length cut-off ε cannot be
estimated from the stacking average kernel. First, however, we outline the general prop-
erties of the stacking average and its potential pitfalls when retrieving the inter-receiver
interferometric Green’s function. To this end we consider two different classes of noise
sources, and we compare the standard stacked retrieval h(xA, xB, t) and its stacking average〈

h(xA, xB, t)
〉

with retrievals based on isolating the ε-diagonal band terms gε(xA, xB, t)
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and
〈

gε(xA, xB, t)
〉

in the decomposition Equations (16) and (17), respectively, using an
‘informed’ choice of the spatial correlation length cut-off ε given by Equation (15).
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Figure 4. Example of the structure of the source kernel F̂∗(x′, ω)F̂(x′′, ω) and the stacking average kernel 〈F̂∗ F̂〉(x′, x′′, ω) =〈
F̂∗(x′, ω)F̂(x′′, ω)

〉
derived in Equation (14). Top left panel shows the spatial part of source kernel (14) (that is, without

including the frequency-dependent term |ŝ(ω)|2) as a function of the location of a single train of sources recorded at each
receiver. The simulated train travels at 90 km/h and its spectrum ranges from 10 Hz to 25 Hz. The top-right panel shows
the corresponding kernel after stacking 1000 source train recordings each five minutes long. The bottom panel compares the
numerical anti-diagonal section in black dashes, extracted from the numerical mean in the top-right panel, with the prediction
given by Equation (14) in blue, as well as its analytical envelope in solid gray and the rate of decay in dashed gray, in terms of
the signed spatial discrepancy x′ − x′′, where the parametrization x′ = (x′, 0), x′′ = (x′′, 0) has been used. The rate of decay
is derived from the envelope of the sinc factor in Equation (14). The orange dots highlight the first pair of zeros of the analytical
envelope, capturing the energy around the mean. The radius ε will be taken to be the distance between these zeros.

In Figure 5 we use the spatial cut-off radius ε determined in Equation (15) and apply
the ε-diagonal decomposition procedure laid out in Equation (16). First, we assume that
individual recordings are statistically independent. In particular, for a noise source with
a broadband spectrum this constraint translates to the requirement that the frequencies
associated with the random source signature F̂ be independent. To generate this figure,
a train of sources travelling at 90 km/h along a straight boundary and emitting sound
between 10 Hz and 25 Hz was simulated to generate the ambient noise recordings p(xA, t)
and p(xB, t). The receiver pair was oriented perpendicularly to the source-line, with an
inter-receiver distance of 2000 m and the closest receiver 400 m from the source-line. The
medium speed was set to 1000 m/s. The ambient noise recordings were transformed to
the frequency domain and ĥ(xA, xB, ω) was computed according to Equation (2). Then the
ε-decomposition was calculated for a single run to generate the insets in the top row. The
frequency-domain data were used to extract the phase in the top-right panel of Figure 5,
as well as transformed back to the time domain to generate the time series h(xA, xB, t),
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gε(xA, xB, t), and xε(xA, xB, t) in the top left panel of the same Figure. This procedure was
repeated 1000 times and averaged to calculate 〈ĥ(xA, xB, ω)〉, as well as its ε-decomposition
with the associated phases (right) and waveforms (left) in the bottom row of this figure.

-6

Waveforms Phases

O
n
e train

1
0
0
0
 stacked

 train
s

Full retrieval

Diagonal term

Cross-talk 

Reference

Time [s] Frequency [Hz]

Figure 5. Example of the ε-diagonal decomposition procedure Equation (16) and its stacking average
version Equation (17) for a train travelling at 90 km/h with the emitted spectrum between 10 Hz
and 25 Hz. The receiver pair was placed perpendicularly to the road, with an inter-receiver distance
of 2000 m and a distance of 400 m from the source-line to the closest receiver. The medium speed
was set at 1000 m/s. The decomposition is performed for ε = 6 m (Tε = 0.25 s) determined
from Equation (15) for a single five-minute recorded source train (top) and for a stacked retrieval
over 1000 five-minute train source recordings (bottom). The left panels show the waveforms of
the components Equations (16) and (17), and the right panels show the corresponding phases
in the frequency domain obtained from the frequency representation of the retrieval given by
Equations (10) and (13). The retrieval h(t) and its stacking average

〈
h(t)

〉
are shown in gray, and

their components gε(t),
〈

gε(t)
〉
, and xε(t),

〈
xε(t)

〉
, are shown in blue and orange, respectively. The

phase plots include the phase of the inter-receiver Green’s function (dashed black) estimated from
discrete sources, as prescribed by Equation (1) as a reference.

In this setup, and given the stacking average kernel in Equation (14), the retrieval
of the inter-receiver Green’s function is shown in gray in both the temporal and the
spatial domains, with the ε-diagonal terms gε, ĝε in blue and the crosstalk xε, x̂ε shown
in orange. According to Equation (15), we chose ε = 6 m which corresponds to a time
window length Tε ≈ 0.25 s. The resulting spectra were transformed to the temporal domain
via inverse Fourier transform to show the effect of the decomposition on the retrieved
waveforms; the components of Equation (16) are shown in the left panels of Figure 5. The
decomposition was applied to a single five-minute recording of a source train (top), and to
the averaged waveform resulting from stacking 1000 such recordings (bottom). The phases
corresponding to each waveform are shown in the panels to the right in Figure 5.

This illustrates the improvement in the retrieval using the decomposition (10) which
satisfactorily separates the causal contributions to the inter-receiver phase from the spuri-
ous crosstalk.

Please note that the phase of 〈ĥ(ω)〉 in the bottom right panel of Figure 5 (in blue)
typifies the phase retrieved from the standard ambient noise interferometry approach
which relies on averaging over stacked independent recordings of ambient noise of the
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form (2). Although stacking can clearly improve the quality of the retrieved phase of the
inter-receiver Green’s function, significant discrepancies remain especially in the higher
frequency range of the spectrum due to the increased influence of the Doppler shift even
for many stacked recordings. It should be noted that sources travelling at different speeds
and overlapping with each other may help improve the rate of convergence of the standard
stacking to the correct phase. On the other hand, the phase of the ε-diagonal term ĝε(ω)
shows a much better agreement with the uncorrelated reference estimate even for a single
short recording (blue phase in top-right panel of Figure 5). Application of the stacking
average to the ε-diagonal term 〈ĝε(ω)〉 leads to a further but slight improvement over the
standard stacking applied directly to ĥ which is evident in the higher frequency range of
the spectrum. This increased uncertainty for higher frequencies is to be expected given the
presence of the Doppler shift.

The above experiment indicates that although there is some flexibility in the choice
of the spatial correlation length cut-off ε, it is possible to carry out the ε-diagonal de-
composition (10) in a way which on average, largely separates the desired contributions
from coherent sources and the crosstalk between incongruous source locations into two
distinct terms ĝε(t) and x̂ε(t) respectively. In the case of correlated moving noise sources, a
sufficiently small correlation length cut-off ε results in attributing a significant proportion
of the coherent noise contributions which should be captured by ĝε relative to the ‘crosstalk’
term x̂ε; the situation is reversed for a sufficiently large ε. If we were to evaluate these
integrals explicitly in order to estimate the true phase, the challenge lies in determining
an optimal value of the spatial correlation length cut-off ε that minimizes the error in the
phase retrieval in the absence of knowledge of the spatial correlation structure contained in
the stacking average kernel

〈
F̂∗ F̂

〉
(x′, x′′, ω) in Equation (7).

It is worth noting that a successful phase retrieval of the inter-receiver Green’s function
based on the empirical average of stacked recordings fundamentally relies, via the law of
large numbers, on the statistical independence of the individual recordings. In particular,
for a noise source with a broadband spectrum this constraint translates to the requirement
that the frequencies associated with the random source signature F̂ are independent;
otherwise, the empirical average of the stacked retrieval 1

N ∑N
n=1 ĥ(n)(xA, xB, ω) might still

converge as N → ∞ but there are no guarantees that the resulting limit
〈

ĥ(xA, xB, ω)
〉

will
lead to the recovery of the true inter-receiver phase. Figure 6 shows one such example,
where the setup and parameters are identical to those in Figure 5, except that the phases
of the frequencies emitted by the sources are no longer uncorrelated. Such a scenario
would be likely to occur, for example, due to an interaction between sleepers on a rail
track and the wheels of the train [32]. Specifically, for each frequency ω̃ emitted by the
source, the random phases associated with each emitted frequency are such that for a pair
of emitted frequencies ω̃ and ω̃′, |ω̃− ω̃′| � 1, the phase shifts satisfy θω̃ = θ′ω̃ + r, where
r is uniformly distributed between 0 and 2π, so that the phase shifts θω̃ and θω̃′ are no
longer uncorrelated.

