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Abstract Seismic tomography is a methodology to image the interior of solid or fluid media and is
often used to map properties in the subsurface of the Earth. In order to better interpret the resulting
images, it is important to assess imaging uncertainties. Since tomography is significantly nonlinear, Monte
Carlo sampling methods are often used for this purpose, but they are generally computationally intractable
for large data sets and high-dimensional parameter spaces. To extend uncertainty analysis to larger
systems, we use variational inference methods to conduct seismic tomography. In contrast to Monte Carlo
sampling, variational methods solve the Bayesian inference problem as an optimization problem yet still
provide fully nonlinear, probabilistic results. In this study, we applied two variational methods, automatic
differential variational inference and Stein variational gradient descent, to 2-D seismic tomography
problems using both synthetic and real data, and we compare the results to those from two different Monte
Carlo sampling methods. The results show that automatic differential variational inference provides a
biased approximation because of its implicit transformed-Gaussian approximation, and it cannot be used
to find generally multimodal posteriors; Stein variational gradient descent produces more accurate
approximations to the results of Monte Carlo sampling methods. Both methods estimate the posterior
distribution at significantly lower computational cost, provided that gradients of parameters with respect
to data can be calculated efficiently. We expect that the methods can be applied fruitfully to many other
types of geophysical inverse problems.

1. Introduction
In a variety of geoscientific applications, scientists need to create maps of subsurface properties in order to
understand both the heterogeneity and the processes taking place within the Earth. Seismic tomography
is a method that is widely used to generate those maps. The maps of interest are usually parameterized in
some way, and data are recorded that can be used to constrain the parameters. Tomography is therefore a
parameter estimation problem, given the data and a physical relationship between data and parameters;
since the physical relationships usually predict data given parameter values but not the reverse, seismic
tomography involves solving an inverse problem (Curtis & Snieder, 2002).

Tomographic problems can be solved either using the full, known physical relationships or through a lin-
earized procedure which involves creating approximate, linearized physics that is assumed to be accurate
close to a particular chosen reference model. In the linearized procedure one seeks an optimal solution by
perturbing the model so as to minimize the misfit between the observed data and the data predicted by
the linearized physics. The physics is then relinearized around this new reference model, and the process
is iterated until the perturbations are sufficiently small. Since most tomography problems are underdeter-
mined, some form of regularization must be introduced to solve the system (Aki & Lee, 1976; Dziewonski &
Woodhouse, 1987; Iyer & Hirahara, 1993; Tarantola, 2005). However, regularization is usually chosen using
ad hoc criteria, which introduce poorly understood biases in the results; thus, valuable information can be
concealed by regularization (Zhdanov, 2002). Moreover, in nonlinear problems it is almost always impossible
to estimate accurate uncertainties in results using linearized methods. Therefore, partially or fully nonlin-
ear tomographic methods have been introduced to geophysics, which require no linearization and which
provide accurate estimates of uncertainty using a Bayesian probabilistic formulation of the parameter esti-
mation problem. These include Monte Carlo (MC) methods (Bodin & Sambridge, 2009; Galetti et al., 2015,
2017; Mosegaard & Tarantola, 1995; Malinverno & Leaney, 2000; Malinverno, 2002; Malinverno & Briggs,
2004; Sambridge, 1999; Zhang et al., 2018) and methods based on neural networks (Devilee et al., 1999; Earp
& Curtis, 2019; Käufl et al., 2013, 2015, Meier et al., 2007a, 2007b; Röth & Tarantola, 1994; Shahraeeni &
Curtis, 2011; Shahraeeni et al., 2012).
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Bayesian methods use Bayes' theorem to update a prior probability distribution function (pdf—either a con-
ditional density function or a discrete set of probabilities) with new information from data. The prior pdf
describes information available about the parameters of interest prior to the inversion. Bayes' theorem com-
bines the prior pdf with information derived from the current data to produce the total state of information
about the parameters post inversion, described by a so-called posterior pdf—this process is referred to as
Bayesian inference. Thus, in our case Bayesian inference is used to solve the tomographic inverse problem.

