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Figure 6. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using SVGD. The red pluses show locations which are referred to in the main text.

3.1. Results
Figure 5 shows the mean, standard deviation, and an individual realization from the approximate posterior
distribution calculated using ADVI. The mean model successfully recovers the low velocity anomaly within
the receiver array except that the velocity value is slightly higher (∼1.2 km/s) than the true value (1.0 km/s).
Between the location of the central anomaly and that of the receiver array there is a slightly lower velocity
loop. The standard deviation map shows standard deviations similar to that of the prior (0.72 km/s) outside
of the array and clearly higher uncertainties at the location of the central anomaly. The standard deviations
around the central anomaly are slightly higher than those at the center. Figure 6 shows the results from
SVGD. Similarly, the velocity of the low velocity anomaly (∼1.2 km/s) is slightly higher than the true value
and a slightly lower velocity loop is also observed between the central anomaly and the receiver array. There
is a clear higher uncertainty loop around the central anomaly; this has been observed previously and repre-
sent uncertainty due to the trade-off between the velocity of the anomaly and its shape (Galetti et al., 2015;
Zhang et al., 2018). There is also another higher uncertainty loop associated with the lower velocity loop
between the central anomaly and the receiver array. In contrast to this result, the loop cannot be observed
in the results of ADVI.

To validate and better understand these results, Figure 7 shows the results from MH-McMC. The mean
velocity model is very similar to the results from ADVI and SVGD. For example, the velocity value of the low
velocity anomaly is higher than the true value, which suggests that the mean value of the posterior under the
specified parameterization is genuinely biased toward higher values than the true value. A lower velocity
loop is also observed between the circular anomaly and the receiver array. The standard deviation map shows
similar results to those from SVGD: There is a higher uncertainty loop around the central anomaly and
another one associated with the lower velocity loop between the circular anomaly and the receiver array. The
latter loop suggests that this area is not well constrained by the data, and therefore, the mean velocity tends
toward the mean value of the prior, which is lower than the true value. We do not observe the clear higher
uncertainty loops in the result of ADVI, which may be due to the Gaussian approximation which is used to
fit a non-Gaussian posterior in that method. In Figure 8 we show the results from rj-McMC. Compared to
the results from the fixed-parameterization inversions, the mean velocity is a more accurate estimate of the
true model and uncertainty across the model is also lower. For example, the middle low velocity anomaly has
almost the same value as the true model and has standard deviation of only ∼0.3 km/s compared to values
significantly greater than 0.3 km/s for all other methods. Between the middle anomaly and the receivers, the

Figure 7. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using MH-McMC. The red pluses show the point location which are referred to in the text.
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Figure 8. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using transdimensional rj-McMC. The red pluses show the point location which are
referred to in the text.

model is determined better than in the fixed-parameterization inversions (with a standard deviation smaller
than 0.1 km/s). This is because in rj-McMC the model parameterization adapts to the data, which usually
results in a lower-dimensional parameter space due to the natural parsimony of the method. For example,
the average dimensionality of the parameter space in the rj-McMC inversion is around 10; for comparison the
fixed-parameterization inversions all have dimensionality fixed to be 441. The standard deviation map from
the rj-McMC also shows a clear higher uncertainty loop within the array around the low velocity anomaly
and high uncertainties outside of the array where there is no data coverage.

Note that individual models from fixed-parameterization inversions (ADVI, SVGD, and MH-McMC) show
complex structures because of their higher dimensionality and the simple Uniform prior distribution that
we adopted (right panels in Figure 5–7). This might not be appropriate since the real Earth may have a
smoother structure (de Pasquale & Linde, 2016; Ray & Myer, 2019). In that case, more informative prior
information including some form of regularization might be used to produce smoother individual models
(MacKay, 2003).

The results in Figure 8 do not show the double-loop uncertainty structure that is observed in the SVGD
and MH-McMC results. The rj-McMC method contains an implicit natural parsimony—the method tends
to use fewer rather than more cells whenever possible. While this may be useful in order to reduce the
dimensionality of parameter space, it is also possible that it causes some detailed features of the velocity or
uncertainty structure to be omitted, much like a smoothing regularization condition in other tomographic
methods. Since the double-loop structure appears to be a robust feature of the image uncertainty, we assume
that the parsimony has indeed regularized some of the image structure out of the rj-McMC results.

