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S U M M A R Y
Seismic body wave traveltime tomography and surface wave dispersion tomography have been
used widely to characterize earthquakes and to study the subsurface structure of the Earth.
Since these types of problem are often significantly non-linear and have non-unique solutions,
Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and
surface wave data are usually inverted separately to produce independent velocity models.
However, body wave tomography is generally sensitive to structure around the subvolume
in which earthquakes occur and produces limited resolution in the shallower Earth, whereas
surface wave tomography is often sensitive to shallower structure. To better estimate subsur-
face properties, we therefore jointly invert for the seismic velocity structure and earthquake
locations using body and surface wave data simultaneously. We apply the new joint inversion
method to a mining site in the United Kingdom at which induced seismicity occurred and was
recorded on a small local network of stations, and where ambient noise recordings are avail-
able from the same stations. The ambient noise is processed to obtain inter-receiver surface
wave dispersion measurements which are inverted jointly with body wave arrival times from
local earthquakes. The results show that by using both types of data, the earthquake source
parameters and the velocity structure can be better constrained than in independent inversions.
To further understand and interpret the results, we conduct synthetic tests to compare the
results from body wave inversion and joint inversion. The results show that trade-offs between
source parameters and velocities appear to bias results if only body wave data are used, but this
issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic
noise and our fully non-linear inversion provides a valuable, improved method to image the
subsurface velocity and seismicity.
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1 I N T RO D U C T I O N

Seismic tomography is a method to estimate the spatial distribution
of properties of the subsurface, and is used in order to understand
heterogeneity and processes in the Earth’s interior. In seismic to-
mography one usually parametrizes subsurface properties in some
way to form a subsurface model, then solves the parameter estima-
tion problem given observed data and a relationship between the
data and the parametrized physical properties.

Seismic tomography problems are traditionally solved using lin-
earized methods to estimate the model parameter values which min-
imize the misfit between observed and synthetically predicted data.
These methods first approximate the non-linear physical relation by

a linear relation that is valid close to a reference model, and the
model is updated to minimize the misfit predicted by that lineariza-
tion. This process is iterated until the model update is sufficiently
small (Aki & Lee 1976; Dziewonski & Woodhouse 1987; Iyer &
Hirahara 1993; Tarantola 2005). Since the problem is often un-
derdetermined and ill-posed, regularization is added to the process
to enforce particular properties on the model (e.g. smoothness or
minimal deviation from a reference model). However, the form
of regularization is arbitrary and the strength of regularization is
chosen by trial and error by invoking ad hoc criteria. Valuable in-
formation can therefore be concealed by regularization (Zhdanov
2002). Moreover, it is difficult if not impossible to estimate accu-
rate uncertainties in solutions of non-linear problems when using
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linearised methods since the family of model parameter values that
fit the data is defined by the true non-linear physics, and not by the
linearised relations.

Markov chain Monte Carlo (McMC) methods have been intro-
duced to geophysics to resolve some of these issues (Mosegaard &
Tarantola 1995; Malinverno et al. 2000; Malinverno 2002; Malin-
verno & Briggs 2004; Bodin & Sambridge 2009; Galetti et al. 2015,
2017; Zhang et al. 2018). These methods solve the problem in a
Bayesian sense by generating a set (or chain) of samples whose den-
sity approximates a posterior probability density function (pdf): this
describes the probability of the model given both the observed data
and any available prior information. The method has been extended
to trans-dimensional inversions by using reversible jump McMC
(rj-McMC – Green 1995; Bodin & Sambridge 2009) such that the
dimensionality of the parameter space (the number of parameters
and indeed their meaning) can vary in the inversion. This has the
advantage that the parametrization can be adapted and simplified so
as to best represent information in the data and prior information
without overparametrizing the model, which significantly improves
performance in otherwise high-dimensional problems (Malinverno
& Briggs 2004; Bodin & Sambridge 2009; Bodin et al. 2012; Galetti
et al. 2015; Zhang et al. 2018). The rj-McMC method has been used
to estimate 2-D phase or group velocity maps of the crust (Bodin &
Sambridge 2009; Zulfakriza et al. 2014; Galetti et al. 2015; Zheng
et al. 2017; Crowder et al. 2019b) and to estimate seismic velocity
profiles with respect to depth in the Earth (Bodin et al. 2012; Shen
et al. 2012, 2013; Young et al. 2013; Galetti et al. 2017; Zhang et
al. 2019, 2020). The method was recently extended to estimate 3-D
velocity models using body wave traveltime data (Piana Agostinetti
et al. 2015; Hawkins & Sambridge 2015; Burdick & Lekić 2017)
and surface wave dispersion data (Zhang et al. 2018, 2019, 2020).

In the above studies, body waves and surface waves are used
separately to construct velocity models. Seismic body waves are
generally sensitive to deeper structure where earthquake sources
occur, and produce limited resolution closer to the surface. This is
because we usually have a relatively sparse station array compared to
the density of sources, which results in relatively sparse body wave
ray coverage in the shallower Earth. In comparison, fundamental
mode surface waves are generally more sensitive to shallower rather
than to deeper structure. Body and surface wave data can therefore
usefully be combined to better constrain the subsurface velocity
structure.