MC methods generate a set (or chain) of samples from the posterior pdf describing the probability dis-
tribution of the model given the observed data; thereafter, these samples can be used to estimate useful
information about that pdf (mean, standard deviation, etc.). The methods are quite general from a theoret-
ical point of view so that in principle they can be applied to any tomographic problems. They have been
extended to transdimensional inversion using the reversible jump Markov chain Monte Carlo (rj-McMC)
algorithm (Green, 1995), in which the number of parameters (hence the dimensionality of parameter space)
can vary in the inversion. Consequently, the parameterization itself can be simplified by adapting to the
data, which can improve results on otherwise high-dimensional problems (Bodin & Sambridge, 2009; Bodin
et al., 2012; Burdick & Lekić, 2017; Galetti et al., 2015, 2017; Galetti & Curtis, 2018; Hawkins & Sambridge,
2015; Malinverno & Leaney, 2000; Ray et al., 2013; Piana Agostinetti et al., 2015; Young et al., 2013; Zhang
et al., 2018, 2020). Although many tomographic applications have been conducted using McMC sampling
methods (previous references, Crowder et al., 2019; Shen et al., 2012, 2013; Zheng et al., 2017; Zulfakriza
et al., 2014), they mainly address 1-D or 2-D tomography problems due to the high computational expense of
MC methods. Some studies used McMC methods for fully 3-D tomography using body wave travel time data
(Hawkins & Sambridge, 2015; Piana Agostinetti et al., 2015; Burdick & Lekić, 2017) and surface wave dis-
persion (Zhang et al., 2018, 2020), but the methods demand enormous computational resources. Even in the
1-D or 2-D case, McMC methods cannot easily be applied to large data sets, which are generally expensive
to forward model given a set of parameter values. Moreover, McMC methods tend to be inefficient at explor-
ing complex, multimodal probability distributions (Karlin, 2014; Sivia, 1996), which appear to be common
in seismic tomography problems.

Neural network-based methods offer an efficient alternative for certain classes of tomography problems
that will be solved many times with new data of the same type. An initial set of MC samples is taken from
the prior probability distribution over parameter space, and data are computationally forward modeled for
each parameter vector. Neural networks are flexible mappings that can be regressed (trained) to emulate
the mapping from data to parameter space by fitting the set of examples of that mapping generated by MC
(Bishop, 2006). Since for each input data vector the neural network only produces one parameter vector,
trade-offs between parameters are not clearly represented in the mapping from data to model parame-
ters. Nevertheless, the trained network interpolates the inverse mapping between the examples and can be
applied efficiently to any new, measured data to estimate corresponding parameter values. The first geo-
physical application of neural network tomography was Röth and Tarantola (1994), but that application did
not estimate uncertainties. Forms of networks that estimate tomographic uncertainties were introduced to
Geophysics by Devilee et al. (1999) and Meier et al. (2007a, 2007b) and have been applied to surface and body
wave tomography in 1-D and 2-D problems (Earp & Curtis, 2019; Meier et al., 2007a, 2007b). Unfortunately
neural networks still suffer from the computational cost of generating the initial set of training examples.
That set may have to include many more samples than are required for standard Bayesian MC, because the
training set must span the prior pdf, whereas standard applications of MC tomography sample the posterior
pdf which is usually more tightly constrained. Neural networks have the advantage that the training samples
need only be calculated once for any number of data sets, whereas MC inversion must perform sampling
for every new data set. However, in high-dimensional problems the cost of sampling may be prohibitive for
both MC and neural network-based methods due to the curse of dimensionality (the exponential increase
in the hypervolume of parameter space as the number of parameters increases; Curtis & Lomax, 2001).

Variational inference provides a different way to solve a Bayesian inference problem: Within a predefined
family of probability distributions, one seeks an optimal approximation to a target distribution, which in
this case is the Bayesian posterior pdf. This is achieved by minimizing the Kullback-Leibler (KL) divergence
(Kullback & Leibler, 1951)—one possible measure of the difference between two given pdfs (Blatter et al.,
2019), in our case the difference between approximate and target pdfs (Bishop, 2006; Blei et al., 2017). Since
the method casts the inference problem into an optimization problem, it can be computationally more effi-
cient than either MC sampling or neural network methods and provides better scaling to higher-dimensional
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problems. Moreover, it can be used to take advantage of methods such as stochastic optimization (Kubrusly &
Gravier, 1973; Robbins & Monro, 1951) and distributed optimization by dividing large data sets into random
minibatches—methods that are difficult to apply for McMC methods since they may break the reversibility
property of Markov chains, which is required by most McMC methods.