Note that the result from rj-McMC is fundamentally different from results obtained using the fixed-
parameterization inversions (ADVI, SVGD, and MH-McMC) because of its entirely different parameteriza-
tion. While the other inversion results are parameterized over a regular grid and can themselves be regarded
as pixelated images, rj-McMC produces a set of models that are vectors containing positions and velocities
of Voronoi cells, which can be transformed to an image on a regular grid (right panel in Figure 8). However,
the Voronoi parametrization imposes prior restrictions on the pixelated form of models, for example, all pix-
els within each Voronoi cell have identical velocities. As a result rj-McMC produces very different results to
those obtained using the other methods. In fact, the choice of parameterizaiton in rj-McMC can impose a
variety of restrictions on models, and different parameterizations impose different prior information and so
can produce very different standard deviation structures (Hawkins et al., 2019). Thus, the results of rj-McMC
must always be interpreted in the light of the specific prior information imposed by the parameterization
deployed, and whether this is expected to match the target structure.

To further analyze the results, in Figure 9 we show marginal probability distributions from the different
inversion methods at three points (plus signs in Figures 5–8): Point (0, 0) at the middle of the model, point
(1.8, 0) at the boundary of the low velocity anomaly which has higher uncertainties, and point (3, 0) which
also has higher uncertainties in the results from SVGD and MH-McMC. Due to symmetries of the model,
marginal distributions at these three points are sufficient to reflect much of the entire set of single-parameter
marginal probability distributions. At point (0, 0), the three fixed-parameterization methods produce sim-
ilar marginal probability distributions. However, the marginal distribution from rj-McMC is narrower and
concentrates around the true solution (1.0 km/s). This is likely due to the fact that in rj-McMC we have a
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Figure 9. The marginal posterior pdfs of velocity at three points (pluses in Figures 3–6) derived using different
methods. (a–d) show the marginal posterior distributions of velocity at the Point (0,0) from ADVI, SVGD, MH-McMC,
and rj-McMC respectively. (e–h) show the marginal distributions at the Point (1.8,0) from the four methods
respectively, and (i–l) show the marginal distributions at the Point (3,0) from the four methods, respectively. The red
lines in (a) and (b) are marginal distributions obtained by doubling the number of iterations, and the black line in
(b) shows the marginal distribution obtained using 1,600 particles. The number at the top right of each figure shows
the number of Monte Carlo samples used for ADVI results and for the two McMC methods, and the number of
particles used for SVGD.

much smaller parameter space than in the fixed-parameterization inversions. To assess the convergence, we
show the marginal distributions obtained by doubling the number of iterations in ADVI and SVGD with a
red line in Figures 9a and 9b. The results show that increasing iterations only slightly improves the marginal
distributions, suggesting that they have nearly converged. The black line in Figure 9b shows the marginal
distribution obtained using more particles (1,600) with the same number of iterations (500). The result is
almost the same as the result obtained using the original set of particles, which suggests that 800 particles
are sufficient in this case. At point (1.8, 0), the marginal distributions from the three fixed-parameterization
inversions become broader, which explains the higher uncertainty loops observed in the standard deviation
maps. The distribution from ADVI is more centrally focused than the other two, which is again suggestive
of the limitations of that method caused by the Gaussian approximation. The distributions from SVGD and
MH-McMC are more similar to each other and are close to the prior—a Uniform distribution—which sug-
gests that the area is not well constrained by the data. By contrast, the result from rj-McMC shows a clearly
multimodal distribution with one mode centered around the velocity of the anomaly (1 km/s) and the other
around the background velocity (2 km/s) as discussed in Galetti et al. (2015). This multimodal distribution
reflects the fact that it is not clear whether this point is inside or outside of the anomaly, which produces
the higher uncertainty loop in the standard deviation map. This suggests that there are different causes
of the higher uncertainty loops in the different models. In the fixed-parameterization inversions (ADVI,
SVGD, and MH-McMC) the higher uncertainty loops are mainly caused by the low resolution of the data at
the boundary of the low velocity anomaly, which produces broader marginal distributions. In the rj-McMC
inversion, the higher uncertainty loops are mainly caused by multimodality in the posterior pdf. At point
(3.0, 0) similarly to the point (0, 0), the marginal distributions from the three fixed-parameterization inver-
sions have similar shape and are much broader than the result from rj-McMC. Compared to the results from
SVGD and MH-McMC, the result from ADVI again shows a more centrally focused distribution reminiscent
of the Gaussian limitation implicit in ADVI. In the result of rj-McMC the marginal distribution concen-
trates to a very narrow distribution around the true value. Overall, the marginal distributions from the
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Table 1
The Comparison of Computational Cost for All Four Methods

Method Number of simulations CPU hours
ADVI 10,000 0.45
SVGD 400,000 8.53
MH-McMC 12,000,000 480.3
rj-McMC 3,000,000 102.6

fixed-parameterization inversions are broader than the result from rj-McMC due to their far larger parame-
ter space. Note that although the marginal distributions from SVGD and MH-McMC have slightly different
shape, which causes differences in the magnitudes of their standard deviation maps, the maps are essentially
similar from these quite different methods which suggests that the results are (approximately) correct.