Such joint inversions have already been used widely to study
the crust and upper mantle structure (West et al. 2004; Reiter &
Rodi 2008; Obrebski et al. 2011, 2012; Rawlinson & Fishwick
2012; Zhang et al. 2014; Syracuse et al. 2015; Fang et al. 2016;
Liu & Zhao 2016; Roecker et al. 2017). However, these studies
were performed using linearized inversion methods which renders
associated uncertainty estimates questionable at best. In this study
we apply the rj-McMC algorithm to fully non-linear joint inversion
using both body wave arrival times and surface wave dispersion data.
We show that results are significantly improved over independent
body or surface wave inversions, both in terms of velocity structure
and earthquake source location uncertainties.

In the next section we summarize the rj-McMC algorithm and
describe how it is applied to the joint inversion problem. In Sec-
tion 3, we apply the new McMC joint inversion method to data from
an ex-mining site located to the north of New Ollerton, U.K., and
compare the results with those from individual inversions in Sec-
tion 4. Finally, we discuss the implication of this work in Section 5
before concluding.

Figure 1. Example 3-D Voronoi tessellation of a velocity model. Colours
represent seismic velocities which are constant across each cell. Black dots
(which appear grey in the 3-D rendering) are the sites that generated each
cell.

2 M E T H O D O L O G Y

2.1 Parametrization

As in Zhang et al. (2018, 2020), in order to perform trans-
dimensional inversion in three spatial dimensions we use Voronoi
cells to parametrize our seismic velocity models (Fig. 1). A Voronoi
cell is defined by a generating point (called a site) and its vol-
ume which consists of all points that are closer to that site than to
any other. Each cell has associated seismic properties, for example,
P-wave velocity and shear wave velocity. In this study, we use con-
stant velocities within each cell. Our velocity model can therefore
be parametrized as (c, vp, vs), where c is the vector of positions of
Voronoi sites, and vp and vs are vectors of the associated P-wave ve-
locity and shear wave velocity in each cell. Each earthquake source
(number i) is parametrized as si = (xi, yi, zi, ti), where xi, yi, zi is the
source location and ti is the origin time. Our model m therefore can
be represented as (c, vp, vs, s).

2.2 Reversible jump Markov chain Monte Carlo
(rj-McMC)

We use rj-McMC to perform 3-D tomographic inversion following
the approach of Zhang et al. (2018). Rj-McMC is a generalized
Metropolis–Hastings algorithm which generates a chain of samples
distributed according to a target probability density. The algorithm
allows the number of parameters to change along the chain (Green
1995), which makes the parametrization adaptable to the data and
avoids the need to specify it exactly prior to the inversion (Bodin &
Sambridge 2009). In seismic tomography we are interested in the
posterior pdf of model m given the observed data dobs ,

p(m|dobs) = p(dobs |m)p(m)

p(dobs)
, (1)

where p(dobs |m) is the ’likelihood’ which describes the probability
of data given a specified model m; p(m) is the prior pdf which
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describes information that is independent of data and p(dobs) is a
normalization factor called the ’evidence’. We use a Gaussian dis-
tribution for the likelihood, for which the data variance is estimated
in a hierarchical way in the inversion (Malinverno & Briggs 2004;
Bodin et al. 2012; Zhang et al. 2018, 2019, 2020). The prior p(m)
is chosen to be a Uniform distribution.

Within each chain a new model m
′

is drawn from a so-called
proposal distribution q(m

′ |m) that depends on the current model
m, and is accepted or rejected with a probability α(m

′ |m) given by
(Green 1995)

α(m
′ |m) = min[1,

p(m
′
)

p(m)
× q(m|m′

)

q(m′ |m)
× p(dobs |m′

)

p(dobs |m)
× |J|], (2)

where J is the Jacobian matrix of the transformation from m to m
′

and is used to account for the volume change of parameter space
during jumps between different dimensionalities, but where in this
case the Jacobian is an identity matrix (Bodin & Sambridge 2009).
The new model m

′
is accepted or rejected by generating a random

number γ from a Uniform distribution on (0, 1] and comparing
it with α. If γ < α, the new model m

′
is accepted; otherwise the

new model is discarded and the current model is repeated as a new
sample in the chain. The acceptance ratio α guarantees that the
density of samples converges to the posterior pdf asymptotically as
the number of samples tends to infinity (Green 1995).

Monitoring the convergence of Markov chains is an important
component of McMC methods. In this study, we use the absolute
misfits and the number of cells to monitor convergence as used in
several previous studies (Bodin & Sambridge 2009; Bodin et al.
2012; Dosso et al. 2014; Galetti et al. 2015; Hawkins & Sambridge
2015; Zhang et al. 2018, 2019, 2020). For example, when the misfit
value and the number of cells become approximately stationary, we
assume the chain has reached some sort of dynamic equilibrium.
Since consecutive samples are correlated (McMC is a random walk
process and only converges to the posterior distribution as the num-
ber of samples tends to infinity), the estimated probability pdf from
any finite set of samples is often biased (Chan & Geyer 1994).
Therefore, we retain every 50th sample along the chain once equi-
librium has been reached, and only those retained samples are used
to calculate parameter statistics (mean, standard deviation, etc.).

2.3 Joint inversion of body waves and surface waves

In seismic body wave tomography, the earthquake source locations
are generally unknown within some volumetric region of uncer-
tainty as are origin times. We therefore include these source pa-
rameters in our inversion. This produces a trade-off between source
parameters and the seismic velocity model. To reduce this effect,
Piana Agostinetti et al. (2015) updated the source origin times in an
optimization for each velocity model. However that approach may
cause errors in the results since sources may converge to incorrect
locations and times, and it does not allow correct uncertainty anal-
ysis for source parameters. In this study, we therefore also include
origin times as parameters to be varied in the Markov chain. We
start the chains with initial source parameter values obtained using
a standard linearized optimization, whereafter they can vary freely
within the prior pdf (defined below).