In variational inference, the complexity of the approximating family of pdfs determines the complexity of
the optimization. A complex variational family is generally more difficult to optimize than a simple family.
Therefore, many applications are performed using simple mean-field approximation families (Bishop, 2006;
Blei et al., 2017) and structured families (Hoffman & Blei, 2015; Saul & Jordan, 1996). For example, in Geo-
physics the method has been used to invert for the spatial distribution of geological facies given seismic data
using a mean-field approximation (Nawaz & Curtis, 2018, 2019).

Even using those simple families, applications of variational inference methods usually involve tedious
derivations and bespoke implementations for each type of problem, which restricts their applicability
(Bishop, 2006; Blei et al., 2017; Nawaz & Curtis, 2018, 2019). The simplicity of those families also affects the
quality of the approximation to complex distributions. To make variational methods easier to use, “black
box” variational inference methods have been proposed (Kingma & Welling, 2013; Ranganath et al., 2014,
2016). Based on these ideas, Kucukelbir et al. (2017) proposed an automatic variational inference method,
which can easily be applied to many Bayesian inference problems. Another set of methods has been pro-
posed based on probability transformations (Liu & Wang, 2016; Marzouk et al., 2016; Rezende & Mohamed,
2015; Tran et al., 2015); these methods optimize a series of invertible transforms to approximate the target
probability and in this case it is possible to approximate arbitrary probability distributions.

We apply automatic differential variational inference (ADVI; Kucukelbir et al., 2017) and Stein variational
gradient descent (SVGD; Liu & Wang, 2016) to a 2-D seismic tomography problem. In the following we first
describe the basic idea of variational inference and then the ADVI and SVGD methods. In section 3 we apply
the two methods to a simple 2-D synthetic seismic tomography example and compare their results with both
fixed-dimensional McMC and rj-McMC. In section 4 we apply the two methods to real data from Grane field,
North Sea, to study the phase velocity map at 0.9 s and compare the results to those found using rj-McMC.
We thus demonstrate that variation inference methods can provide efficient alternatives to McMC methods
while still producing reasonably accurate approximations to Bayesian posterior pdfs. Our aim is to introduce
variational inference methods to the geoscientific community and to encourage more research on this topic.

2. Methods
2.1. Variational Inference
Bayesian inference involves calculating or characterizing a posterior probability density function p(m|dobs)
of model parameters m given the observed data dobs. According to Bayes' theorem,

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)

where p(dobs|m) is called the likelihood which is the probability of observing data dobs conditional on model
m, p(m) is the prior which describes known information about the model that is independent of the data,
and p(dobs) is a normalization factor called the evidence, which is constant for a fixed model parameteriza-
tion. The likelihood is usually assumed to follow a Gaussian probability density function around the data
predicted synthetically from model m (using the known physical relationships), as this is assumed to be
a reasonable approximation to the pdf of uncertainties or errors in the measured data, and because noise
reduction is performed by stacking, which through the central limit theorem justifies the use of a Gaussian
distribution.

Variational inference approximates the above pdf p(m|dobs)using optimization. First, a family (set) of known
distributions  = {q(m)} is defined. The method then seeks the best approximation to p(m|dobs) within
that family by minimizing the KL-divergence:

KL[q(m)||p(m|dobs)] = Eq[log q(m)] − Eq[log p(m|dobs)] (2)

where the expectation is taken with respect to distribution q(m). It can be shown that KL[q||p] ≥ 0 and has
zero value if and only if q(m) equals p(m|dobs) (Kullback & Leibler, 1951). Distribution q*(m) that minimizes
the KL-divergence is therefore the best approximation to p(m|dobs) within the family .
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Figure 1. An illustration of the workflow of ADVI. (a) An example of a posterior pdf in the original positive half-space of parameters m. (b) The posterior
pdf in the transformed real variable space 𝜃 (red) and an initial Gaussian approximation (blue). (c) The posterior pdf (red) and the standard Gaussian
distribution (blue) in standardized variable space 𝜂; gradients with respect to variational parameters are calculated in this space. (d) and (e) show the posterior
pdf (red) and the approximation obtained using ADVI (blue) in the unconstrained real variable space and the original space, respectively.

Combining equations (1) and (2), the KL-divergence becomes

KL[q(m)||p(m|dobs)] = Eq[log q(m)] − Eq[log p(m,dobs)] + log p(dobs) (3)

The evidence term logp(dobs) generally cannot be calculated since it involves the evaluation of a
high-dimensional integral, which takes exponential time. Instead, we calculate the evidence lower bound
(ELBO), which is equivalent to the KL-divergence up to an unknown constant and is obtained by rearranging
equation (3) and using the fact that KL[q||p] ≥ 0:

ELBO[q] = Eq[log p(m,dobs)] − Eq[log q(m)]
= log p(dobs) − KL[q(m)||p(m|dobs)]

(4)

Thus, minimizing the KL-divergence is equivalent to maximizing the ELBO.