The gray trace in the middle panel of Figure 6 shows the averaged waveform in the
time domain obtained by stacking 1000 five-minute long recordings. In contrast to the result
of the equivalent procedure shown in Figure 5 (bottom left), stacking the recordings does
not converge (or does not converge sufficiently quickly) to the correct inter-receiver arrival,
and the crosstalk term (orange) in the middle panel does not decay. The corresponding
phases are shown in the right panel of Figure 6 with the phase estimated from stationary
discrete sources (see Equation (1)) in dashed black as a reference. However, the phase of the
inter-receiver signal is still successfully isolated by the ε-diagonal decomposition (10), as
indicated by the blue line, showing a good agreement with the phase of the inter-receiver
Green’s function estimated from discrete sources, as per Equation (1).
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Figure 6. Example of a source signature from which the interferometric Green’s function estimate
cannot be retrieved by stacking. The left panel shows the numerical/empirical approximation of
the stacking average kernel 〈F̂∗ F̂〉(x′, x′′, ω) in Equation (7) estimated by stacking 1000 trains of
sources travelling at 90 km/h with an emitted spectrum between 10 Hz and 25 Hz. The receivers
were placed perpendicularly to the source-line, with an inter-receiver distance of 200 m and the
receiver closest to the source-line at a distance of 400 m. Away from the diagonal, non-zero elements
persist. The middle panel shows the stacked waveform

〈
h(t)

〉
and its ε-diagonal decomposition

into
〈

gε(t)
〉

and
〈

xε(t)
〉
. The right panel shows the corresponding unwrapped phases for the full

term
〈

ĥ(ω)
〉

(gray) and its decomposition into the ε-diagonal term
〈

ĝε(ω)
〉

(blue) and the crosstalk
term and

〈
x̂ε(ω)

〉
(orange), as well as the phase of the inter-receiver Green’s function (dashed black)

estimated from discrete sources as per Equation (1) as a reference. In this case, the stacking average
kernel

〈
F̂∗ F̂

〉
(x′, x′′, ω) in Equation (7) is not localized and the value of the correlation length cut-off

ε was chosen according to the approach described in Section 4. The phase retrieval from
〈

ĝε(ω)
〉

and ĝε(ω) is similar and not shown.

Clearly, in most real-world applications it is not possible to gauge the retrieval against
some reference benchmark, which leaves the retrieved results and the convergence trends
open to subjective interpretation. Moreover, even if enough recorded data are available to al-
low for stacked averaging but the stacking average kernel

〈
F̂∗ F̂

〉
(x′, x′′, ω) in Equation (7)

is not spatially localized, there is no a priori criteria for estimating the appropriate value
for the spatial correlation length cut-off ε needed in the decomposition (10) (compare
the example in Figure 6 with that illustrated in Figures 4 and 5). The key point of these
considerations is that in principle it remains possible to estimate the correct phase of the
underlying Green’s function from a single short recording of a correlated ambient noise
source, and that the cause of the noise correlation is not relevant in such considerations.

In summary, in this section we discussed a constructive example of the interferometric
retrieval of the inter-receiver Green’s function which was based on an abstract decom-
position of the retrieval (2) as ĥ = ĝε + x̂ε, as in Equations (10) or (16), and based on an
‘informed’ choice of the spatial correlation length cut-off ε so that the undesirable crosstalk
terms are largely contained in the x̂ε term. This construct, driven by analytical insight and
illustrated in Figures 4–6, suggests that it should be possible to carry out such a decomposi-
tion and subsequently obtain the phase estimate of the inter-receiver Green’s function if a
suitable correlation cut-off length ε can be estimated. Importantly, this approach would
allow one to sidestep the classical stacking average approach and avoid its potential pit-
falls. In the following section we propose a workflow that facilitates the extraction of the
interferometric phase estimate from a single short recording of a passing train (i.e., an
instance of a moving correlated noise source). In fact, the choice of the correlation length
cut-off ε in the example in Figure 6 was determined via a procedure described in the next
section, since in the setup of Figure 6 the stacking average kernel

〈
F̂∗ F̂

〉
(x′, x′′, ω) was not

spatially localized due to implicit correlations between the noise sources.

4. The Random Windowing Technique

Based on the analytical insight outlined in the previous sections, we consider the
problem of estimating the phase of the inter-receiver Green’s function from a single
short recording of a train of sources, without resorting to the standard averaging over a
stacked ensemble of recordings. Nevertheless, the retrieval based on this procedure effec-
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tively results in the extraction of the ε-diagonal term in the decomposition ĥ(xA, xB, ω) =
ĝε(xA, xB, ω) + x̂ε(xA, xB, ω) introduced in Equation (10), where ε is determined without
the explicit knowledge of the stacking average kernel

〈
F̂∗ F̂

〉
(x′, x′′, ω) and the need for

it to be localized. Importantly, the technique applies to both correlated and uncorrelated
noise sources.

Consider a single time-domain recording of a train of sources at a receiver pair xA and
xB and denote these recordings by, respectively, p(xA, t) and p(xB, t) whose Fourier trans-
form leads to the retrieval ĥ(xA, xB, ω) = p̂∗(xA, ω) p̂(xB, ω) in Equation (2), representing
the interferometric approximation of the inter-receiver Green’s function Ĝ(xA, xB, ω). In
the previous section the correlation length cut-off ε had to be estimated from the stack-
ing average kernel

〈
F̂∗ F̂

〉
(x′, x′′, ω) in Equation (6), assuming that the stacking average

had a localized kernel (e.g., Figure 4) which is not always the case for correlated noise
sources (e.g., Figure 6). We now determine an optimal spatial/temporal window size that
minimizes the effect of acausal arrivals in the interferometric retrieval from a single short
recording. The approach relies on the use of an appropriate randomization technique,
termed random windowing, in order to introduce incoherence into the acausal part of the
phase in the retrieval ĥ(xA, xB, ω) in the available recording and mitigate the influence of
the crosstalk terms, largely contained in x̂ε(xA, xB, ω) of the ε-diagonal decomposition of
ĥ(xA, xB, ω), which hinder the accurate retrieval of the Green’s function Ĝ(xA, xB, ω).

4.1. General Setup

First, consider the interferometric retrieval h(xA, xB, t) in Equation (2) obtained from
recorded time series data within an interval/window of duration T > 0 and centered
at some randomly drawn time tn. For a pair of receiver locations xA and xB restrict the
recorded time series p(xA, t) and p(xB, t) to that temporal window (see Figure 7). The
random windowing method introduced below can be applied to recorded time series
generated by arbitrary noise sources. However, in what follows we consider correlated
noise generated by a source moving with speed v 6= 0. This setup is relevant in appli-
cations, and it also aids understanding of the theoretical underpinning of the random
windowing method, since it allows one to link the windowing of the time series to the
spatial windowing, as illustrated in Figure 7. For time series generated by arbitrary noise
sources, v does not correspond to a physical velocity, and stands for an abstract parameter
that allows for the space time transformation. Next, for a given average source velocity, the
window of duration T is linked to a spatial window which we define for a receiver location
x as

S(x, v, T, tn) =
{

x′ ∈ S : x′ = vt′ for |t′ − tn| < 1
2 T
}

, (18)

and which corresponds to the segment of the (spatial) source boundary traversed by
the source moving at speed v from the origin at time zero, and recorded at a receiver
location x within the time window of duration T centered at tn. As illustrated in the right
panel of Figure 7, these boundary segments will differ for each receiver, depending on
the inter-receiver distance, the distance to the source-line, and the speed of the source.
The theoretical spatial location of S(x, v, T, tn) for each receiver can be calculated explicitly
using Equation (A11) and scaling by the source speed (or by its estimated mean), as
described in Appendix A. The frequency-domain representation of the time-windowed
data at each receiver can be expressed as

p̂(xA, ω ; T, tn) =
∫

S(xA ,v,T,tn)
F̂(x′, ω)Ĝ(xA, x′, ω)dx′ ,

p̂(xB, ω ; T, tn) =
∫

S(xB ,v,T,tn)
F̂(x′, ω)Ĝ(xB, x′, ω)dx′ ,

(19)
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where S(x, v, T, tn) is given by Equation (18). Please note that explicit knowledge of the
signals integrated along boundary sections is not required in practice, as the windowing
procedure is performed directly on the full recorded time series. A source travelling at
speed |v| will span a distance no greater than |v|T during a time window of duration T, so
that for any random time window location tn the corresponding spatial location xn = |v|tn
satisfies |x′ − xn| 6 |v|T. Restricting the time window size to T will implicitly restrict the
spatial locations contributing to the cross-correlation terms, and it will limit the crosstalk
between incongruous source locations. Choosing the set of source locations x′ such that
|x′ − xn| 6 |v|T allows us to write a recording Equation (19) in a manner consistent with
representation (3); namely

p̂(x, ω ; T, tn) :=
∫

S
F̂(x′, ω)Ĝ(x, x′, ω) χ{|x′−xn |≤T|v|}(x

′) dx′ , (20)

where χA(x) is the indicator function of a set A; i.e., χA(x) = 1 if x ∈ A and χA(x) = 0
if x /∈ A. Then, applying the ambient noise retrieval Equation (2) to the time-windowed
recordings (see Figure 7) for a window of duration T centered at tn results in the win-
dowed retrieval.