To forward model body wave traveltime data we use a 3-D fast
marching method (Rawlinson & Sambridge 2004; Valero-Gomez
et al. 2013). Due to source–receiver reciprocity, fast marching can
be conducted either from sources to receivers or vice versa. There-
fore, in practice one chooses the more efficient option based on

the minimum number of sources and receivers, and we model from
receivers to sources. The grid spacing affects the accuracy of trav-
eltimes modelled by the fast marching method. In this study, we use
a spacing of 100 m which our tests showed is sufficient to produce
accurate traveltimes (Rawlinson & Sambridge 2004).

For surface wave dispersion data, we use the two step forward
modelling method described in Zhang et al. (2018) and applied in
Zhang et al. (2019, 2020). First, for each geographical point the
local phase velocity at each frequency is computed using the 1-D
velocity profile beneath that point using a modal approximation
(Herrmann 2013) to create a 2-D phase velocity map across the
surface. Then, since our dispersion measurements are made between
two receivers, for each receiver-to-receiver pair the phase traveltime
at a specific frequency can be calculated using a 2-D ray tracing
method (Rawlinson & Sambridge 2004). Group velocity traveltimes
can be calculated by integrating over the ray path traced through
phase velocity maps (Cerveny 2005; Reiter & Rodi 2008).

In joint inversion, the relative weights between different data
types usually affect the results significantly (Bodin et al. 2012;
Shen et al. 2012). In linearized methods, the weight is generally de-
termined by subjective choices which could cause errors in results.
In this study, we set the data noise level of both data types to be free
parameters so that the relative importance of different data types
is determined by their own noise level (Bodin et al. 2012; Shen et
al. 2012). As in Galetti et al. (2017) and Zhang et al. (2018), we
hyperparametrize the noise level using a linear relation with respect
to traveltimes σ = σ 0 × traveltime + σ 1, for each of body and
surface wave traveltimes independently, where σ 0 and σ 1 are free
hyperparameters.

In our rj-McMC algorithm there are six types of perturbation:
adding a Voronoi cell, removing a cell, moving a cell, changing a
cell’s seismic velocity, changing the source parameters, and chang-
ing the data noise hyperparameters. This results in the following
algorithm:

(i)Select an initial model m from the prior pdf (for seismic ve-
locities) or from a linearized inversion (for source locations and
times)
(ii)Generate a new model m

′
by randomly choosing one of the six

possible perturbation types listed above, and then perturbing the
current model according to the proposal distribution.
(iii)Calculate the acceptance ratio α in eq. (2) and accept or reject
model m

′
with probability α. if m

′
is accepted, let m = m

′
.

(iv)Repeat from (ii).

For the fixed-dimensional step (moving a cell, changing veloc-
ities, changing source parameters and changing the hyperparame-
ters), we use a Gaussian distribution which is centred at the current
model as the proposal distribution. The width of the Gaussian is a
parameter which needs to be tuned for each inversion (Hawkins &
Sambridge 2015; Zhang et al. 2018). For trans-dimensional steps
(adding or deleting a cell), the prior is used as the proposal distri-
bution which usually gives a higher acceptance ratio than using a
Gaussian proposal distribution as noted in Dosso et al. (2014).

3 A P P L I C AT I O N T O T H E N E W
O L L E RT O N M I N I N G S I T E

We applied the method to a mining site located to the north of New
Ollerton, Nottinghamshire, U.K. (Fig. 2) which operated from 1925
to 2015. A network of seven stations was deployed at the site and
recorded 291 microseismic events in 2014. Fig. 2 shows the location
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Figure 2. Microseismic events (blue dots) recorded with seven seismic stations (orange triangles) at New Ollerton mining site. The event locations are those
found in the linearized inversion of Butcher et al. (2017). Black lines between stations show approximate paths along which surface wave dispersion data are
available. Green lines show faults that appear in the study area (Bishop et al. 1993). Purple boxes show the location of coal seams located between 800 and
900 m depth. The red dashed-line box shows the extent of the other maps herein. The red plus in the inset map denotes the location of the mining site in
England. The right-hand panel shows a histogram of the event depths.

of the stations, event locations from the initial linearized inversion,
and a histogram of the depth distribution of event locations. The
events mainly occurred around 0.9 km depth with a few occurring
significantly shallower or deeper. We used a total of 1725 P-wave
arrival times and 923 S-wave arrival times obtained from the British
Geological Survey (BGS, Butcher et al. 2017).

We applied ambient noise interferometry (Campillo & Paul 2003;
Curtis et al. 2006; Bensen et al. 2007) to obtain surface wave dis-
persion data for each inter-receiver pair. The data are first band-
filtered between 0.8 and 3.0 s to filter out earthquake signals which
comprise higher frequencies. Cross-correlations between each re-
ceiver pair are then calculated using 24-hr-long time segments,
which are then stacked over the whole year to improve the signal-
to-noise ratio (SNR). The group velocity dispersion of each re-
ceiver pair is picked using the frequency–time analysis (FTAN)
method (Dziewonski et al. 1969; Levshin et al. 1972; Herrin &
Goforth 1977; Russell et al. 1988; Levshin et al. 1992; Ritzwoller
& Levshin 1998; Levshin & Ritzwoller 2001; Nicolson et al. 2012;
Yanovskaya et al. 2012). Fig. 3 shows an example of the FTAN
image used to pick group velocities. We discarded station-pairs for
which the SNR is smaller than 5, and those whose inter-receiver
distances are smaller than twice the wavelength at any frequency
due to far-field surface wave approximation that is implicit within
ambient-noise surface wave tomography (Yao et al. 2006; Lin et
al. 2009). The SNR is calculated using the spectrum of the sig-
nals of interest and the spectrum of an interval of noise extracted
from the end of the virtual source records. This results in a total
of 12 inter-receiver dispersion curves across the New Ollerton area
(Fig. 2). Since Nicolson et al. (2012) and Galetti et al. (2017) both
showed that uncertainties estimated directly from the FTAN images
tend to be poor, uncertainties in dispersion curves were estimated
hierarchically within the Markov chain. Note that since we use
the same relationship between data uncertainties and traveltimes
for all dispersion curves, unusually poor measurements probably