3.2. Computational Cost
Table 1 summarizes the computational cost of the different methods. ADVI involves 10,000 forward sim-
ulations which takes 0.45 CPU hours. However, note that in ADVI we used the full-rank covariance
matrix, which becomes huge in high-dimensional parameter spaces, which could make the method inef-
ficient. SVGD involves 400,000 forward simulations, which takes 8.53 CPU hours. This appears to make
it less efficient than ADVI; however, SVGD can produce a more accurate approximation to the poste-
rior pdf than ADVI which is limited by the Gaussian approximation. Note that SVGD can easily be
parallelized by computing the gradients in equation (19) in parallel, making the method more time effi-
cient. For example, the above example takes 0.97 hr when parallelized using 10 cores. In comparison,
MH-McMC requires 2,000,000 simulations for one chain to stabilize, which takes about 80.05 CPU hours,
so for all six chains it requires 480.3 CPU hours in total. The rj-McMC run involved 500,000 simula-
tions for one chain, which takes about 17.1 CPU hours, so 102.6 CPU hours in total for six chains.
The MC methods use evaluations of the likelihood and prior distribution at each sample, whereas both
variational methods also deploy the information in the various gradients in equations (9), (10), and
(19). The number of simulations is therefore not a good metric to compare the four methods, since
the gradients in this case are calculated by ray tracing, which require more calculations per simula-
tion in Table 1 compared to those required for MC. CPU hours is a fairer metric for comparison, but
of course, this depends on the mechanism by which gradients are obtained: In other forward or inverse
problems it is even possible that the variational methods take longer than MC if estimating gradients requires
extensive computation.

In the comparison in Table 1, rj-McMC is more efficient than MH-McMC due to the fact that rj-McMC
explores a much smaller parameter space than the fixed parameterization in MH-McMC. However, note that
this might not always be true since transdimensional steps in rj-McMC usually have a very low probability
of being accepted (Bodin & Sambridge, 2009; Zhang et al., 2018) and the method is generally significantly
more difficult to tune (Green & Hastie, 2009). Overall, obtaining solutions from variational methods (ADVI
and SVGD) is more efficient than MC methods since they turn the Bayesian inference problem into an opti-
mization problem. This also makes variational inference methods applicable to larger data sets and offers
the advantage that very large data sets can be divided into random minibatches and inverted using stochas-
tic optimization (Kubrusly & Gravier, 1973; Robbins & Monro, 1951) together with distributed computation.
MC methods can be very computationally expensive for large data sets. Of course, the above comparison
depends on the methods used to assess convergence for each method, which introduces some subjectivity
in the comparison so that the absolute time required by each method may not be entirely accurate. Never-
theless, from all tests that we have conducted it is clear that variational methods produce stable solutions
to the above problem far more efficiently than Metropolis-Hastings and rj-McMC methods. Note that some
other MC sampling methods, for example, Hamiltonian MC, also use gradient information and may be more
efficient than Metropolis-Hastings methods (Fichtner et al., 2018; Neal et al., 2011; Sen & Biswas, 2017).

4. Application to Grane Field
The Grane field is situated in the North Sea and contains a permanent monitoring system composed of
3,458 four-component sensors measuring three orthogonal components of particle velocity and water pres-
sure variations due to passing seismic waves. Zhang et al. (2020) used beamforming to show that the noise
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Figure 10. (a) The distribution of receivers (blue and red triangles) across the Grane field used in this study. Red
triangles show the receivers that were used as virtual sources. The blue plus in the inset map shows the location of
Grane field in the North Sea. The histograms show the initial distributions of each parameter in the (b) original space
(velocity) and (c) transformed unconstrained space for ADVI (blue) and for SVGD (orange). Similar to Figure 4, we
used 5,000 Monte Carlo samples to show probability distributions in both the original and the unconstrained space for
ADVI. The initial distribution for SVGD is approximated using 1,000 particles generated from the prior (a Uniform
distribution) in the original space and transformed to the unconstrained space.

sources measured in the Grane field are nearly omnidirectional, which allows us to use ambient seismic
noise tomography to study the subsurface of the field. To reduce the computational cost, in this study we
downsampled the number of receivers by a factor of 10, which results in 346 receivers, and we only used
35 receivers as virtual sources (Figure 10a). Cross correlations are computed between vertical component
recordings at pairs consisting of a virtual source and a receiver using half-hour time segments, and the set of
correlations for each pair were stacked over 6.5 hr. This process produces approximate virtual-source seis-
mograms of Rayleigh-type Scholte waves (Campillo & Paul, 2003; Curtis et al., 2006; Shapiro et al., 2005;
Wapenaar & Fokkema, 2006). Phase velocity dispersion curves for each (virtual) source-receiver pair are
then automatically picked using an image transformation technique: For all processing details see Zhang
et al. (2020), which presents a more complete ambient noise analysis of the field and presents tomographic
phase velocity maps at various frequencies as well as estimated shear velocity structure of the near seabed
subsurface. Here we use the recording phase velocity data at 0.9-s period.