In variational inference, the choice of the variational family is important because the flexibility of the vari-
ational family determines the power of the approximation. However, it is usually more difficult to optimize
equation (4) over a complex family than a simple family. Therefore, many applications are performed using
the mean-field variational family, which means that the parameters m are treated as being mutually inde-
pendent (Bishop, 2006; Blei et al., 2017). However, even under that simplifying assumption, traditional
variational methods require tedious model-specific derivations and implementations, which restricts their
applicability to those problems for which derivations have been performed (e.g., Nawaz & Curtis, 2018,
2019). We therefore introduce two more general variational methods: the ADVI and the SVGD, which can
both be applied to general inverse problems.

2.2. ADVI
Kucukelbir et al. (2017) proposed a general variational method called ADVI based on a Gaussian variational
family. In ADVI, a model with constrained parameters is first transformed to a model with unconstrained
real-valued variables. For example, the velocity model m that usually has hard bound constraints (such as
velocity being greater than 0) can be transformed to an unconstrained model 𝛉 = T(m), where T is an
invertible and differentiable function (Figures 1a and 1b). The joint probability p(m,dobs) then becomes

p(𝛉,dobs) = p(m,dobs)|detJT−1 (𝛉)| (5)

where JT−1 (𝛉) is the Jacobian matrix of the inverse of T, which accounts for the volume change of the trans-
form, and | · | represents the absolute value. This transform makes the choice of variational approximations
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independent of bounds on the original model since transformed variables lie in the common unconstrained
space of real numbers.

In ADVI, we choose a Gaussian variational family (e.g., blue line in Figure 1b):

q(𝛉;𝜙) =  (
𝛉|𝛍,∑)

=  (𝛉|𝛍,LLT) (6)

where 𝜙 represents variational parameters 𝛍 and 𝚺, 𝛍 is the mean vector, and 𝚺 is the covariance matrix.
As in Kucukelbir et al. (2017), for computational purposes we use a Cholesky factorization 𝚺 = LLT where
L is a lower-triangular matrix, to reparameterize the covariance matrix to ensure that it is positive semidef-
inite (covariance is positive semidefinite by definition). If 𝚺 is a diagonal matrix, q reduces to a mean-field
approximation in which the variables are mutually independent; in order to include spatial correlations in
the velocity model, we use a full-rank covariance matrix, noting that this incurs a computational cost since
it increases the number of variational parameters.

In the transformed space, the variational problem is solved by maximizing the ELBO, written as , with
respect to variational parameters 𝜙:

𝜙∗ = argmax
𝜙

[q(𝛉;𝜙)]
= argmax

𝜙
Eq[log p(T−1(𝛉),dobs) + log |det JT−1 (𝛉)|] − Eq[log q(𝛉)]

(7)

This is an optimization problem in an unconstrained space and can be solved using gradient ascent methods
without worrying about any constrains on the original variables.

However, the gradients of variational parameters are not easy to calculate since the ELBO involves expecta-
tions in a high-dimensional space. We therefore transform the Gaussian distribution q(𝛉;𝜙) into a standard
Gaussian  (𝛈|𝟎, I) (Figure 1c), by 𝛈 = R𝜙(𝛉) = L−1(𝛉 − 𝛍); thereafter, the variational problem becomes

𝜙∗ = argmax
𝜙

[q(𝛉;𝜙)]
= argmax

𝜙
E (𝛈|𝟎,I)[log p(T−1(R−1

𝜙
(𝛈)),dobs) + log |det JT−1 (R−1

𝜙
(𝛈))|] − Eq[log q(𝛉)]

(8)

where the first expectation is taken with respect to a standard Gaussian distribution  (𝛈|𝟎, I). There is no
Jacobian term related to this transform since the determinant of the Jacobian is equal to 1 (Kucukelbir et al.,
2017). The second expectation −Eq[log q(𝛉)] is not transformed since it has a simple analytic form as does
its gradient (Kucukelbir et al., 2017)—see Appendix A.