cannot be assigned high uncertainties and can bias the results. In
practice, this issue can be reduced by removing potentially poor
measurements.

We performed three different inversions: first using only body
wave traveltimes, second using only surface wave dispersion data,
and a third, joint inversion using both types of data. In body wave in-
version and joint inversion we invert for both P- and S-wave velocity.
In the surface wave inversion we only invert for S-wave velocity; in
that case P-wave velocity is linked to S-wave velocity using a typical
ratio 1.73, and density is computed from the P-wave velocity using
a typical crustal relationship ρ = 2.35 + 0.036 × (vp − 3.0)2 where
vp is in km·s–1 and ρ is given in g·cm–3 (Kurita 1973). The latter
relationship is also used to calculate density in the joint inversion.
Since surface waves are much more sensitive to shear velocity than
P-wave velocity or density, the approximation should be sufficient
in our case. For each inversion the prior pdf of shear velocity is
set to be a Uniform distribution between 1.0 and 4.0 km s–1 at all
3-D locations. For body wave inversion and joint inversion the prior
pdf of P-wave velocity is set to be a Uniform distribution between
1.6 and 6.0 km s–1. The prior pdf of the number of Voronoi cells is
chosen to be a Uniform distribution between 20 and 300. For each
event location we use a Uniform distribution across a 2 km box
centred at the initial location estimated by BGS using linearized
methods (Butcher et al. 2017) as the prior pdf, and for the origin
time we used a Uniform distribution with 1 second width centred at
the initial origin time. For body wave traveltimes the prior pdf of the
hyperparameters σ 0 and σ 1 are chosen to be Uniform distributions
between 0 and 0.1. Similarly for surface wave group traveltimes
the prior of the two hyperparameters are set to be Uniform distri-
butions between 0 and 0.2. Since seismic velocity generally varies
more rapidly in the vertical direction than horizontally, we scaled
the vertical direction by a factor of 5 larger to ensure vertical and
horizontal directions are balanced as demonstrated by Zhang et al.
(2018). For each chain an initial velocity model is generated from
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Figure 3. An example of a frequency–time analysis (FTAN) envelope image which is used to pick group velocities. The black dots show the group velocities
picked in this case.

the prior, whereas initial source locations and times are set to values
from the linearized inversion of Butcher et al. (2017).

For a fixed-dimensional step (moving a cell, changing veloci-
ties, changing source parameters and hyperparameters) we use a
Gaussian perturbation centred at the current value as the proposal
distribution. The width of the Gaussian distribution is chosen by trial
and error to give an acceptance ratio between 20 and 50 per cent.
For a trans-dimensional step (adding or deleting a cell) the proposal
distribution is chosen to be the prior pdf (Dosso et al. 2014; Zhang
et al. 2018). For each inversion we used 16 chains; each of which
contains 1 600 000 samples including a burn-in of 800 000 to reach
apparent equilibrium. To reduce correlations between successive
samples we only retain every 50th sample in the chain post burn-in.
Those sample are used to calculate parameter means and standard
deviations. Final maps of statistics (mean and standard deviation)
of solutions are presented without additional imposed smoothing.

4 R E S U LT S

4.1 Source parameters

Fig. 4 shows the mean and standard deviation of each event location
calculated using all collected samples from body wave inversion
(Figs 4a and b) and from joint inversion (Figs 4c and d). Both re-
sults show that events occur deeper (majority > 1 km) than the
initial locations from BGS (majority < 1 km). The results show
two clusters: one in the southeast and the other in the north. The
southeastern cluster has slightly higher uncertainties than those in
the north, which is probably caused by the fact that the stations
are distributed to one side of the southeastern cluster. Compared to
the standard deviation from body wave inversion (around 0.5 km),
the location results from joint inversion show lower uncertainties
(around 0.4 km). This suggests that by including even only 12
surface wave dispersion curves the event locations can be better
constrained since dispersion data provides additional information
about the velocity model between stations. Figs 5(a) and (b) show
histograms of the standard deviations of source origin time obtained
using body wave tomography and joint inversion respectively. Most
standard deviations from body wave tomography are higher than
0.05 s, while those from joint inversion are centred around 0.05 s.
Therefore, by including surface wave dispersion data in the inver-
sion, the source origin time can also be better constrained since

this helps to resolve the trade-off between origin time and velocity
structure.

Verdon et al. (2017) showed that the seismicity is directly induced
by the mining, as opposed to being caused by activation of pre-
existing tectonic features due to stress transfer. However, in our
results events of the southern cluster occur at the end of and beyond
the coal seam, which suggests that those events might not be directly
induced by the mining. Since in our results and the results of Verdon
et al. (2017) the events of the souther cluster occur at greater depths
than the coal seam and there is no correlation between the rate
of excavation and the rate of seismicity (Verdon et al. 2017), it is
possible that the events of the southern cluster can be caused by
activation of pre-existing tectonic features, for example, the fault
that crosses the cluster (Fig. 2).