ĥ(xA, xB, ω ; T, tn) :=
2
ρc

p̂∗(xA, ω ; T, tn) p̂(xB, ω ; T, tn)

=
2
ρc

∫
S

∫
S

F̂∗(x′, ω)F̂(x′′, ω)Ĝ∗(x, x′, ω)Ĝ(x, x′′, ω)

× χ{|x′−xn |≤T|v|}(x
′) χ{|x′′−xn |≤T|v|}(x

′′) dx′dx′′, (21)

where the second equality is derived by substituting Equation (20) for each recording,
and recasting the resulting product of integrals in a manner consistent with the form of
Equation (4). Please note that as in Equation (4), the term F̂∗(x′, ω)F̂(x′′, ω) is still present
in Equation (21), and one could consider applying the standard stacking to Equation (21).
However, if the resulting averaged/stacked source kernel 〈 F̂∗(x′, ω)F̂(x′′, ω) 〉 is not suffi-
ciently localized (as discussed in Section 3), there are no guarantees that we will retrieve
the correct inter-receiver phase. Instead, we consider a new averaging operator which
relies on averaging over randomized window locations tn. We denote this operator by
〈 · 〉T and define it for a scalar function γ : R→ R as〈

γ
〉

T :=
∫
R

γ(τ) fT(τ)dτ, (22)

where fT is the probability density function associated with the choice of locations tn which
is parameterized by T and assumed to be non-zero only on a bounded interval, and the
function γ is integrable with respect to fT . Next, we define the averaged retrieval for a time
window of duration T as

ĥT(xA, xB, ω) :=
〈

ĥ(xA, xB, ω ; T, · )
〉

T

=
2
ρc

∫
S

∫
S

〈
χχ
〉

T(x
′, x′′)F̂∗(x′, ω)F̂(x′′, ω)Ĝ∗(x, x′, ω)Ĝ(x, x′′, ω)dx′dx , (23)

where we assume that Fubini’s theorem is satisfied and the random windowing averaging
kernel is defined as〈

χχ
〉

T(x
′, x′′) :=

〈
χ{|x′−xn |≤T|v|}(x

′) χ{|x′′−xn |≤T|v|}(x
′′)
〉

T . (24)
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Figure 7. Illustration of the random windowing procedure for a single realization of a window of
size T in the temporal domain (left), and the corresponding window of length T|v| in the spatial
domain (right) for v 6= 0. The panels on the left show the waveforms recorded at a pair of receivers
generated by a moving noise source. The approximate time at which the moving source is collinear
with the receiver pair is denoted by t0, and the location of a window of duration T (blue) is centered
around the randomly drawn time tn. The background in the inset on the right shows the spatial part
of the source kernel 〈F̂∗(x′, ω)F̂(x′′, ω)〉 in Equation (6), where x0 corresponds to the spatial location
of the moving source at time t0. The boundary of the spatial window, centered at a random location
xn = tn|v|, and its projections are highlighted in blue and denoted by S(x, v, T, tn) for each receiver;
the resulting square window (of size T|v|) is slightly off the diagonal. The parts of the source kernel
excluded from this random window are grayed out.

Please note that given the above formulation and the ε-diagonal decomposition (10),
we have

ĥT(xA, xB, ω) ∝ ĝε(xA, xB, ω), ε = 2T|v|. (25)

Furthermore, similarly to standard averaging via the stacking of recordings as in
Equation (6), the structure of the random windowing averaging kernel determines the
quality of the retrieval of the interferometric phase estimate from ĥT(xA, xB, ω). Note, in
particular, that the random windowing averaging kernel

〈
χχ
〉

T(x
′, x′′) is a symmetric func-

tion of the locations x′, x′′ ∈ S, and is concentrated in the neighborhood of x′ = x′′. Note
also that the source speed |v| affects the properties of the random windowing averaging
kernel. As suggested by the results illustrated in Figure 7 and confirmed by analytical esti-
mates for a typical setup in Section 4.2, the random windowing procedure has an analogous
effect to the ε-localization procedure in decomposition (13) in the sense that interactions
between incongruous source locations are implicitly restricted to within the time/space
window of the recordings before cross-correlating. Hence, the contribution of the acausal
crosstalk is mitigated. Moreover, if sufficient data are available, one can additionally apply
the standard stacking operation to ĥT(xA, xB, ω) which yields the general retrieval

〈
ĥT(xA, xB, ω)

〉
=

2
ρc

∫
S

∫
S

〈
F̂∗(x′, ω)F̂(x′′, ω)

〉〈
χ{|x′−xn |≤T|v|}(x

′) χ{|x′′−xn |≤T|v|}(x
′′)
〉

T

× Ĝ∗(x, x′, ω)Ĝ(x, x′′, ω) dx′dx′′ , (26)

since the stacking 〈 · 〉 and the window randomization 〈 · 〉T are independent by design, and
therefore they commute. Importantly, the form of (26) implies that the random window
average and the stacking average play, in principle, a similar role in the elimination of
the crosstalk contributions in the ambient noise retrieval, in the spirit of the ε-diagonal
decomposition (10). For T � 1 the random windowing kernel

〈
χχ
〉

T will concentrate
the integrand in (26) to within the O(T|v|) neighborhood of x′ = x′′. A similar effect is
achieved if enough data are available, and the noise sources are such that the stacking
average kernel

〈
F̂∗ F̂

〉
localizes around x′ = x′′ (see Section 3 and Figure 4). In principle,

both operations can be applied concurrently. However, in contrast to the stacking average,
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the use of random windowing averaging relies on a single recording provided that a
suitable value T of the time window can be determined; derivation of such a procedure
described in Sections 4.3 and 4.4 is preceded by a simple example which is aimed at
elucidating the main properties of the random windowing average.

4.2. Example: Uniformly Distributed Window Locations

Consider a default situation in which the temporal window location tn is uniformly
distributed within the interval D =

[
t0 − T, t0 + T

]
. We then have

fT(tn) =
1

2T
,

〈
tn
〉

T = t0, Var(tn) =
〈
(tn − t0)

2〉
T = T2/3. (27)

Then, if we define the spatial source location at time tn as xn = tnv, we have〈
xn
〉

T = vt0 = x0. Applying the operator 〈 · 〉T with the uniform density fT to the product
of the indicator functions in Equation (24) corresponds to the convolution of two boxcar
functions of constant height one and width T|v|, parameterized in terms of the source
location discrepancy |x′ − x′′|, x′, x′′ ∈ S.

A standard calculation shows that applying operator 〈 · 〉T to the product of indicator
functions in Equation (26) yields a symmetric kernel in the random windowing averaging
of the form〈

χ{|x′−xn |≤T|v|}(x
′) χ{|x′′−xn |≤T|v|}(x

′′)
〉

T =
(
|x′ − x′′|+ T|v|

)
Θ
(
|x′ − x′′|+ T|v|

)
+
(
|x′ − x′′| − T|v|

)
Θ
(
|x′ − x′′| − T|v|

)
− 2|x′ − x′′|Θ

(
|x′ − x′′|

)
, (28)

which represents the tent map supported on the interval −2T|v| 6 x′ − x′′ 6 2T|v|
and centered at x′ − x′′ = 0, where Θ denotes the Heaviside function. An example of
Equation (28) is plotted in the right inset in Figure 8, where the kernel (28) is plotted in blue,
and its approximation obtained via direct simulations is indicated by the dotted black line.