Since the distribution with respect to which the expectation is taken now does not depend on variational
parameters, the gradient with respect to variational parameters can be calculated by exchanging the expec-
tation and derivative according to the dominated convergence theorem (DCT; Ç𝚤nlar, 2011) and by applying
the chain rule—see Appendix B:

∇𝛍 = E (𝛈|𝟎,I)[∇m log p(m,dobs)∇𝛉T−1(𝛉) + ∇𝛉 log |det JT−1 (𝛉)|] (9)

The gradient with respect to L can be obtained similarly:

∇L = E (𝛈|𝟎,I)[(∇m log p(m,dobs)∇𝛉T−1(𝛉) + ∇𝛉 log |det JT−1 (𝛉)|)𝛈T] + (L−1)T (10)

where the expectation is computed with respect to a standard Gaussian distribution, which can be estimated
by MC integration. MC integration provides a noisy, unbiased estimation of the expectation and its accu-
racy increases with the number of samples. Nevertheless, it has been shown that in practice a low number
or even a single sample can be sufficient at each iteration since the mean is taken with respect to the stan-
dard Gaussian distribution (see discussions and experiments in Kucukelbir et al., 2017). For distributions
p(m,dobs) for which the gradients have analytic forms, the whole process of computing gradients can be
automated (Kucukelbir et al., 2017), hence the name “automatic differential”. We can then use a gradient
ascent method to update the variational parameters and obtain an approximation to the pdf p(m|dobs) (e.g.,
Figure 1d).

Note that although the method is based on Gaussian variational approximations, the actual shape of the
approximation to the posterior p(m|dobs) over the original parameters m is determined by the transform
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Figure 2. An illustration of the transform in equation (11). The original
variable is in a constrained space between 0.5 and 3.0. The blue area shows
a standard Gaussian distribution in the transformed unconstrained space,
and the orange area shows the associated probability distribution in the
original space. The probability distributions are estimated using Monte
Carlo samples. The orange curve is the distribution fitted using Gaussian
kernels.

T (Figure 1e). It is difficult to determine an optimal transform since
that is related to the properties of the unknown posterior (Kucukelbir
et al., 2017). In this study we use a commonly used invertible logarithmic
transform (Team, 2016):

𝜃i = T(mi) = log (mi − ai) − log(bi − mi)

mi = T−1(𝜃i) = ai +
(bi − ai)

1 + exp(−𝜃i)
(11)

where mi represents each original constrained parameter, 𝜃i is the trans-
formed unconstrained variable, ai is the original lower bound, and bi the
upper bound on mi. Therefore, the quality of the ADVI approximation is
limited by the Gaussian approximation in the unconstrained space and
by the specific transform T in equation (11).

To illustrate the effects of the transform in equation (11), we show an
example in Figure 2. The original variable lies in a constrained space
between 0.5 and 3.0 (a typical phase velocity range of seismic sur-
face waves). The space is transformed to an unconstrained space using
equation (11). If, as in ADVI, we assume a standard Gaussian distribution
in the transformed space (blue area in Figure 2), the associated probabil-
ity distribution in the original space is shown in orange in Figure 2. The

actual shape of the distribution in the original space is not Gaussian but is determined by the transform T
in equation (11). However, under this choice of T it is likely that the probability distribution in the original
space is still unimodal. We thus see that ADVI provides a unimodal approximation of the target posterior
pdf around a local optimal parameter estimate. This suggests that the method will not be effective for mul-
timodal distributions, and the estimated probability distribution depends on the initial value of 𝛍 and 𝚺
(Kucukelbir et al., 2017). However, since the maximum a posteriori probability (MAP) estimate has been
shown to be effective for parameter estimation in practice, the ADVI method could still be used to provide
a good approximation of the distribution around a MAP estimate.

2.3. SVGD
In practice, most applications of variational inference use simple families of posterior approximations such
as a Gaussian approximation (Kucukelbir et al., 2017), mean-field approximations (Blei et al., 2017; Nawaz &
Curtis, 2018, 2019), or other simple structured families (Hoffman & Blei, 2015; Saul & Jordan, 1996). These
simple choices significantly restrict the quality of derived posterior approximations. In order to employ a
broader family of variational approximations, variational methods based on invertible transforms have been
proposed (Marzouk et al., 2016; Rezende & Mohamed, 2015; Tran et al., 2015). In these methods instead of
choosing specific forms for variational approximations, a series of invertible transforms are applied to an
initial distribution, and these transforms are optimized by minimizing the KL divergence. This provides a
way to approximate arbitrary posterior distributions since a pdf can be transformed to any other pdf as long
as the probability measures are absolutely continuous.