We apply the variational inference methods ADVI and SVGD, and rj-McMC to the data to obtain phase
velocity maps at 0.9 s and compare the results. For variational methods, the field is parametrized using a
regular 26 × 71 grid with a spacing of 0.2 km in both x and y directions giving a velocity model dimension-
ality of 1,846. Due to its computational cost in such high-dimensional space, we do not apply MH-McMC.
The data noise level is set to be 0.05 s, which is an average value estimated by the hierarchical Bayesian
MC inversion of Zhang et al. (2020). The prior pdf of phase velocity in each model cell is set to be a Uni-
form distribution between 0.35 and 0.55 km/s, which is selected to be wider than the minimum (0.4 km/s)
and maximum (0.5 km/s) phase velocity picked from cross correlations. The initial probability distribution
for ADVI is chosen similarly to that in the synthetic tests: A standard Gaussian distribution in the uncon-
strained space (blue histogram in Figure 10c) and its shape in the original space is shown in Figure 10b (blue
histogram). For SVGD, the initial distribution is approximated using 1,000 particles generated from the prior
in the original space (orange histogram in Figure 10b) and transformed to the unconstrained space (orange
histogram in Figure 10c). We then applied 10,000 iterations for ADVI and 500 iterations for SVGD. Similarly
to the synthetic test above, for rj-McMC we use Voronoi cells to parameterize the model. The prior pdf of
the number of cells is set to be a discrete Uniform distribution between 30 and 200, and the data noise level
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Figure 11. The mean (left) and standard deviation map (right) obtained for Grane using ADVI.

is estimated hierarchically during the inversion (Zhang et al., 2018). Proposal distributions are the same as
in the synthetic test above. We used a total of 16 chains, each of which contains 800,000 iterations including
a burn-in period of 400,000. To reduce the correlation between samples we only retain every fiftieth sample
post burn-in for our final ensemble.

Figure 11 shows the mean and standard deviation maps from ADVI. The mean phase velocity map shows
a clear low velocity anomaly around the center of the field from Y = 6 km to Y = 10 km and another at the
western edge between Y = 8 km and Y = 10 km. These were also observed by (Zhang et al., 2020) using
Eikonal tomography, who showed that they are correlated with areas of higher density of pockmarks on
the seabed, suggesting that they are caused by near-surface fluid flow effects. At the western edge between
Y = 6 km and Y = 8 km and at the northwestern edge there are high velocity anomalies which were also
observed in the results of Zhang et al. (2020). In the north between Y = 11 km and Y = 12 km and along the
eastern edge between Y = 7 km and Y = 10 km the model shows some low velocity anomalies. Moreover,
there are some small anomalies distributed across the field. For example, to the south of the central low
velocity anomaly around Y = 6 km there are several other low velocity anomalies. Similarly, there is a small
low velocity anomaly and a small high velocity anomaly in the south of the field around Y = 2.5 km and a
small high velocity anomaly in the north around Y = 10.5 km.

Overall, the standard deviation map shows that uncertainty in the west is lower than in the east. At the west-
ern edge there are some low uncertainty areas, which are associated with velocity anomalies. For example,
the low uncertainty area between Y = 6 km and Y = 8 km is associated with the high velocity anomaly at
the same location. Similarly, the high velocity anomaly at the northwestern edge around Y = 12 km shows a
lower uncertainty, and the middle low velocity anomaly also shows slightly lower uncertainties. This might
suggest that these velocity structures are well constrained by the data. However, in the synthetic tests we
noticed that the ADVI can produce biased standard deviation maps due to the Gaussian approximation, so
these uncertainty properties may not be robust.

We show the mean and standard deviation maps obtained using SVGD in Figure 12. The mean velocity
map shows very similar structures to the result from ADVI, except that the velocity magnitudes are slightly
different. For example, we observe the central low velocity anomaly and one at the western edge, which
appeared in the mean velocity map from ADVI and are related to the density distribution of pockmarks.
Similarly, there are high velocity anomalies at the western edge and a low velocity anomaly at the eastern
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Figure 12. The mean (left) and standard deviation map (right) obtained for Grane using SVGD.

edge. Even for more detailed structure, for example, the low velocity anomalies at the north (Y > 10 km),
the low velocity anomalies around Y = 6 km and the small velocity anomalies around Y = 2.5 km, the two
results show highly consistent properties between the two methods. This suggests that we have obtained
accurate mean phase velocity maps given the fixed, gridded model parameterization and the observed data.