It is informative to compare the kernel
〈
χχ
〉

T of the random windowing average in
Equation (28) illustrated in Figure 8 with the stacking average kernel

〈
F̂∗ F̂

〉
in Equation (7)

which is illustrated in Figure 4. Recall that both these kernels are present in the retrieval (26)
and that they play, in principle, a similar role aimed at reducing the contribution from the
off-diagonal, crosstalk terms into the retrieval. One can see that the random windowing
procedure is akin to extraction of the ε-diagonal term ĝε in the decomposition (10), in the
sense that for any pair of sources such that |x′− x′′| > 2T|v| the random windowing kernel
mutes the corresponding acausal contributions. For uniformly distributed locations of
the random windows around t0, only the contributions satisfying |x′ − x′′| 6 2T|v| are
included in the resulting retrieval (26). Moreover, the analytical expression (28) implies
that the width of the diagonal band induced by the random windowing procedure is
directly proportional to the source speed |v|. This suggests that a progressively shorter
time window size T should be chosen for increasing train speeds to mitigate acausal arrivals
associated with the crosstalk terms in the ambient noise retrieval (10).

4.3. Estimation of the Retrieval ĥT(xA, xB, ω) for a Given Time Window Size T

In this section, we describe a procedure for the estimation of the random windowing
average 〈 · 〉T with some fixed time window length T > 0. A systematic way of choosing
the optimal time window size Topt for any given single recording by means of estimating
the acausal energy present in each averaged retrieval ĥT(xA, xB, ω) in Equation (23) is
discussed in Section 4.4.
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Figure 8. The structure of the kernel 〈χχ〉T in Equation (24) of random windowing averaging (23)
based on the uniform distribution of window locations. The kernel is given by a tent map (28) with
height T|v| and width 2T|v|, centered at x′ = x′′. The right panel shows the kernel parameterized
in terms of the distance from the source locations x′ (for receiver xA) and x′′ (for receiver xB) to the
location of the source boundary with the receiver line (see the parametrization used in Figure 4); the
analytical solution (28) is shown in blue and its approximation within the anti-diagonal section of
the random windowing kernel (see the left panel) obtained via direct simulations is indicated by
the dotted black line. The left panel shows the numerical approximation of the random window
kernel based on 1000 windows for a single source train recording travelling at speed |v| = 25 m/s
(90 km/h), with T = 2.5 s. Compare the structure of the above random windowing kernel 〈χχ〉T
with the stacking average kernel 〈F̂∗ F̂〉 illustrated in Figure 4. Both kernels are present in the general
retrieval (26).

As outlined in Section 4.1 and illustrated in Section 4.2 the random windowing
procedure will lead to an improved phase retrieval through damping the contributions
from the cross-correlation terms in Equation (26) provided that a suitable temporal window
length T > 0 is identified, so that the random windowing kernel

〈
χχ
〉

T in Equation (23)
effectively enforces the recovery of the diagonal band term ĝε in the decomposition (10). In
the case of standard stacking the choice of the spatial correlation length cut-off ε can be
inferred from the form of stacking average kernel 〈F̂∗ F̂〉 in Equation (7), assuming that the
kernel is sufficiently localized. Clearly, the structure of the stacking average kernel cannot
be determined from a single short recording or in situations when the stacking average
kernel can be estimated but it is not sufficiently localized (e.g., as in the example presented
in Figure 6). On the other hand, the random windowing average with an appropriately
chosen T can be applied to obtain the retrieval ĥT(xA, xB, ω) in the most challenging case
where only a single (possibly short) recording of a source train is available. Moreover, as
mentioned earlier and expressed via Equation (26), if enough recorded data are available,
one can combine both averaging techniques to recover

〈
ĥT(xA, xB, ω)

〉
. It is clear that the

use of such a doubly averaged approach is more versatile than using only standard stacking
in the absence of knowledge about the structure of the noise sources, and it will lead to an
improved retrieval, as long as at least one of the kernels is sufficiently concentrated around
the set x′ = x′′, x′, x′′ ∈ S.

The first step in the procedure for the empirical approximation of the random win-
dowing average 〈 · 〉T with some fixed time window length T is to identify the approximate
time in the recorded traces when the source train is collinear with the receiver pair (see for
instance [31] for one example of a method that achieves this using plane-wave beamform-
ing). We chose a configuration in which the line through the receiver pair is perpendicular
to the source boundary, as depicted in Figure 2. In such a geometry the Fresnel zone of
the receiver pair is symmetric about the stationary phase point (see [40]) on the source
boundary but this is not essential to the random windowing method. To see this note
that when the instantaneous source location is collinear with the receiver pair the signal
recorded at the two receivers is generated at x′ = x′′, and the frequency recorded at each
receiver, as well as the Doppler bias, are the same (θxA(t

′) = θxB(t
′) in Equation (5)). Thus,

in this instantaneous configuration the effect of spurious contributions to the retrieval is
minimized. Finally, note that regardless of whether or not the noise source is in motion, the
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source location contained in the line through the receiver pair coincides with the stationary
phase point (on the source boundary) which is always contained in the Fresnel zone of the
receiver pair, unless the line through the receivers is parallel to the source boundary.

The time tag at which the source is collinear with the receivers is denoted by t0 (see left
panels of Figure 7) and the corresponding source location is denoted by x0 = vt0. Please
note that while t0 is a known time tag, explicit knowledge of x0 is not necessary in practice.
However, this notation will be useful when describing our method in the steps below. We
note further that x0 will by construction be in the middle of the Fresnel zone of the receiver
pair. Note also that for a given recording of a single source moving in one direction, the
time tag t0 remains fixed throughout the procedure.

To estimate ĥT(xA, xB, ω) consider the sequence n = 1, . . . , N, N � 1, and perform
the following steps for the given pair of recordings p(xA, t) and p(xB, t):

(i) Generate a set of random window locations {tn}N
n=1 of a fixed duration T by sampling

from the distribution associated with fT in Equation (22), and such that |tn − t0| < T.
There is flexibility in the choice of the probability distribution fT of tn provided that
〈 t(·) 〉T = t0 and that fT is non-zero only on a bounded interval.

(ii) For each tn extract the windowed recordings p(xA, t; T, tn) and p(xB, t; T, tn) of duration
T and centered at tn from p(xA, t) and p(xB, t). This procedure is illustrated in the left
panels of Figure 7 and is performed on the recorded time series for each receiver.

(iii) Perform interferometry using the windowed data and derive a realization of ĥ(xA, xB, ω ; T, tn)
according to Equation (23), using the Fourier transforms of the windowed recordings
from (ii).

(iv) Repeat Steps (i)–(iii) for a large number N of random window locations tn and take the
arithmetic mean of {ĥ(xA, xB, ω ; T, tn)}N

n=1 in order to approximate the random
windowing kernel

〈
χχ
〉

T given by Equation (24), and to obtain the ambient noise
retrieval ĥT(xA, xB, ω) in Equation (23).

Due to the law of large numbers, one has

1
N

N

∑
n=1

ĥ(xA, xB, ω ; T, tn) −→
N→∞

ĥT(xA, xB, ω), (29)

and the empirical mean of the sample {ĥ(xA, xB, ω ; T, tn)}N
n=1 converges, in the limit

of N → ∞, to the expectation of ĥ(xA, xB, ω ; T, τ) as in Equation (22) provided that
τ has a finite variance (i.e.,

∫
R τ2 fT(τ)dτ < ∞) and the locations {tn}N

n=1 are sampled
independently from fT . Finally, note that the steps outlined above do not require knowledge
of the source speed v, or for the source to be in motion, as long as it is possible to identify a
suitable recorded time t0 corresponding to the emission of energy from a source location
collinear with the receiver pair.

4.4. Procedure for Choosing the Optimal Time Window Size TOpt in the Random-Window
Averaged Retrieval ĥTopt(xA, xB, ω)

The procedure described in the previous section can be applied to any time window
of size 0 < T < ∞. However, similarly to the general ε-diagonal decomposition defined
in Equation (10), a successful approximation of the phase of the inter-receiver Green’s
function depends on the choice of an optimal support of the random windowing kernel〈

χχ
〉

T in Equation (24). The steps outlined below provide a systematic way to choose an
optimal time window size Topt for any given single recording by estimating the acausal
energy present in each averaged retrieval ĥT(xA, xB, ω) in Equation (23).

To determine Topt for a given pair of recordings p(xA, t) and p(xB, t), consider first
a sufficiently large range of test values T ∈ (Tmin, Tmax); this range will necessarily be
limited by the length of the recordings available. Steps to find the optimal window size
Topt for any fixed pair of recordings p(xA, t) and p(xB, t) are:
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(1) Choose an ordered collection of time window sizes {T(j)}J
j=1 contained in the test

range T ∈ (Tmin, Tmax).
(2) Estimate the averaged retrieval ĥT(j)(xA, xB, ω) for each time window size {T(j)}J

j=1
using the procedure described in Section 4.3.

(3) Transform each estimate
{

ĥT(j)(xA, xB, ω)
}J

j=1 to the time domain to obtain the corre-

sponding waveforms
{

hT(j)(xA, xB, t)
}J

j=1.