4.2 Velocity models

Fig. 6 shows horizontal slices through the 3-D mean and standard
deviation maps of shear wave velocity at depths of 0.2, 0.5 and
1.0 km obtained using body wave traveltime data only. The standard
deviation map at 0.2 km shows that only a small part of the model
is well constrained, which is associated with lower velocities in the
mean velocity map. Most of the other maps show the same values as
the standard deviation of the prior pdf, suggesting that body waves
offer very limited information about the near surface as expected.
The mean velocity map at 0.5 km depth shows that the shear veloc-
ities in the southwest and northeast are lower than elsewhere. The
standard deviation map suggests that most of the structure within
the boundary of the array is reasonably well constrained by the
data, other than in the southeast which has higher velocities and
higher uncertainties, probably caused by the limited data coverage
in that area. At 1 km depth the mean velocity map shows that the
velocity in the west is lower than the east, the northern earthquake
cluster occurs at the boundary of velocity anomalies, and the south-
eastern earthquake cluster is correlated with a clearly defined high
velocity anomaly. Between the two clusters there are low velocity
anomalies. The standard deviation map shows very low uncertain-
ties (<0.2 km s–1) in the southwest associated with the low velocity
anomaly, which suggests that the low velocity anomaly is well con-
strained, whereas slightly higher uncertainties (about 0.4 km s–1) are
observed elsewhere. There are loops of higher uncertainty around
the southeastern high velocity anomaly and around the low velocity
anomaly between the two clusters. These loops occur where there
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1644 X. Zhang et al.

Figure 4. Source location results. (a) and (b) are map view and a latitudinal cross-section of source locations obtained using body wave traveltime data only.
(c) and (d) are map view and a cross-section of source locations obtained using both body wave traveltime data and surface wave dispersion data. The orange
triangles show the location of stations. The colour of each dot reflects the standard deviations of each source location. Black lines show faults that appear in
the study area obtained from Bishop et al. (1993). The purple boxes show the location of coal seams located between 800 and 900 m depth.

Figure 5. Histograms of the standard deviations of source origin time obtained using (a) body wave tomography and (b) joint body and surface wave inversion.

are strong velocity gradients or velocity contrasts whose locations
are not well constrained. They represent uncertainty due to the trade-
off between the velocity and the location of velocity anomalies, and
hence describe uncertainty in the anomalies’ shapes (Galetti et al.
2015; Zhang et al. 2018).

Fig. 7 shows horizontal slices through the mean and standard de-
viation obtained from surface wave tomography at the same depths
as above. Compared to the results from body wave tomography,
the mean shear velocity map at 0.2 km shows lower velocities
(about 1.0 km s–1) than the results from body wave tomography
(>2.0 km s–1), and the standard deviation is also much lower (about
0.2 km s–1) than that from body wave tomography (about 1.0 km s–1).
This is due to the fact that surface waves are more sensitive to

near surface structure than body waves. There is a higher velocity
anomaly in the northwest which is probably caused by poor data
coverage (Fig. 2). At 0.5 km depth the mean velocity map shows
similar patterns of structure to those obtained from body wave to-
mography: the velocity in the southwest and in the northeast is
lower and the velocity in the southeast is higher. The mean velocity
map at 1 km depth shows very different results compared to those
from body wave tomography and its standard deviation is higher
(about 0.6 km s–1). This is probably caused by the fact that the fre-
quency range of the surface waves used in the inversion has very
low sensitivity at this depth.

Fig. 8 shows horizontal slices through the mean and standard
deviation obtained using joint inversion. Similarly to the results of
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3-D Monte Carlo joint inversion 1645

Figure 6. Horizontal slices through the 3-D shear velocity model at depth of 0.2 km (left-hand panel), 0.5 km (middle panel) and 1.0 km (right-hand panel)
obtained using body wave traveltime data only. The upper panels (a) and the bottom panels (b) show the mean velocity maps and standard deviation maps,
respectively. At each slice events within 0.2 km of the depth are plotted. Black lines show faults that appear in the study area.

Figure 7. Horizontal slices through the 3-D shear velocity model obtained using surface wave dispersion data only. Key as in Fig. 6.

surface wave tomography, the mean velocity map at 0.2 km shows
lower velocity values than those from body wave tomography with
lower standard deviations: near surface structure can be better con-
strained by including surface wave dispersion data in the inversion.
There is still a higher velocity anomaly between Y = 0 and 2 km
which is associated with high standard deviations: neither body
waves nor surface waves have much resolution in this area so the
velocity tends towards the mean of the prior pdf (2.5 km s–1). The

mean velocity maps at 0.5 and 1.0 km are very similar to the results
from body wave tomography: we have more body wave data than
surface wave data that are sensitive to these depths so the body wave
data dominate the results. Nevertheless, the velocity magnitudes are
slightly different from the results of body wave tomography which
is due to the contribution of surface waves, and the standard devia-
tion map shows lower uncertainties within the station array which
suggests that surface waves improve the resolution across that entire
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1646 X. Zhang et al.

Figure 8. Horizontal slices through the 3-D shear velocity model obtained from joint body and surface wave inversion. Key as in Fig. 6.

area. Similarly to the results of body wave tomography, the stan-
dard deviation map also shows a higher uncertainty loop around the
southeastern high velocity anomaly.