Despite the similarity in the mean results, the standard deviation map from SVGD is quite different from the
results from ADVI, which is consistent with variations that we observed in the synthetic tests. For example,
there is no clear magnitude difference between the west and the east as appeared in the result from ADVI.
There is a clear low uncertainty area associated with the central low velocity anomaly, which is slightly
lower in magnitude than the result from ADVI. Similarly, there is a slightly lower uncertainty area at the
western edge associated with the low velocity anomaly at the same location. The south-central low velocity
anomaly around Y = 6 km also exhibits relatively low uncertainties, which suggests that those small low
velocity anomalies in this area may reflect true properties of the subsurface. Similarly, there are some low
uncertainty structures at the north around Y = 11 km, which are associated with low velocity anomalies.
Note that due to the Gaussian approximation in ADVI, the standard deviation results from SVGD show
different magnitudes as we saw in the synthetic tests.

Figure 13 shows the mean and standard deviation maps obtained from rj-McMC. The mean velocity map
shows broadly similar structures to the results from ADVI and SVGD. For example, we also observed the mid-
dle low velocity anomaly, the low velocity anomalies at the western and eastern edges, and the high velocity
anomalies at the western edge. However, compared to the previous results these structures are smoother,
which is probably caused by the constant-velocity Voronoi cell parameterization and the natural parsimony
that is implicit within the rj-McMC inversion method (Bodin & Sambridge, 2009; Green, 1995) similarly to
the synthetic tests above. The small velocity anomalies in the previous results disappear in the result from
rj-McMC; this may also be caused by the natural parsimony of rj-McMC or by overfitting of data in the vari-
ational methods due to the fixed parameterization. However, the small high and low velocity anomalies
around Y = 2.5 km and around Y = 10.5 km still exist, which suggests that these detailed velocity structures
may represent real properties of the subsurface (or are caused by a consistent bias in the data).

Similarly to the synthetic tests, the standard deviation map from rj-McMC shows significantly smaller uncer-
tainties (<0.01 km/s) than the results from ADVI (∼0.04 km/s) and SVGD (∼0.055 km/s), which is probably
caused by a lower dimensionality of parameter space used in rj-McMC (around 60 Voronoi cells were used)
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Figure 13. The mean (left) and standard deviation map (right) obtained for Grane using rj-McMC.

Figure 14. The mean (left) and standard deviation map (right) obtained for Grane using Eikonal tomography by Zhang
et al. (2020).
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than in variational methods (1,846 parameters), resulting in fewer trade-offs between parameters. How-
ever, there are higher uncertainties at the location of the small velocity anomalies at Y = 2.5 km and at
Y = 10.5 km, which is probably due to the fact that not all chains found these small structures. Loop-like
structures are also observed to trace out the most abrupt velocity transitions, similarly to Figure 8.

To compare our results with traditional methods, Figure 14 shows the mean and standard deviation maps
obtained using Eikonal tomography by Zhang et al. (2020) using all of the available data (3,458 virtual
sources and 3,458 receivers). The mean velocity model shows similar but slightly smoother structures
compared to those obtained using ADVI and SVGD. This may be because the larger quantity of data used in
Eikonal tomography reduces the noise and stabilizes the results, or because the interpolation used in Eikonal
tomography regularizes (smooths) small-scale structure. The standard deviation map shows lower uncer-
tainties at the location of the middle low velocity anomaly, which is similar to that obtained using SVGD.
This again suggests that SVGD can produce a more accurate standard deviation estimate than ADVI. The
mean velocity model from rj-McMC shows smoother structures than that from Eikonal tomography, which
may suggest that rj-McMC omits small-scale structure due to its implicit parsimony. The standard deviation
map from rj-McMC also does not show similar structures to those obtained using Eikonal tomography or
SVGD due to the completely different parameterizations employed.

In the inversion, ADVI involved 10,000 forward simulations which took 5.1 CPU hours and SVGD involved
500,000 forward simulations, which required 141.8 CPU hours. By contrast the rj-McMC involved 12,800,000
forward simulations to obtain an acceptable result, which required 1,866.1 CPU hours. In real time, SVGD
was in fact parallelized using 12 cores, which took 12.1 hr to run, while rj-McMC was parallelized using
16 cores, which therefore took about 5 days. We conclude that, although the variational methods pro-
duce higher uncertainty estimates, they can produce similar parameter estimates (mean velocity) at hugely
reduced computational cost, and indeed, our synthetic tests suggest that the variational SVGD image
uncertainty results may in fact be the more correct.