(4) Order the waveforms hT(j)(xA, xB, t) according to the time window size T(j) (see
bottom panel of Figure 9).

(5) Use the ordered family of waveforms hT(j)(xA, xB, t) to identify the time tag of the
feature of interest, which is normally the first-arriving dominant wave, denoted by tI .
In Figure 9, tI = 0.4 s and is highlighted in orange.

(6) Calculate the waveform energy of each trace hT(j)(xA, xB, t) from time t = 0 to a time
slightly before tI . This calculation quantifies the acausal energy present in each of the
traces as a function of T(j). (In Figure 9 the waveform energy is calculated for each
trace between t = 0 and t = 0.3 s. Please note that this curve would be different for
different recordings.)

(7) Compute the spurious waveform energy calculated in Equation (4) as a function of
the time window sizes T(j) (see the top panel of Figure 9).

(8) Minimize the spurious energy with respect to T(j); the minimizer is denoted by Topt.
(9) Use the optimal window size Topt determined in Equation (8) for the interferometric

retrieval by following the steps described in Section 4.3. Compute the final/optimal
ambient noise retrieval of the inter-receiver Greens function ĥTopt(xA, xB, ω) given by
Equation (23) or its time-domain counterpart hTopt(xA, xB, t).
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Figure 9. Calculation of acausal energy curve for a recording of a single moving source. Values of
T tested ranged between 0.25 s and 250 s. The bottom panel shows the waveforms corresponding
to the average random window retrieval for T only in the range between 0.25 s and 75 s, for clarity.
The waveforms are arranged by window size T. The arrival of interest is highlighted in orange at
time tI = 0.4 s. The top panel shows the acausal energy curve in blue. The waveform energy was
calculated for each waveform in the range from t = 0 to t = 0.3 s. The acausal energy curve exhibits a
clear initial peak for small values of T, followed by a sharp drop and then a slow increase with T.
The minimum is achieved at Topt ≈ 15 s.
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Please note that the above procedure can easily be automated. For multiple source
train recordings Steps (1)–(8) can be performed for each recording, noting that the optimal
window size Topt will, in general, be different for each recording. Then, the standard
stacking average can be applied to estimate 〈ĥTopt(xA, xB, ω)〉 and thus potentially improve
the retrieval even further.

4.5. Results

We now present some examples of the interferometric retrieval obtained via the
random windowing method described in Section 4.3 which is carried out for the optimal
time window size Topt determined according to the procedure described in Section 4.4.
We present results for a receiver pair that is perpendicularly oriented with respect to the
source-line, as well as results for a receiver pair that is oriented at 30 degrees with respect
to the source-line. The results are of essentially identical quality.

The distribution of the window locations is chosen to be uniform, as in the example
of Section 4.2. The random windowing method was applied to the two configurations
discussed in Section 3. These configurations corresponded to (i) the case where the stacking
average kernel

〈
F̂∗ F̂

〉
of the ambient noise is localized, as in Figure 5 (left panels of

Figure 10), and (ii) the challenging scenario when
〈

F̂∗ F̂
〉

is not localized and the spurious
crosstalk arrivals do not decay (right panels of Figure 10). The random windowing method
leading to ĥTopt(xA, xB, ω) is applied in all cases to a single short recording of a train of
sources, and the stacking average is not applied to ĥTopt(xA, xB, ω) unless otherwise stated.
Figure 10 shows phase estimates produced by the random windowing average in blue
and the phase estimate based on ĥ(xA, xB, ω) in light gray for comparison. Receivers
oriented perpendicularly with respect to the source-line were used in the top row, whereas
the bottom row of Figure 10 shows the results for a receiver pair oriented at 30 degrees
with respect to the source-line. The phase estimated from individually recorded sources,
which allows us to calculate the reference retrieval using Equation (1), is indicated in
dashed black. We also show the phase of the inter-receiver Green’s function retrieved
through the standard stacking average over six source train recordings restricted to a
one-minute-long window in a similar fashion to [34]. For illustration, Figure 11 shows the
waveforms corresponding to the phases depicted in the top-right panel of Figure 10 (i.e.,
a correlated noise source with correlated phases, and perpendicularly oriented receivers)
with normalized amplitudes. As expected, the waveform corresponding to the random
windowing estimate (in blue) exhibits the best agreement with the reference waveform
(in black dashes). The phases estimated from the random windowing scheme agree well
with the reference phase in all cases, showing that our method is effective in mitigating
the undesired effects of correlation in the noise sources in ambient noise interferometry,
especially where moving sources such as trains or traffic on a highway are concerned.

We note that the workflow outlined in Section 4.4 and illustrated above is not restricted
to ambient noise interferometry from correlated noise. In fact, this methodology can be
applied to short recordings of uncorrelated noise to find an optimal window size that
minimizes spurious arrivals. In this scenario, the choice of t0 as described in Section 4.3
is more flexible as the source no longer exhibits coherent spatiotemporal correlation or a
Doppler spread differential, as would be the case for a source in motion. Therefore, the
choice of time tag t0 may be arbitrary and the random windowing method can still be
applied as described in Section 4.4. Figure 12 shows the phase estimated by the random
windowing method when the ambient noise recording is uncorrelated. The random
windowing method was applied to a short (5 min) recording of uncorrelated ambient noise,
producing satisfactory results. Our approach has the potential to speed up convergence to
the inter-receiver phase when applied to uncorrelated ambient noise.
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source using receivers that are perpendicularly oriented with respect to the source-line (top) and oriented at 30 degrees
with respect to the source-line (bottom). The left column shows the results for correlated noise where source phases at
different frequencies are independent (as in Figure 4). The phase estimated from discrete sources, in black dashes, is used
for reference. The phases produced by the random windowing scheme are shown in blue and exhibit very good agreement
with the reference phase. The phase of the retrieval using the standard method and no stacking is shown in light gray, and
the phase of six stacked sources is shown in dark gray for comparison. The same phase estimates are shown in the right
column for correlated noise with correlated source phases (as shown in Figure 6). The phase estimates from the random
windowing scheme, in blue, are better than the retrieval obtained using the standard method, with slightly reduced accuracy
at higher frequencies.
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Figure 11. Waveforms corresponding to the estimated phases shown in the top-right panel of
Figure 10, for correlated noise with source phases recorded at a perpendicularly oriented pair of
receivers 400 m apart, with the medium speed set at 1000 m/s. For reference, the estimate calculated
from individual point sources is depicted in black dashes (top), exhibiting the inter-receiver arrival
at 0.4 s. The estimate produced by standard interferometry without stacking is shown in light gray
(second from top). The waveform resulting from standard stacking of six estimates is depicted in
dark gray (third from top). The estimate obtained from the random windowing method applied to a
short recording of a single source is shown in blue (bottom).
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Figure 12. Random windowing method applied to uncorrelated ambient noise. The plot to the left
shows the acausal energy curve estimated from one ambient noise recording. The plot to the right
shows the resulting estimated phase in blue, which matches the reference phase in black dashes well.
For comparison, the phase estimated from stacking 1000 simulated recordings of ambient noise five
minutes long is shown in dark gray. We can see the stacking in this case will converge to the correct
phase estimate as expected for truly uncorrelated ambient noise, but only after a very large number
of ambient noise recordings are processed and stacked.

Finally, Figure 13 shows the mean optimal window sizes Topt as a function of the
distance from the closest receiver to the source-line; in the illustrated case the inter-receiver
distance is 400 m, and three different source speeds are considered. Recall that optimal
window sizes Topt are, to some extent, recording-dependent due to the randomness in
recorded signals, so their value will vary for different recordings even if the receiver
geometry remains fixed; hence, 30 samples for each considered closest receiver distance and
velocity were calculated and averaged to produce the curves in Figure 13; the fluctuations
in the curves diminish with the number of samples used. The relationship illustrated in
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Figure 13 indicates that for a fixed source speed and a fixed inter-receiver distance, the
optimal window size decreases with the distance of the receivers to the source boundary.
Moreover, the optimal window size decreases for increasing source speeds, which agrees
with physical intuition and with the form of the random windowing average kernel (28)
illustrated in Figure 8. Furthermore, as can be deduced from Equations (5) and (A11), the
spatial discrepancy of the implicit source locations (i.e., the difference x′ − x′′) will be
smaller for decreasing inter-receiver distances. Consequently, the error due to the presence
of the residual crosstalk terms in the retrieval decreases with decreasing inter-receiver
distance, while larger inter-receiver distances require smaller values of the time window
size Topt to mitigate this error.
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Figure 13. Estimated optimal window size for the random windowing scheme, calculated for trains
travelling at 45 km/h, 90 km/h and 180 km/h, in terms of the distance between the receivers and the
road (using the closest receiver as reference) and averaged over 30 samples each. The receivers were
400 m apart from each other.