Note that all of the standard deviation models show lower uncer-
tainties than those of the prior pdf in the area outside of the station
array where there is no obvious data. This is probably because the
velocity in this area is correlated with the velocity within the station
array through large Voronoi cells, but also for some models surface
and body wave ray paths may assume trajectories that travel outside
of the array. This phenomenon has also been observed in several
previous studies (Galetti et al. 2015; Zhang et al. 2018; Zhang &
Curtis 2020a).

In Fig. 9 we show vertical cross sections through the mean and
standard deviation maps from the three inversions along the X
= 1 km profile which lies between the two earthquake clusters.
The mean velocity model from surface wave tomography (Fig. 9a)
shows that there is a low velocity anomaly between the two clus-
ters. The standard deviation model (Fig. 9b) shows that the near
surface structure (<0.8 km) is well constrained while the deeper
part has very limited resolution. Figs 9(c) and (d) show the mean
and standard deviation cross sections from body wave tomography.
The velocity model also shows a low velocity anomaly between the
two clusters, however the low velocity anomaly extends to deeper
levels and the velocity at either side of the low velocity anomaly
is much higher (>3 km s–1) than that from surface wave tomog-
raphy (∼2.0 km s–1). The standard deviation model shows a low
uncertainty area associated with the middle low velocity anomaly
suggesting that the anomaly is well determined. There are also
higher uncertainty loops around the high velocity anomalies at the
two sides of the low velocity anomaly. Figs 9(e) and (f) show the
results from joint inversion. The mean model is similar to that from
surface wave tomography at shallow levels, and to that from body
wave tomography at depth. However the velocity magnitude of the
southern high velocity anomaly is lower than that from body wave
tomography, and the velocity of the northern low velocity anomaly

around 1 km depth is much lower than that from body wave tomog-
raphy, both due to the contribution of surface waves. Similarly the
standard deviation model shows lower uncertainties in the near sur-
face, and higher uncertainty loops around high velocity anomalies.
Appendix A shows P-wave velocity models from both body-wave
only inversion and joint inversion. The key finding of those results
is that the addition of surface waves also helps to constrain P-wave
velocities even though surface waves are not directly very sensitive
to P-wave velocity. This is because P-wave velocities are correlated
with shear velocities through the source locations and the latter are
better estimated with the addition of surface wave data.

For one chain the body-wave only inversion takes 396 hr when
parallelized using 9 cores, whereas the joint inversion takes 502 hr
using the same number of cores. Therefore the joint inversion re-
quires only 27 per cent more computational time than the body-wave
only inversion, while producing source locations and velocity mod-
els with notably lower uncertainties.

4.3 Synthetic tests

In the above results there is a high velocity anomaly at the loca-
tion of the southern earthquake cluster (Figs 6, 8 and 9): in the
results from joint inversion the magnitude of the velocity anomaly
is slightly lower, but is nevertheless clearly identifiable. Similar fea-
tures have been observed previously and are generally interpreted as
earthquake asperities that concentrate stress (Lees 1990; Eberhart-
Phillips & Michael 1998; Chiarabba & Amato 2003; Tajima et al.
2009; Li et al. 2013; Zhang et al. 2013). However it is also possi-
ble that this correlation is caused by the trade-off between source
parameters and velocity values.

To better understand the correlation of the high velocity anomaly
and the earthquake cluster we performed a simple synthetic test in
which the ‘true’ model contains three horizontal layers and event
locations are taken to be their mean values from the joint inversion
above (Fig. 10). We computed synthetic versions of the same body
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Figure 9. Vertical Cross sections of the mean (top panels) and standard deviation (bottom panels) of shear wave velocity at X = 1 km obtained using surface
wave tomography (a and b), body wave tomography (c and d) and joint body and surface wave inversion (e and f). Black dots are events lying within 0.8 km of
the cross-section.

Figure 10. Cross section through the synthetic model at X = 1 km. Black dots show the event locations which are taken from joint inversion of the real data in
Fig. 4(d).

wave traveltime data and surface wave dispersion data as used in
the above inversion, and added 1 per cent noise to the data. We
then conducted three inversions: simultaneous inversion for source
parameters and velocity model using only body wave data, inversion
for velocity only using body wave data with sources fixed at their
true locations, and joint inversion for sources and velocities using
both types of data. The initial source parameters (event locations and
origin times) are the same as were used in the real data inversions
above. The prior pdfs are chosen to be the same as in the real data
example except that the prior for the number of cells is chosen
to be a Uniform distribution between 5 and 100 since the model
is relatively simple. The proposal pdfs are also tuned in the same
way as above. The burn-in and total samples for each chain and
the number of chains are also set to be the same as in the real data
inversions.

Fig. 11 shows cross sections through the mean and standard devi-
ation at X = 1 km obtained using only body waves by simultaneously
inverting for source parameters and the velocity model. Though the
mean velocity model shows three layers which are to some extent
similar to the true model, the velocity value around the southern
cluster (around 1.75 km s–1) is lower than the true value (2.0 km s–1).
This suggests that body wave tomography may produce biases in the