5. Discussion
We have shown that variational methods (ADVI and SVGD) can be applied to seismic tomography problems
and provide efficient alternatives to McMC. ADVI produces biased posterior pdfs because of its implicit
Gaussian approximation and cannot be applied to problems with multimodal posteriors. However, it still
generates an accurate estimate of the mean model. Given that it is very efficient (only requiring 10,000
forward simulations), the method could be useful in scenarios where efficiency is important and a Gaussian
approximation is sufficient for uncertainty analysis. Alternatively, a mixture of Gaussians approximation
might be used to improve the accuracy of the algorithm (Arenz et al., 2018; Zobay, 2014). In a very high
dimensional case, ADVI could become less efficient because of the increased size of the Gaussian covariance
matrix. In that case one could use a mean-field approximation (setting model covariances to 0) or use a
sparse covariance matrix to reduce computational cost since seismic velocity in any cell is often most strongly
correlated with that in neighboring cells.

SVGD can produce a good approximation to posterior pdfs. However, since it is based on a number of parti-
cles, the method is more computationally costly than ADVI. In this study we parallelized the computation
of gradients to improve the efficiency, and for large data sets further improvements can be obtained by using
random minibatches to perform the inversion (Liu & Wang, 2016). Such a strategy can be applied to any
variational inference method (e.g., also ADVI) since variational methods solve an optimization rather than
a stochastic sampling problem. In comparison, this strategy cannot easily be used in McMC-based methods
since it may break the detailed balance requirement of McMC (Blei et al., 2017). Though it has been shown
that SVGD requires fewer particles than particle-based sampling methods (e.g., sequential MC) in the sense
that it reduces to finding the MAP model if only one particle is used, the optimal choice of the number of par-
ticles remains unclear, especially for very high dimensional spaces. In the case of very high dimensionality
another possibility is to use normalizing flows—a variational method based on a series of specific invertible
transforms (Rezende & Mohamed, 2015).

MC and variational inference are different types of methods that solve the same problem. MC simulates a
set of Markov chains and uses samples of those chains to approximate the posterior pdf, while variational
inference solves an optimization problem to find the closest pdf to the posterior within a given family of prob-
ability distributions. MC methods provide guarantees that samples are asymptotically distributed according
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to the posterior pdf as the number of samples tends to infinity (Robert & Casella, 2013), while the statistical
properties of variational inference algorithms are still unknown (Blei et al., 2017). It is possible to com-
bine the two methods to capitalize on the merits of both. For example, the approximate posterior pdf from
an efficient variational method (e.g., ADVI) can be used as a proposal distribution for Metropolis-Hastings
(De Freitas et al., 2001) to improve the efficiency of McMC, or McMC steps can be integrated to the
variational approximation to improve the accuracy of variational methods (Salimans et al., 2015).

We used a fixed regular grid of cells to parameterize the tomographic model in the variational methods,
which might introduce overfitting of the data. For example, the mean velocity models in the synthetic tests
show a slightly lower velocity loop between the low velocity anomaly and the receivers, and the uncertain-
ties obtained from fixed-parameterization inversions are significantly higher than the results from rj-McMC.
However, although rj-McMC produces lower uncertainty estimates, this is because small-scale structures
are omitted in the results of rj-McMC due to their implicitly imposed a priori information and natural par-
simony. For example, in our real data example, small-scale structures in the results of variational inference
methods and Eikonal tomography are smoothed out in the results of rj-McMC. Indeed, the parameteriza-
tion used in rj-McMC imposes restrictions on models, and different parameterizations can produce different
uncertainties (Hawkins et al., 2019). This makes the interpretation and use of uncertainties from rj-McMC
difficult.

It is not easy to determine an optimal grid in variational inference methods since this introduces a trade-off
between resolution of the model and overfitting of the data. Therefore, it might be necessary to use a more
flexible parameterization, for example, Voronoi cells (Bodin & Sambridge, 2009; Zhang et al., 2018) or
wavelet parameterization (Fang & Zhang, 2014; Hawkins & Sambridge, 2015; Zhang & Zhang, 2015). It may
also be possible to apply a series of different parameterizations and select the best one using model selection
theory (Arnold & Curtis, 2018; Curtis & Snieder, 1997; Walter & Pronzato, 1997). Note that this might make
the methods less computationally efficient to find an optimal parameterization because we may need to run
a series of optimization problems with different parameterizations. However, in cases with very large data
sets which may more suitably be solved by variational inference methods, it might instead be sufficient to use
a parameterization with the highest resolution that the frequency of the data could resolve. Instead, some
more informative prior or regularization may be used to reduce the magnitude of uncertainty estimates and
to better constrain the model (MacKay, 2003; Ray & Myer, 2019).