SVGD is one such algorithm based on an incremental transform (Liu & Wang, 2016). In SVGD, a smooth
transform T(m) = m + 𝜖𝛟(m) is used, where m = [m1, … ,md] and mi is the ith parameter, and 𝛟(m) =
[𝜙1, … , 𝜙d] is a smooth vector function that describes the perturbation direction and where 𝜖 is the magni-
tude of the perturbation. It can be shown that when 𝜖 is sufficiently small, the transform is invertible since
the Jacobian of the transform is close to an identity matrix (Liu & Wang, 2016). Say qT(m) is the transformed
probability distribution of the initial distribution q(m). Then the gradient of KL-divergence with respect to
𝜖 can be computed as (see Appendix C):

∇𝝐KL[qT||p] |𝜀=0 = −Eq
[
trace

(p 𝛟(m)
)]

(12)

where p is the Stein operator such that p 𝛟(m) = ∇m log p(m)𝛟 (m)T + ∇m 𝛟(m). This suggests that
maximizing the right-hand expectation with respect to q(m) gives the steepest descent of the KL divergence,
and consequently, the KL divergence can be minimized iteratively.

It can be shown that the negative gradient of the KL divergence in equation (12) can be maximized by using
the kernelized Stein discrepancy (Liu et al., 2016). For two continuous probability densities p and q, the Stein

ZHANG AND CURTIS 6 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018589

discrepancy for a function 𝜙 in a function set  is defined as follows:

S[q, p] = argmax
𝛟∈

{(
Eq

[
trace

(p 𝛟(m)
)])2

}
(13)

The Stein discrepancy provides another way to quantify the difference between two distribution densities
(Gorham & Mackey, 2015; Stein, 1972). However, the Stein discrepancy is not easy to compute for general
 . Therefore, Liu et al. (2016) proposed a kernelized Stein discrepancy by maximizing equation (13) in the
unit ball of a reproducing kernel Hilbert space (RKHS) as follows.

A Hilbert space is a space  on which an inner product <,> is defined. A function is called a kernel if
there exists a real Hilbert space and a function 𝜑 such that k(x, 𝑦) = < 𝜑(x), 𝜑(𝑦)>ℋ (Gretton, 2013). A
kernel is said to be positive definite if the matrix defined by Kij = k(xi, xj) is positive definite. Assuming
a positive definite kernel k(m,m′ ) on  × , its reproducing kernel Hilbert space  is defined by the
closure of the linear span {𝑓 ∶ 𝑓 (m) =

∑n
i=1 aik(m,mi), ai ∈ ,n ∈  ,mi ∈ } with inner products

⟨𝑓, g⟩ =
∑

i𝑗aib𝑗k(mi,m𝑗) for g(m) =
∑

ibik(m,mi). The RKHS has an important reproducing property,
that is, 𝑓 (x) = ⟨𝑓 (x′), k(x′, x)⟩ , such that the evaluation of a function f at x can be represented as an inner
product in the Hilbert space. In a RKHS, the kernelized Stein discrepancy can be defined as (Liu et al., 2016)

S[q, p] = arg max
𝛟∈d

{(
Eq

[
trace

(p 𝛟(m)
)])2

, s.t. ||𝛟 ||d ≤ 1
}

(14)

where d is the RKHS of d-dimensional vector functions. The right side of equation (14) is found to be equal
to

𝛟∗ = 𝛟∗
q,p(m)∕||𝛟∗

q,p(m)||d (15)

where

𝛟∗
q,p(m) = E{m′∼q}

[pk(m′,m)
]

(16)

and for which we have S[q, p] = ||𝛟∗
q,p(m)||d

2. Thus, the optimal 𝛟 in equation (12) is 𝛟* and
∇𝜖KL[qT||p] |𝜖=0 = −

√
S[q, p].

Given the above solution, the SVGD works as follows: We start from an initial distribution q0 then apply the
transform T∗

0 (m) = m + 𝜖 𝛟∗
q0 ,p

(m) where we absorb the normalization term in equation (15) into 𝜖; this
updates q0 to q[T0] with a decrease in the KL divergence of 𝜖 ∗

√
S[q, p]. This process is iterated to obtain an

approximation of the posterior p:

ql+1 = ql
[

T∗
l

], where T∗
l (m) = m + 𝜖l 𝛟∗

ql ,p
(m) (17)

and for sufficiently small {𝜖l} the process eventually converges to the posterior pdf p. Note that a large
stepsize may lead the Jacobian matrix of transform T to be singular, which in turn makes the approximation
probability fail to converge to the true posterior (Liu, 2017).