5. Discussion

The ambient noise interferometric retrieval based on the random windowing av-
erage (Sections 4.3 and 4.4) is capable of accurately estimating the phase of the inter-
receiver Green’s function based on a short pair of recordings of a correlated noise source
(Section 4.5). As pointed out in Equation (25), the random windowing average allows
one to extract the ε-diagonal term in decomposition (10) of the ambient noise retrieval
ĥ(xA, xB, ω) without the explicit knowledge of the stacking average kernel

〈
F̂∗ F̂

〉
which

need not be localized. For a given pair of recordings this new technique requires one to
pre-process the spurious energy to determine the optimal time window size Topt; then, the
optimal spatial window length can be used in decomposition (10) to retrieve ĝε with the op-
timal cut-off length ε = Topt|v|. This procedure, illustrated in Figure 9, can be automated in
practical applications. Based on the derivations and the discussion in Sections 3 and 4, the
optimal value Topt of the temporal window size decreases with the inter-receiver distance
and with the distance between the source-line and the receiver pair, since the Doppler shift
and the spatial incongruence become increasingly important. Moreover, the optimal value
of the temporal window size decreases for increasing speeds of the moving noise source,
as indicated in Equation (28). These trends are consistent with physical intuition, as faster
source speeds have the compound effect of increasing the spatial coverage (and hence the
prevalence of the crosstalk contributions to the ambient noise retrieval), and increasing the
importance of the Doppler shift for the retrieval.

The random windowing approach can be used in conjunction with the standard
stacking average procedure as discussed in Section 4. This is especially tractable when
estimating inter-receiver Green’s functions from a small ensemble of source train recordings,
where the random windowing procedure can be applied to each individual train recording
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before performing standard stacking to optimize the extraction of causal information. In
Ref. [34], the distance from the receiver array to the rail track on which trains provide source
energy is of the order of 5–10 km. This large distance combined with the stationary phase
zone approach likely mitigates spurious effects arising from the Doppler effect induced
by the trains’ motion, since such a receiver array configuration and their localization
methodology implicitly restrict the recordings to regions of the source boundary on which
the train is roughly collinear with the receiver pairs. In fact, the choice of the optimal time
window size in [34] in the stacked retrieval is consistent with our findings. Incorporating
our methodology in such a setup could allow for the retrieval of inter-receiver estimates
from near-field recordings (closer to the rail tracks) maintaining the optimality of extraction
of coherent information from each recorded trace.

Sabra [41] concludes that under some circumstances the Doppler effect does not have
a significant effect on the interferometric estimate of the inter-receiver Green’s function.
However, that work explicitly assumes that the ambient noise field is uncorrelated in
time. To achieve this the sources considered were randomly and uniformly distributed in
space around the receiver pair. The situation where the ambient noise field is statistically
correlated is not considered. Moreover, to mitigate the differential Doppler effect, a station-
ary phase approximation is performed throughout, and the far-field assumption is made.
These approaches are consistent with our findings, as well as with the random windowing
method presented in this work.

In interferometric studies from traffic noise, such as the one performed by Behm et al. [30],
wave velocities are retrieved from a linear array of receivers which crosses the main road
perpendicularly. In this setup, the choice of the time window sizes could be further in-
formed by our proposed framework, possibly using consistently shorter time windows for
receiver pairs which are closer to the road. This interesting study points out that longer
observation periods do not necessarily lead to better results, which indicates that correla-
tions in the underlying ambient noise are too significant for the stacked-averaged retrieval
to be appropriate, analogously to the case illustrated in Figure 6. Thus, integrating the
random windowing approach could be beneficial by providing an informed method for
selecting temporal window sizes so that the effect of spurious arrivals is minimized, or
even averaging over different time window sizes. Liu et al. [35] conclude, using physically
motivated ray-path arguments, that the crosstalk can be negligible when performing inter-
ferometry using seismic noise generated by high-speed trains in the case of direct, scattered
and refraction waves. Our approach to interferometry from correlated noise sources links
the quality of the retrieved phase of the inter-receiver Green’s function from direct waves
explicitly to the correlation structure of the noise source, as well as the receiver array
geometry (inter-receiver distance and distance to the source-line) while further providing
a methodology to mitigate the spurious effects induced by any of these causes. In the
common case of sources in motion, we established a link between the spurious energy in
the retrieved trace and the speed of the source, and the proposed methodology has the
potential to mitigate spurious effects induced by the Doppler spread for this type of source.
We further note that the receivers in [35] are very close to the location of the source train,
confirming that correlated noise interferometry is applicable in the near-field of seismic
noise generated by road traffic and trains.

We constrained our study to estimating the direct wave arrivals in two dimensions,
which loosely resembles the case of surface waves in the three-dimensional setup. Similar
derivations could be carried out for body waves that have been critically refracted in
three dimensions along horizontal interfaces in the subsurface and then refract back up
to the surface. Our methodology could be used to image and monitor the subsurface
using these non-physical refracted arrivals, as suggested by King and Curtis [50] and
Brenguier et al. [32], respectively.

Finally, our method is optimized when the location of the source in motion can
be identified from a location tracker or from the acquired data. The latter approach
has been shown to be possible for example in [32,34], but may not be feasible in an
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urban environment with a more complicated road network and multiple simultaneous
sources. In those situations, one could apply directional decomposition of the wavefield
into constituent energy from its different individual sources prior to using these methods,
similarly to the methods employed by Maranò et al. [51]. Although we have focused on the
application of interferometry from noise sources in motion, representative of most known
physical sources that contribute to ambient noise, the random windowing method can be
used regardless of the underlying cause of statistical correlation in the ambient noise field.

6. Conclusions

We developed a novel, robust and general procedure for accurate retrieval of the phase
of the inter-receiver Green’s function from a short recording of a single source of ambient
noise, without the need to rely on the commonly used stacking average procedure, and
thus avoiding the potential pitfalls of standard ambient noise interferometry. The random
windowing approach provides a versatile framework for ambient noise interferometry,
and it should prove useful either as a standalone technique when only short recordings of
correlated noise are available or in situations where the standard stacking operation fails
due to significant correlations in the recorded signal and/or insufficiently long recordings
of the seismic noise. The random windowing method mitigates the spurious crosstalk
effects introduced by the presence of correlations in the ambient noise, regardless of the
cause of the correlation. It includes the common case of correlation caused by a spatially
migrating train of sources, and in that case it also potentially mitigates the bias introduced
by the Doppler effect. This approach is general in the sense that it improves the quality
of the phase of the inter-receiver Green’s function without detriment to retrieval obtained
using the standard stacking average methodology, and it applies to both correlated and
uncorrelated ambient noise in both near and far-field configurations. Thus, this unified
framework offers a novel workflow that can be deployed for robust estimation of inter-
receiver phases from ambient noise interferometry, regardless of the characteristics of the
ambient noise and, in general, using less data than are required for standard interferometry
that uses the stacking average approach.
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Appendix A. Analytical Derivation of Moving Point Source Model

Throughout this appendix, bold variables denote vectors whereas regular variables
denote scalar quantities. We calculate the wavefield generated by a monochromatic point
source that moves with constant speed v in a two-dimensional homogeneous medium,
emitting sound at a constant angular frequency ω̃. This wavefield is denoted by pω̃(t, x, v)
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when measured at time t and at a receiver location x. We may also refer to the constant
source frequency as f̃ when we wish to express it in Hertz, so that ω̃ = 2π f̃ . We character-
ize the moving point source through the function

sω̃(t, x, v) = e−iω̃tδ(x− vt) . (A1)

It is assumed without loss of generality that at time t = 0 the monochromatic source
is located at the origin. It is further assumed that the medium density ρ and sound speed c
are constant. Then the wavefield, denoted by pω̃, satisfies the linear wave equation

1
c2

∂2 pω̃

∂t2 −∇
2 pω̃ = ρ

∂sω̃

∂t
(A2)

where we restrict ourselves to real solutions. To solve Equation (A2) we introduce the
abstract complex potential φCω̃(t, x, v) of the particle velocity, so that

pω̃ = ρR

{
∂φCω̃
∂t

}
. (A3)

This potential satisfies the wave equation

1
c2

∂2φCω̃
∂t2 −∇

2φCω̃ = sω̃ , (A4)

which can be derived directly from Equation (A2) by integrating once with respect to time
and cancelling a factor of ρ. Please note that if φCω̃ is a solution to Equation (A4), then pω̃ as
defined by Equation (A3) will satisfy our original Equation (A2).