In our experiments the results from rj-McMC are significantly different from the results obtained using vari-
ational methods or MH-McMC. This is essentially caused by different parameterizations. In ADVI, SVGD,
and MH-McMC we invert for a pixelated image, while in rj-McMC we invert for a distribution of parameters
that represent locations and shapes of cells and their spatially constant velocities, the pointwise spatial mean
of which is visualized as an image. Therefore, even though we visualized them in the same way, the results
are essentially not directly comparable. Nevertheless, the comparison with rj-McMC is interesting because
until now a quite different alternative probabilistic method was never used to estimate the posterior of
images from the same realistic tomography problem. The results here demonstrate that the rj-McMC method
as applied in most tomography papers gives significantly different solutions than we might previously have
thought; specifically, it does not produce the posterior distribution of the pixelated image that is usually
shown in scientific papers (e.g., Bodin & Sambridge, 2009; Crowder et al., 2019; Galetti et al., 2015; Zulfakriza
et al., 2014). Rather, it samples a probability distribution in a particular irregular and variably parametrized
model space, and results should be interpreted as such. Note that some other methods, for example, rj-McMC
with Gaussian processes, may provide results that can be compared between all sampling methods, and pro-
vide a means of injecting prior information with adaptable complexity into the sampling scheme (Ray &
Myer, 2019).

In this study we used a fixed data noise level in the variational methods. It has been shown that an improper
noise level can introduce biases in tomographic results (Bodin & Sambridge, 2009; Zhang et al., 2020), so in
our example we used the noise level estimated by hierarchical McMC. It can also be estimated by a variety
of other methods (Bensen et al., 2009; Nicolson et al., 2012, 2014; Weaver et al., 2011; Yao & Van Der Hilst,
2009) and maximum likelihood methods (Ray et al., 2016; Ray & Myer, 2019; Sambridge, 2013). In future it
might also be possible to include the noise parameters in variational methods in a hierarchical way.

In this study we applied variational inference methods to simple 2-D tomography problems, but it is straight-
forward to apply the methods to any geophysical inverse problems whose gradients with respect to the model
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can be computed efficiently. For example, variational methods could be applied to 3-D seismic tomogra-
phy problems to provide an efficient approximation, which generally demands enormous computational
resources using McMC methods (Hawkins & Sambridge, 2015; Zhang et al., 2018, 2020). The methods
also provide possibilities to perform Bayesian inference for full waveform inversion, which is generally
very expensive for McMC (Ray et al., 2017) and suffers from notorious multimodality in the likelihoods.
SVGD provides a possible way to approximate these complex distributions given that theoretically it can
approximate arbitrary distributions.

6. Conclusion
We introduced two variational inference methods to geophysical tomography—ADVI and SVGD, and
applied them to 2-D seismic tomography problems using both synthetic and real data. Compared to the
McMC method, ADVI provides an efficient but biased approximation to Bayesian posterior probability
density functions and cannot be applied to find multimodal posteriors because of its implicit Gaussian
assumption. In contrast, SVGD is slightly slower than ADVI but produces a more accurate approxima-
tion. The real data example shows that ADVI and SVGD produce very similar mean velocity models, even
though their uncertainty estimates are different. The mean velocity models are very similar to those pro-
duced by reversible jump McMC (rj-McMC), except that the mean model from rj-McMC is smoother because
of the much lower dimensionality of its parameter space. Variational methods thus can provide efficient
approximate alternatives to McMC methods and can be applied to many geophysical inverse problems.

Appendix A: The Entropy of a Gaussian Distribution
The entropy H

[
q(𝛉;𝜙)

]
of a Gaussian distribution  (𝛉|𝛍,LLT) is as follows:

H
[
q(𝛉;𝛟)

]
= −Eq[log q(𝛉)]

= −∫  (𝛉|𝛍,LLT) log  (𝛉|𝛍,LLT)d𝛉

= k
2
+ k

2
log (2𝜋) + 1

2
log |det(LLT)|

where k is the dimension of vector 𝛉. The gradients with respect to 𝛍 and L can be easily calculated (see
Appendix B).