To calculate the expectation in equation (16), we start from a set of particles (models) generated using q0,
and at each step the 𝛟∗

q,p(m) can be estimated by computing the mean in equation (16) using those particles.
Each particle is then updated using the transform in equation (17), and the resulting particles will form better
approximations to the posterior as the iteration proceeds. This suggests the following algorithm, which is
schematically represented in Figure 3:

1. Draw a set of particles {m0
i }

n
i=1 from an initial pdf estimate (e.g., the prior).

2. At iteration l, update each particle using

ml+1
i = ml

i + 𝜖l 𝛟∗
ql ,p

(ml
i) (18)

where

𝛟∗
ql ,p

(m) = 1
n

n∑
𝑗=1

[
k(ml

𝑗
,m)∇ml

𝑗
log p(ml

𝑗
) + ∇ml

𝑗
k(ml

𝑗
,m)

]
(19)

and 𝜖l is the step size at iteration l.
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Figure 3. An illustration of the SVGD algorithm. The initial pdf is represented by the density of a set of particles (red
histogram) in the top plot. The particles are then updated using a smooth transform T(x) = x + 𝜖𝜙*(x), where 𝜙* is
found in a reproducing kernel Hilbert space (RKHS). (a) An example of a posterior pdf (blue line) and an initial
distribution (red histogram). (b) The approximating probability distribution after five iterations. (c) The approximating
probability distribution after 500 iterations.
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Figure 4. (a) The true velocity model and receivers (white triangles) used in the synthetic test. Sources are at the same
locations as receivers to simulate a typical ambient noise interferometry experiment. Black dots indicate the locations
of grid points used in the inversions. The histograms show the initial distribution of each parameter in the (b) original
space (velocity) and (c) transformed unconstrained space for ADVI (blue) and SVGD (orange). In ADVI, the initial
distribution is a standard Gaussian in unconstrained space. For simplicity we generated 5,000 samples from the
standard Gaussian and transformed to the original space to show the initial distribution in the original space. In SVGD
the initial distribution is approximated using 800 particles generated from a Uniform distribution in the original space
and transformed to the unconstrained space.

3. Calculate the density of the final set of particles {m∗
i }

n
i=1, which approximates the posterior probability

density function.

For kernel k(m,m′ ) we use the radial basis function k(m,m′) = exp(− 1
h
||m − m′||2), where h can take

any positive value. Here h is taken to be d̃2∕ log n where d̃ is the median of pairwise distances between all
particles. This choice of h is based on the intuition that

∑
𝑗
k(mi,m𝑗) ≈ n exp(− 1

h
d̃2) = 1, so that for particle

mi the contribution from its own gradient and the influence from the other particles in equation (19) are
balanced (Liu & Wang, 2016). For the radial basis function kernel the second term in equation (19) becomes∑

𝑗

2
h
(m − m𝑗)k(m𝑗 ,m), which drives the particle m away from neighboring particles for which the kernel

takes large values. Therefore, the second term in equation (19) acts as a repulsive force preventing particles
from collapsing to a single mode, while the first term moves particles toward local high probability areas
using the kernel-weighted gradient. If in the kernel h → 0, the algorithm falls into independent gradient
ascent which maximizes logp for each particle.

Note that since SVGD uses kernelized Stein discrepancy, the choice of kernels may affect the efficiency of
the algorithm. In this study we adopted a commonly used kernel: a radial basis function. However, in some
cases other kernels may provide a more efficient algorithm, for example, an inverse multiquadric kernel
(Gorham & Mackey, 2017), a Hessian kernel (Detommaso et al., 2018), and kernels on a Riemann manifold
(Liu & Zhu, 2018).

In SVGD, the accuracy of the approximation increases with the number of particles. It has been shown
that compared to other particle-based methods, for example, sequential MC methods (Smith, 2013), SVGD
requires fewer samples to achieve the same accuracy, which makes it a more efficient method (Liu & Wang,
2016). In contrast to sequential MC, which is a stochastic process, SVGD acts as a deterministic sampling
method. If only one particle is used, the second term in equation (19) becomes 0 and the method reduces to a
typical gradient ascent toward the model with the maximum a posteriori (MAP) pdf value. This suggests that
even for a small number of particles the method could still produce a good parameter estimate since MAP
estimation can be an effective method in practice. Thus, in practice, one could start from a small number of
particles and gradually increase the number to find an optimal choice.