results around the location of event clusters, caused by the trade-off
between event locations and velocity values (see Fig. 12): shallower
event depths are generally associated with a lower velocity value to
fit the data. The standard deviation model shows low uncertainties
from the surface down to around 1.5 km including in the low ve-
locity areas around the southern cluster. This low velocity anomaly
is due to the fact that the initial source locations are shallower than
the true locations, so in order to fit the data the model decreases
the velocity value at the location of event clusters (see Fig. 12); this
trade-off creates complex multimodality in the posterior pdf (see
Figs 16a–c), and since random walk McMC algorithms are gen-
erally inefficient for multimodal distributions the chains likely get
stuck in modes that have lower velocities. By contrast, in Fig. 13 we
show the results obtained from an inversion with source parameters
fixed at their true values. The mean velocity model shows almost the
same structure as the true model which again suggests that the non-
uniquenesses in the posterior velocity pdfs in the previous results
are caused by non-linear trade-off between source parameters and
velocity values. The standard deviation shows very low uncertain-
ties (<0.2 km s–1) across the whole section except in a small area in
the left-hand corner where there are no events. It also shows slightly
higher uncertainties at the boundaries between layers which reflect
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Figure 11. Cross sections of the mean and standard deviation at X = 1 km obtained by inverting for source parameters and velocity model simultaneously
using body wave data only. Black dots show the mean event locations. The red pluses show point locations which are referred to in the text.

Figure 12. Average shear velocity at the location of the southern cluster versus average depth of events of the southern cluster.

uncertainty in layer boundary locations similar to the uncertainty
loops observed above and in Zhang et al. (2018). To give an idea
of fit to the data, the simultaneous inversion of source parameters
and velocity model produces an average residual of 0.81 s while
the fixed-source inversion produces a residual of 0.80 s. Thus the
two inversions produce almost the same average fit to the data even

though they give different estimates of the velocity model; there-
fore one cannot discriminate between the two models based on data
fit.

Fig. 14 shows cross sections of the mean and standard deviation
obtained using joint inversion of both data types for both velocities
and source parameters. Although the mean velocity model shows
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3-D Monte Carlo joint inversion 1649

Figure 13. Cross sections of the mean and standard deviation at X = 1 km obtained by inverting for velocities, and fixing the source parameters at their true
values. Black dots show the event locations. Red pluses show point locations which are referred to in the text.

slightly different velocity values in the second and third layer com-
pared to the previous two models, it is significantly closer to the true
model than that obtained from body wave tomography by simulta-
neously inverting for source parameters and the velocity model.
The standard deviation model shows similar structures to those
from the fixed-source inversion, including higher uncertainties at
the boundary of layers. Fig. 15 shows the true dispersion curve and
the average dispersion curve calculated using the mean velocity
model. At longer periods (>1.2 s) the average group velocities fit
the true values, whereas at shorter periods the average group ve-
locities are higher than true values which is probably caused by
the bias produced by body wave data (see Fig. 11), or because the
mean model is not a good representation of the subsurface structure
(Zhang & Curtis 2020a).

To better understand the results, in Fig. 16 we show marginal
posterior pdfs obtained using the three methods at three different
points (1, –1, 0.84 km), (1, –1, 1.0 km) and (1, –1, 1.2 km) which
cross the southern earthquake cluster in the above cross sections.
The marginal distributions obtained from body wave tomography
show complex multimodal distributions (Figs 16a–c) and are dis-
tributed away from the true value (2 km s–1). By contrast, most
of the marginal distributions obtained from joint inversion show a
unimodal distribution concentrated around the true value (Figs 16e
and f) other than a remaining multimodality in Fig. 16(d). The
marginal distributions obtained from fixed-source inversion focus
to a unimodal distribution around the true value (Figs 16g, h and

i). Thus, the simultaneous inversion for source parameters and ve-
locity model using only body wave data can bias the results due
to the trade-off between source parameters and velocity values. By
including surface wave dispersion data in the inversion, this prob-
lem can be resolved since surface wave data improve the velocity
estimate.

Apart from joint inversion using both types of data, the results ob-
tained using surface wave tomography are frequently used as prior
information for body wave tomography to produce a more realistic
velocity model. For example, velocity models from surface wave
tomography were used as a starting model for body wave tomog-
raphy by Rawlinson & Fishwick (2012) and Nunn et al. (2013).
However in those studies since surface wave data are not used in the
later inversion, trade-offs between source parameters and velocity
models could still bias the results and the resulting model can be
inconsistent with surface wave data. Thus it is better to invert for
a unified model of velocity and source locations jointly using both
types of data.

In the real data results, the high velocity anomaly at the location
of the southern cluster therefore may reflect the true structure of
the subsurface, for example, earthquake asperities following previ-
ous interpretations (Lees 1990; Eberhart-Phillips & Michael 1998;
Chiarabba & Amato 2003; Tajima et al. 2009; Li et al. 2013; Zhang
et al. 2013). However, since we still observe subtle multimodilities
in the joint inversion results, and the real Earth may have a more
complex structure, there is still the possibility that the details of
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Figure 14. Cross sections of the mean and standard deviation at X = 1 km obtained by inverting for both velocity and event locations using both body wave
and surface wave data. Black dots show the mean event locations. Red pluses show point locations which are referred to in the text.

Figure 15. Group velocities used in the joint inversion (red dot) plotted with error bars and the average dispersion curve calculated from the mean velocity
model (blue line). Since the true model is a 1-D model, dispersion curves between different receiver pairs are almost the same except for random noise. Error
bars show the standard deviation of group velocities of different dispersion curves.

the recovered model are obscured by the trade-off between source
parameters and velocity models. The synthetic test suggests that the
trade-off mainly affects the velocity structure at the location of the
southern earthquake cluster, so our results at least remain valid for
most of the subsurface.