Appendix B: Gradients of the ELBO in ADVI
We first describe the dominated convergence theorem (DCT) (Ç𝚤nlar, 2011):

Theorem Assume X ∈  is a random variable and 𝑓 ∶ R× → R is a function such that f(t,X) is integrable
for all t and 𝜕𝑓 (t,X)

𝜕t
exists for each t. Assume that there is a random variable Z such that | 𝜕𝑓 (t,X)

𝜕t
| ≤ Z for all t

and E(Z) < ∞. Then

𝜕

𝜕t
E(𝑓 (t,X)) = E( 𝜕

𝜕t
𝑓 (t,X))

The proof of this theorem is given in Ç𝚤nlar (2011).

We then calculate the gradients in equations (9) and (10) based on Kucukelbir et al. (2017). The ELBO  is:

 = E (𝛈|𝟎,I)
[
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)
+ log |detJT−1

(
R−1
𝜙
(𝛈)

) |] + H
[
q(𝛉;𝜙)

]

where H[q(𝛉;𝜙)] = −Eq[log q(𝛉)] is the entropy of distribution q. Assume 𝜕

𝜕 𝛟 log p is bounded where 𝜙

represents variational parameters 𝝁 and L, then the gradients can be computed by exchanging the derivative
and the expectation using the DCT and applying the chain rule:

∇𝛍 = ∇𝛍

{
E (𝛈|𝟎,I)

[
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)
+ log |detJT−1

(
R−1
𝜙
(𝛈)

) |] + H
[
q(𝛉;𝜙)

]}

Applying the DCT and since H does not depend on 𝝁,

∇𝛍 = E (𝛈|𝟎,I)
[
∇𝛍

{
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)}
+ ∇𝛍

(
log |detJT−1

(
R−1
𝜙
(𝛈)

) |)]
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Applying the chain rule,

∇𝛍 = E (𝛈|𝟎,I)
[
∇m log p(m,dobs)∇𝛉T−1(𝛉)∇𝛍R−1

𝜙
(𝛈) + ∇𝛉 log |detJT−1 (𝛉)|∇𝛍R−1

𝜙
(𝛈)

]
= E (𝛈|𝟎,I)

[
∇m log p(m,dobs)∇𝛉T−1(𝛉) + ∇𝛉 log |detJT−1 (𝛉)|]

The gradient with respect to L can be obtained similarly:

∇L = ∇L

{
E (𝛈|𝟎,I)

[
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)
+ log |detJT−1

(
R−1
𝜙
(𝛈)

) |] + k
2
+ k

2
log(2𝜋)

+1
2

log |det(LLT)|}

Applying the DCT,

∇L =E (𝛈|𝟎,I)
[
∇L

{
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)}
+ ∇L

(
log |detJT−1

(
R−1
𝜙
(𝛈)

) |)]

+ ∇L
1
2

log |det (LLT)|
and applying the chain rule, we obtain

∇L = E (𝛈|𝟎,I)[∇m log p(m,dobs)∇𝛉T−1(𝛉)∇LR−1
𝜙
(𝛈) + ∇𝛉 log |detJT−1 (𝛉)|∇LR−1

𝜙
(𝛈)] + (L−1)T

= E (𝛈|𝟎,I)[(∇m log p(m,dobs)∇𝛉T−1(𝛉) + ∇𝛉 log |detJT−1 (𝛉)|)𝛈T] + (L−1)T

Appendix C: Gradients of KL Divergence in SVGD
We calculate the gradient in equation (12) following Liu and Wang (2016). Denote T−1 as the inverse
transform of T. Then by changing the variable,

KL[qT||p] = KL[q||pT−1 ]

and hence

∇𝜖KL[qT||p] |𝜖=0 = ∇𝜖KL[q||pT−1 ] |𝜖=0

= ∇𝜖

[
Eq log q(m) − Eq log pT−1 (m)

]
and since q(m) does not depend on 𝜖

∇𝜖KL[qT||p] |𝜖=0 = −Eq
[
∇𝜖 log pT−1 (m)

]
where pT−1 (m) = p(T(m)) · | det

(
∇mT(m)

) |. Therefore

∇𝜖 log pT−1 (m) =
(
∇m log (p(m))

)T∇𝜖T(m) + trace
((

∇mT(m)
)−1 · ∇𝜖∇mT(m)

)

where T(m) = m + 𝜖𝛟(m), ∇𝜖T(m) = 𝛟(m) and ∇mT(m)|𝜖=0 = I, and so

∇𝜖KL[qT||p] |𝜖=0 = −Eq

[(
∇m log (p(m))

)T 𝛟(m) + trace
(
∇m 𝛟(m)

)]
= −Eq

[
trace

(
∇m log (p(m))𝛟 (m)T) + trace

(
∇m 𝛟(m)

)]
= −Eq

[
trace

(p 𝛟(m)
)]

where p 𝛟(m) = ∇m log p(m)𝛟 (m)T + ∇m 𝛟(m) is the Stein operator.
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