In seismic tomography velocities are usually constrained to lie within a given velocity range. In order to
ensure that velocities always lie within the constraints, we first apply the same transform used in ADVI
(equation (11)) so that the parameters are in an unconstrained space. We can then simply use equation (18)
to update particles without explicitly considering the constraints on seismic velocities. The final seismic
velocities can be obtained by transforming particles back to the constrained space.

3. Synthetic Tests
We first apply the above methods to a simple 2-D synthetic example similar to that in Galetti et al. (2015) and
Zhang et al. (2018). The true model is a homogeneous background with velocity 2 km/s containing a circular
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Figure 5. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using ADVI. The red pluses show locations which are referred to in the main text.

low velocity anomaly with a radius of 2 km with velocity 1 km/s. The 16 receivers are evenly distributed
around the anomaly approximating a circular acquisition geometry with radius 4 km (Figure 4a). Each
receiver is also treated as a source to simulate a typical ambient noise interferometry experiment (Campillo
& Paul, 2003; Curtis et al., 2006; Galetti et al., 2015). This produces a total of 120 interreceiver travel time data,
each of which is computed using a fast marching method of solving the Eikonal equation over a 100 × 100
gridded discretization in space (Rawlinson & Sambridge, 2004).

For variational inversions we use a fixed 21×21 grid of cells to parameterize the velocity model m (Figure 4a).
The noise level is fixed to be 0.05 s (<5% of travel times) for all inversions. The prior pdf of the velocity
in each cell is set to be a Uniform distribution between 0.5 and 3.0 km/s to encompass the true model.
Travel times are calculated using the same fast marching method as above over a 100 × 100 grid but using
the lower spatial resolution of model properties parameterized in m. The gradients for velocity models are
calculated by tracing rays backward from each receiver to each (virtual) source using the gradient of the
travel time field for each receiver pair (Rawlinson & Sambridge, 2004). For ADVI, the initial mean of
the Gaussian distribution in the transformed space is chosen to be the value, which is the transform of the
mean value of the prior in the original space; the initial covariance matrix is simply set to be an identity
matrix, which turns out to give a standard Gaussian in our case (see blue histogram in Figure 4c). The shape
of the initial distribution in the original space is shown in Figure 4b (blue histogram). We then used 10,000
iterations to update the variational parameters (𝝁 and 𝚺). In order to visualize the results, we generated
5,000 models from the final approximate posterior probability density in the original space and computed
their mean and standard deviation. For SVGD, we used 800 particles generated from the prior pdf (orange
histogram in Figure 4b) and transformed to an unconstrained space using equation 11 (orange histogram in
Figure 4c). Each particle is then updated using equation (17) for 500 iterations, then transformed back to
seismic velocity. The mean and standard deviation are then calculated using the values of those particles.

To demonstrate the variational methods, we compare the results with the fixed-dimensional Metropolis-
Hastings (MH) McMC method (Hastings, 1970; Malinverno & Leaney, 2000; Metropolis & Ulam, 1949;
Mosegaard & Tarantola, 1995) and the rj-McMC method (Bodin & Sambridge, 2009; Green, 1995; Galetti
et al., 2015; Zhang et al., 2018). For MH-McMC inversion we used the same parameterization as for the vari-
ational methods (a 21 × 21 grid). A Gaussian perturbation is used as the proposal distribution to generate
potential McMC samples, for which the step length is chosen by trial and error to give an acceptance ratio
between 20% and 50%. We used a total of six chains, each of which used 2,000,000 iterations with a burn-in
period of 1,000,000 iterations. To reduce the correlation between samples, we only retain every fiftieth sam-
ple in each chain after the burn-in period. The mean and standard deviation are then calculated using those
samples. For rj-McMC inversion we use Voronoi cells to parameterize the model (Bodin & Sambridge, 2009),
for which the prior pdf of the number of cells is set to be a Uniform distribution between 4 and 100. The
proposal distribution for fixed-dimensional steps (changing the velocity of a cell or moving a cell) is chosen
in a similar way as in MH-McMC. For transdimensional steps (adding or deleting a cell) the proposal distri-
bution is chosen as the prior pdf (Zhang et al., 2018). We used a total of six chains, each of which contained
500,000 iterations with a burn-in period of 300,000. Similarly to the fixed-dimensional inversion the chain
was thinned by a factor of 50 post burn-in.
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