5 D I S C U S S I O N

In this study, we used Voronoi cells to parametrize the subsurface.
While the Voronoi parametrization is effective if we wish to image
discontinuities, it can introduce difficulties when we attempt to
recover a smooth model (Hawkins et al. 2019). For example, in
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3-D Monte Carlo joint inversion 1651

Figure 16. The marginal posterior pdfs of shear velocity at three points (pluses in Figs 11, 13 and 14). (a), (b) and (c) show the marginal posterior pdfs at three
points at depth 0.8, 1.0 and 1.2 km obtained by inverting source parameters and velocity model simultaneously using body wave data. (d), (e) and (f) show the
marginal posterior pdfs at three points obtained by joint inversion using both body wave data and surface wave data. (g), (h) and (i) show the marginal posterior
pdfs at three points obtained by fixing the source parameters at their true values. The dashed black line denotes the true shear velocity value.

our results there remain some signs of Voronoi cell shapes which
we choose to leave unsmoothed (in contrast to other studies that
use fewer McMC iterations and heavy smoothing, e.g. Young et
al. 2013; Crowder et al. 2019a). It has also been found that the
Voronoi parametrization can cause multimodalities in the posterior
pdf, and produce uncertainty estimates that differ from those that
one would normally associate with a pixelated image (Zhang &
Curtis 2020a), both of which make interpretation of uncertainties
difficult. To produce a smoother model, other parametrizations,
such as wavelets (Hawkins & Sambridge 2015), Johnson–Mehl
tessellation (Belhadj et al. 2018) and Delaunay and Clough–Tocher
parametrization (Hawkins et al. 2019) may be used.

In this study, we did not take into account any anisotropy that
may exist in the area. This may cause errors in our results. How-
ever, as Verdon et al. (2017) showed that the anisotropy is not
particularly strong in the area, our results should remain valid as a
first-approximation. In future it is possible to include anisotropy in
our method to produce more accurate results.

The rj-McMC algorithm is generally not efficient for exploring
complex multimodal distributions (Green & Hastie 2009). In our
body-wave only tomography synthetic test, by simultaneously
inverting for source parameters and velocity models the chains may

have got stuck at local modes and failed to find the true solution. To
reduce this issue one could use a better initial model (as required by
linearized inversion) if available to ensure that the chains explore
around the globally optimal solution. In the real data inversions we
used initial source parameters obtained using a 1-D initial model, so
to further improve the results one could adopt locations found using
a good 3-D model instead. If no better model exists (as is often the
case) then that is not an option, so methods that are more effective
for multimodal distributions might be used, for example grid search
(Sen & Stoffa 2013), non-Markovian importance sampling (Lomax
& Curtis 2001; Lomax et al. 2009), parallel tempering (Sam-
bridge 2013) and variational inference methods (Zhang & Curtis
2020a, b).

6 C O N C LU S I O N

We implemented a Monte Carlo method to perform joint inversion
using both body wave arrival time data and surface wave disper-
sion data, and applied it at a mining site located to the north of
New Ollerton, Nottinghamshire, U.K., at which induced seismicity
occurs. The results show that by including surface wave disper-
sion data the shallow structure can be better constrained because
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surface waves are generally sensitive to the shallow structure, and
this further improves estimate of source parameters. We also ob-
served a high velocity anomaly at the location of one of the event
clusters which may be related to earthquake asperities that concen-
trate stress. To further understand this correlation, we performed
inversions using synthetic data generated using the same source
and receiver distribution as in the real data experiment. The results
show that due to the trade-off between source parameters and ve-
locity values, the inversion using only body wave data can produce
biases; by including surface wave dispersion data in the inversion
the problem can be resolved. We conclude that it is better to include
surface wave data in seismic traveltime tomographic inversions for
velocity structure and earthquake source locations.
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A P P E N D I X : P - WAV E V E L O C I T Y
M O D E L S

Fig. A1 shows the horizontal slices of the mean and standard de-
viation of P-wave velocity using body waves only. Similar to the
results for shear velocity, at the depth of 0.2 km higher velocities are
associated with higher uncertainties since the near surface structure
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cannot be well constrained by body waves, and at 0.5 km depth
the mean P-wave velocity model exhibits very similar patterns to
those of shear velocity. Similarly to the results for shear velocity,
the standard deviation map shows higher uncertainties at the lo-
cation of the southeastern higher velocity anomaly due to limited
data coverage. At the depth of 1.0 km the mean velocity map also
shows similar structures to those in the shear velocity results, and
the standard deviation map shows higher uncertainty loops around
velocity anomalies.

For comparison, we show the results of P-wave velocity from
joint inversion in Fig. A2. The P-wave velocity model at the depth
of 0.2 km is better constrained by including surface wave dispersion

data: most of the model has lower velocities (<3 km s–1) compared
to those from body wave tomography (∼4 km s–1) and lower un-
certainties (<0.5 km s–1) than those from body wave tomography
(>1.0 km s–1). This is due to the fact that shear velocity is better es-
timated by including surface waves, so the P-wave velocity can also
be better constrained since P and S velocities are correlated through
the common earthquake source parameters, and surface waves are
also partly sensitive to P-wave velocity at near surface (Zhou et
al. 2004; Fang et al. 2016). At greater depths (0.5 and 1.0 km) the
mean velocity model is similar to that from body wave tomography
since surface waves have very little sensitivity to P-wave velocity
structure there.

Figure A1. Horizontal slices through the 3-D P-wave velocity model obtained using body wave traveltime only. Key as in Fig. 6.
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Figure A2. Horizontal slices through the 3-D P-wave velocity model obtained from joint body and surface wave inversion. Key as in Fig. 6.
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