We can immediately write down the solution to Equation (A4) by convolving the
source term Equation (A1) with the outgoing Green’s function of the wave equation in time
and space for a volume-injection source, given by

G(t, x) =
Θ
(

t− |x|c
)

2π
√

t2 − |x|
2

c2

, (A5)

where Θ denotes the Heaviside function. Hence, the complex potential φCω̃(t, x, v) can be
expressed in integral form as

φCω̃(t, x, v) =
1

2π

∫ ∞

−∞

∫
R2

e−iω̃t′δ(x′ − vt′)
Θ
(

t− t′ − |x−x′ |
c

)
√
(t− t′)2 − |x−x′ |2

c2

dx′ dt′ . (A6)

Performing the integral in space is straightforward owing to the sifting property of
the delta distribution, yielding

φCω̃(t, x, v) =
1

2π

∫ ∞

−∞
e−iω̃t′

Θ
(

t− t′ − |x−vt′ |
c

)
√
(t− t′)2 − |x−vt′ |2

c2

dt′ . (A7)

To perform the time integral in Equation (A7), define the auxiliary functions

q1(t, x, v) =
c2t− x · v
c2 − |v|2 , (A8)

and

q2(t, x, v) = q1(t, x, v)2 − c2t2 − |x|2
c2 − |v|2 . (A9)

Then, by the definition of the Heaviside function, we have
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Θ
(

t− t′ − |x− vt′|
c

)
=

{
1 if t ≤ t̊ ,
0 if t > t̊ ,

(A10)

where

t̊ = q1(t, x, v)−
√

q2(t, x, v) . (A11)

It is useful highlight the physical interpretation of time t̊. This value is such that the
argument of the Heaviside function in the left-hand side becomes zero or, equivalently,

c(t− t̊) = |x− vt̊| .

Please note that t− t̊ is the time it takes for energy to travel from the location of the
source at time t̊ (given by vt̊) to the receiver location x. In other words, t̊ represents the time
at which the wave arriving at time t and location x was emitted. Equation (A11), scaled by
the source speed v, is useful to calculate the location of the spatial window induced by a
time window in Section 4.

Next, performing the time integral in Equation (A7) yields the following solution for
the potential:

φCω̃(t, x, v) =
ie−iω̃ q1(t,x,v)

4c
√

c2 − |v|2
H(1)

0

(
ω̃
√

q2(t, x, v)
)

. (A12)

where H(1)
0 denotes the first-kind Hankel function of order zero and q1 and q2 are as

defined by Equations (A8) and (A9) To simplify our expressions as possible, we define the
non-dimensional parameter M = |v|

c , which quantifies the ratio of the source speed with
respect to the speed of sound in the medium. This parameter simplifies our analysis when
considering the Doppler effect below. Furthermore, we place the origin of our reference
system at the instantaneous location where the source is collinear with the perpendicular
receiver pair. Hence we assume the receiver to be of the form x = ( 0 , xy ), and that the
source speed can be written as v = ( v , 0 ). Finally, we define for simplicity

tx =
|x|
c

, (A13)

that is, the travel time from the reference origin described above to the receiver location
x. Under these assumptions we can write the wavefield generated by a monochromatic
moving point source as

pω̃(t, x, M) = R

{
− iρ ω̃

4c2(1−M2)
3
2

exp
{
−i

ω̃

1−M2 t
}

×
[

M2 t√
M2t2 + (1−M2) t2

x
H(1)

1

(
ω̃

1−M2

√
M2t2 + (1−M2) t2

x

)

+ iH(1)
0

(
ω̃

1−M2

√
M2t2 + (1−M2) t2

x

)]}
.

(A14)

Expressing the wavefield in this way allows us to see how its behavior depends on
the source speed |v| and the distance to the road |x|, albeit always scaled by the medium
speed c. It also allows us to see how the distance from the receiver to the road affects its
behavior. See Figure A1 for a direct implementation of this equation in the time domain, as
well as its numerically calculated frequency spectrum.
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Figure A1. Example of simulated monochromatic wavefield pω̃ . Medium speed is c = 500 m/s
and medium density is set to ρ = 1. The receiver location is x = (0 m, 100 m). The monochromatic
source travels with speed |v| = 150 m/s along the positive direction of the x-axis, emitting sound
at f̃ = 5 Hz. It crosses the origin at time t = 0 according to our parametrization. For illustration
purposes, source parameters were chosen so that the Doppler effect could be plainly appreciated in
the waveform (low emitting frequency f̃ , relatively high value of M at 0.3). The top panel shows
the waveform in the time domain directly implemented from Equation (A14). We can see how the
perceived frequency increases or decreases when the source is moving towards or away from the
receiver, respectively. The bottom panel shows the spectrum of this source, calculated numerically
via the fast Fourier transform (FFT) in Matlab. The spectrum spreads between the frequency values

predicted by the standard Doppler formula, f̃
1±M , highlighted in gray dotted lines.

To derive an exact frequency-domain expression for the interferometric retrieval we
derive an analytical expression for the spectrum of Equation (A14). Consider the following
Fourier transform of the real part of the potential (A12)

φ̂ω̃(ω, x, v) =
∫ ∞

−∞
e−iωtR

{
φCω̃(t, x, v)

}
dt . (A15)

To perform this integration, we derive an integral representation for the spectrum
of the potential by taking the real part of the integral representation (A7), where only the
spatial integration has been performed, yielding

R
{

φCω̃(t, x, v)
}
=
∫ ∞

−∞
cos(ω̃t′)

Θ
(

t− t′ − |x−vt′ |
c

)
√
(t− t′)2 − |x−vt′ |2

c2

dt′ (A16)

Substituting Equation (A16) into Equation (A15) results after a few manipulations
in the following expression for the spectrum of the wavefield generated by a moving
point source

φ̂ω̃(ω, x, v) = − i
4

∫ ∞

−∞
e−iωt′ cos(ω̃t′)H(2)

0

(ω

c
|x− vt′|

)
dt′ . (A17)

where H(2)
0 denotes the second-kind Hankel function of order zero. Finally, to derive the

spectrum of the wavefield pω̃ Equation (A3) is Fourier transformed so that Equation (A17)
is simply multiplied by the corresponding frequency factor iω that corresponds to a
differentiation in the time domain, that is

p̂ω̃(ω, x, v) =
ωρ

4

∫ ∞

−∞
e−iωt′ cos(ω̃t′)H(2)

0

( ω

c
|x− vt′|

)
dt′ . (A18)
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Numerical implementation of the integral (A18) agrees with the spectrum of the time-
domain wavefield (A14) calculated via FFT. Moreover, the spectrum (A18) can be written
in the standard form of a recording given by Equation (3), where the source boundary S is
parameterized by t′ (via x′(t′) = t′v) and the source kernel is given explicitly by

F̂(x′(t′), ω) = e−iωt′ cos(ω̃t′)

and the Green’s function is indeed the Green’s function of the Helmholtz operator for a
volume-injection rate source, given by

Ĝ(x, x′(t′), ω) =
ωρ

4
H(2)

0

( ω

c
|x− x′(t′)|

)
.

Appendix A.1. Doppler Effect

With frequency-domain analytical expressions available, the instantaneous frequency
of the model can be evaluated. The complex model will be used. An analytical expression
is derived for the instantaneous phase of the recorded source and then a derivative is taken
to find the instantaneous frequency.

Consider the asymptotic approximation of the Hankel function.

H2
0(x) ∼ e−i(x− π

4 )

√
2

πx
. (A19)

The frequency regime and the source-receiver distance are already required to be
sufficiently large for the monopole interferometry equation to be applied, which makes
approximation (A19) reasonable. Using this approximation, the spectrum of the theoretical
complex wavefield p̂Cω̃(ω, x, v) (which is derived in a manner analogous to Equation (A18),
taking the full complex potential) can be expressed as

p̂Cω̃(ω, x, v) ∼ ωρ

4

∫ ∞

−∞
e−i{(ω+ω̃)t′+ ω

c |x−vt′ |− π
4 }
√

2c
πω|x− vt′| dt′ . (A20)

The instantaneous phase recorded at a receiver location x will be denoted by phx(t
′)

and given by

phx(t
′) = (ω + ω̃)t′ +

ω

c
|x− vt′| − π

4
, (A21)

and differentiating once in time yields

d
dt′

phx(t
′) = ω + ω̃− ω

c

(
x− vt′

|x− vt′|

)
· v . (A22)

The integral (A20) is highly oscillatory and in accordance with the stationary phase
approximation the main contributions correspond stationary points of the phase (A21).
The spectrum will be otherwise negligibly small by the Riemann-Lebesgue lemma. Hence
the spectrum will be largely negligible except at the zeros of Equation (A22). Solving the
resulting equation and using the fact that x− vt′ is the position of the source with respect
to the receiver at time t′ results in the following expression for the instantaneous frequency
recorded at location x and time t′

ω̆(x, t′) =
ω̃

1− |v|c cos θx(t′)
. (A23)

The instantaneous recorded frequency (A23) exhibits the Doppler shift induced by the
movement of the source with respect to the receiver. Please note that for any time t′ the
relative position angle cos θx(t′) is bounded between −π (when the source is infinitely far
to the left of the receiver) and π (when the source is infinitely far to the right), corresponding
to the frequencies ω̃/1±M where M = |v|/c. Equation (A23) agrees with the well-known
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expressions for the recorded frequency when the receiver is directly in the path of the
source, and is more general as the instantaneous frequency can be calculated for an arbitrary
recording location x. Moreover, it is straightforward to show that Equation (A23) is larger
than ω̃ when the source is moving towards the receiver and smaller when the source is
moving away, with the true emitted frequency ω̃ recorded the moment the source-receiver
ray-path perpendicular to the source boundary.

Appendix A.2. Broadband Moving Source Model

We construct a broadband source emitting noise on a discrete frequency domain ω̃ ∈ Ω̃
by applying the principle of superposition to the monochromatic wavefields (A18), and
imposing a random phase shift for each emitted frequency, i.e., we define the broadband
wavefield

p̂(x, ω) = ∑
ω̃∈Ω̃

cω̃ p̂ω̃(x, ω) , (A24)

where cω̃ is an appropriate scaling coefficient that depends on how the spectrum Ω̃ is
constructed, and the dependence on the source speed v is left implicit. In this paper, it is
assumed that the source spectrum can be represented in the form (A24). A more general
representation can be achieved by taking the Fourier transform of a wavefield of the form

p(x, t) = ∑
ω̃∈Ω̃

cω̃(t)pω̃(x, t) , (A25)

where the coefficients cω̃(t) are time dependent and random with their own correlation
structure. Although we do not deal with this case in detail here, we point out such a
setup would be necessary to derive a kernel that becomes localized for the case of a
monochromatic source, as remarked under Equation (14).

Assuming that the source spectrum can be represented in Equation (A24), we have

p̂(x, ω) =
ωρ

4 ∑
ω̃∈Ω̃

cω̃

∫ ∞

−∞
e−iωt′ cos(ω̃t′ + θω̃)H(2)

0

(
ω
| x− vt′ |

c

)
dt′ , (A26)

where θω̃ are a collection of random variables indexed by ω̃. The random quantity

F(t′; θΩ̃) = ∑
ω̃∈Ω̃

cω̃ cos(ω̃t′ + θω̃) (A27)

characterizes the spectrum emitted by the source, as well as how the component frequencies
interact with each other depending on the distribution of θω̃ and their correlation structure.
Equation (A26) can then be written more compactly as

p̂(x, ω) =
ωρ

4

∫ ∞

−∞
F(t′; θΩ̃) e−iωt′ H(2)

0

(
ω
| x− vt′ |

c

)
dt′ , (A28)

where it becomes clear that p̂ is itself a random quantity.

Appendix B. Analytical Kernel for a Band-Limited Source Train with Random-Phase
Emitted Frequency Components

The stacking average interferometric retrieval from the recordings of Equation (A28)
at a receiver pair xA and xB can be written for a source travelling at speed v as
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〈
ĥ(xA, xB, v, ω)

〉
=

2
ρc
〈

p̂∗(xA, ω) p̂(xB, ω)
〉

=
ω2ρ

8c

∫ ∞

−∞

∫ ∞

−∞

〈
F∗(t′; θΩ̃)F(t′′; θΩ̃)

〉
e−iω(t′′−t′)

× H(1)
0

(
ω
|A− vt′ |

c

)
H(2)

0

(
ω
|B− vt′′ |

c

)
dt′ dt′′

(A29)

For an arbitrary discrete source spectrum Ω̃ and associated source signature in the
form of (A27), the generalized average source kernel in an ambient noise interferometric
retrieval is given by〈

F∗(t′; θΩ̃)F∗(t′′; θΩ̃)
〉
= ∑

ω̃∈Ω̃

c2
ω̃

(
cos(ω̃t′) cos(ω̃t′′)

〈
cos2(θω̃)

〉
− sin(ω̃(t′ + t′′))

〈
cos(θω̃) sin(θω̃)

〉
+ sin(ω̃t′) sin(ω̃t′′)

〈
sin2(θω̃)

〉)
+ ∑

ω̃∈Ω̃
∑

ω̃′∈Ω̃
ω̃ 6=ω̃′

cω̃cω̃′

(
cos(ω̃t′) cos(ω̃′t′′)

〈
cos(θω̃) cos(θω̃′)

〉
− cos(ω̃t′) sin(ω̃′t′′)

〈
cos(θω̃) sin(θω̃′)

〉
− sin(ω̃t′) cos(ω̃′t′′)

〈
sin(θω̃) cos(θω̃′)

〉
+ sin(ω̃t′) sin(ω̃′t′′)

〈
sin(θω̃) sin(θω̃′)

〉)
, (A30)

where the double summation is split into diagonal terms and cross-terms ω̃ 6= ω̃′. Equation (A30)
shows that the standard ensemble average operator depends on the phases of the emitted
frequency components of the source, as well as their correlation.

For example, consider the case when the source spectrum is a regular partition of

a bounded interval, that is Ω̃ = {ω̃j}
|Ω̃|
j=1 for some finite spacing 4ω̃ = ω̃j+1 − ω̃j, and

associated random phase shifts θj for each frequency ω̃j. Moreover, assume that the random
shifts are such that θj ∼ Unif(0, 2π) for all j ∈ {1, . . . , |Ω̃|}. Furthermore, assume that the
phase shifts θj and θk are independent whenever ω̃j 6= ω̃k. These assumptions result in the
following probability distributions for the random variables in Equation (A30)

sin(θ) , cos(θ) ∼ ArcSin(−1, 1) ,

sin(θ) cos(θ) ∼ ArcSin
(
− 1

2 , 1
2

)
,

and

sin(θ)2 , cos2(θ) ∼ ArcSin(0, 1) ,

where ArcSin denotes the arcsine probability distribution with known means. Moreover,
assume that the coefficients cω̃ in Equation (A27) do not depend on the individual frequen-
cies ω̃, and let this coefficient be denoted henceforth simply as cΩ̃. Then the random source
kernel (A30) reduces to the deterministic expression

〈
F∗(t′; θΩ̃)F(t′′; θΩ̃)

〉
= c2

Ω̃
1
|Ω̃|

|Ω̃|

∑
j=0

cos( ω̃j(t′′ − t′) ). (A31)

Next, one can deduce in a standard fashion [52] that
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〈
F∗(t′; θΩ̃)F(t′′; θΩ̃)

〉
−→
4ω̃→0

|Ω̃|4ω̃=const.

c2
Ω̃

ω̃max − ω̃min

∫ ω̃max

ω̃min

cos(ω̃(t′′ − t′))dω̃ , (A32)

where4ω̃ = ω̃j+1 − ω̃j and ω̃max − ω̃min = |Ω̃|4ω̃, which leads to

〈
F∗(t′; θΩ̃)F(t′′; θΩ̃)

〉
≈ c2

Ω̃
sin( ω̃max(t′′ − t) )− sin( ω̃min(t′′ − t) )

(ω̃max − ω̃min)(t′′ − t′)
. (A33)

Finally, the right-hand side of Equation (A33) can be expanded using well-known
trigonometric identities to derive〈

F∗(t′; θΩ̃)F(t′′; θΩ̃)
〉
≈ c2

ω̃ cos
(
(ω̃max + ω̃min)

2
(t′′ − t′)

)
sinc

(
(ω̃max − ω̃min)

2
(t′′ − t′)

)
(A34)

The kernel Equation (A34) is parameterized in time. Under the assumption that the
source is in motion, i.e., v 6= 0, Equation (A34) leads to expression (14). To see this, let x′ be
the source location at time t′, and x′′ the source location at time t′′, so that x′ = ( |v|t′, 0 )
and x′′ = ( |v|t′′, 0 ). Hence

t′′ − t′ =
|v|t′′ − |v|t′
|v| =

x′′ − x′

|v| . (A35)

where x′ = |v|t′ and similarly x′′ = |v|t′′. Combining Equations (A34) and (A35) yields an
expression proportional to Equation (14), noting that the right-hand side of Equation (A34)
is an even function (i.e., symmetric with respect to the sign of the argument).
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