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ABSTRACT
Imaging defects in austenitic welds presents a significant challenge
for the ultrasonic non-destructive testing community. Due to the
heating process during their manufacture, a dendritic structure
develops, exhibiting large grains with locally anisotropic proper-
ties which cause the ultrasonic waves to scatter and refract. When
basic imaging algorithms,which typicallymake constantwave speed
assumptions, are applied to datasets arising from the inspection of
these welds, the resulting defect reconstructions are often distorted
anddifficult to interpret correctly. However, knowledgeof the under-
lying spatially varying material properties allows correction of the
expected wave travel times and thus results in more reliable defect
reconstructions. In this paper, an approximation to the underlying,
locally anisotropic structure of the weld is constructed from ultra-
sonic time of flight data. A new forward model of wave front prop-
agation in locally anisotropic media is presented and used within
the reversible-jump Markov chain Monte Carlo method to invert for
themap of effective grain orientations across different regions of the
weld. This forward model and estimated map are then used as the
basis for an advanced imaging algorithm and the resulting defect
reconstructions exhibit a significant improvement across multiple
flaw characterization metrics.
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1. Introduction

In many countries, infrastructure is ageing and cannot be replaced due to global financial
pressures. Industry is therefore presented with the challenging problem of safely main-
taining their infrastructure and extending its life span. Ultrasonic non-destructive testing
(NDT) involves the transmission of mechanical waves through industrial components to
facilitate the detection of interior damage and offers an economically and environmentally
desirable solution to this challenge. Networks of ultrasonic transducers, typically arranged
in linear arrays, are deployed to carry out these inspections, resulting in large volumes
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of often noisy data. This data can be acquired using the Full Matrix Capture (FMC) tech-
nique [1], where each array element fires sequentially whilst all of the array elements record
the reflected data simultaneously, thusmaximizing the information extracted from a single
array position. Usingmathematical algorithms to decipher the resulting data sets, an image
of the component’s interior can be constructed and, in scenarios where the component is
composed of a homogeneous material, defects can be reliably detected and characterized
[1,2]. However, when the material exhibits inhomogeneous and/or anisotropic behaviour,
its inspection becomes challenging [3–5]: the ultrasonic wave paths are distorted and their
expected arrival times (on which many existing imaging algorithms are based) are usually
no longer reliable.

One particularly challenging example of this behaviour occurs in austenitic steel welds
[6–9]. These welds are popular within heavy industry due to their strength and corrosion
resistance. However, due to the heating process during theirmanufacture, crystals undergo
epitaxial growth where their primary axis aligns with the direction of heat flow, creating
a locally anisotropic microstructure. When traditional NDT imaging algorithms (which
assume a constant, isotropic velocity throughout the medium) are applied to data sets aris-
ing from such components, the resulting images typically display poorly characterized and
mislocated flaws. Furthermore, with the introduction of additive manufacturing methods
and industry’s increasing reliance on strong, durable composite materials which are het-
erogeneous by design, it is becoming increasingly important to address the problem of
imaging defects embedded in complex media.

It has already been shown that a priori knowledge of a material’s spatially variant prop-
erties can be used to construct more accurate and reliable images of embedded defects
[3–5]. Although the microstructural maps required for this correction can be obtained
experimentally [6,10], such techniques are not considered to be strictly non-destructive
and thus cannot be deployed in situ. However, these techniques have provided invaluable
insight into the structure and crystallography of thesematerials, as have themodels of wave
propagation in complex media presented in [11–14].

The inverse problem of recovering information about the spatially varying material
properties of a component from ultrasonic phased array data has yet to be solved satis-
factorily, and is attracting increased attention within the NDT community. In recent years,
some work has been carried out on the determination of crystallographic orientation in
single crystal materials [15] and mapping the velocity field in locally isotropic random
media [5]. In the case of locally anisotropic polycrystalline materials (for example, steel
welds [4,8,16]), the wave speed through thematerial is dependent on the angle of incidence
of the wave, and so a single map of the velocity field cannot fully represent the complex-
ity of the wave’s journey. Thus, grain orientation maps are required, where small regions
are assigned a single orientation representing the dominant orientation of the aggregated
crystals at that point in the domain. This aggregation process has previously been studied
across different length scales: in [9,17] macro regions are considered; in [6,18] grain-size
regions are studied and in [19] an intermediate regime of averaging is examined.

In the last 20 years, much work on obtaining these orientation or stiffness maps has
been conducted. TheModelling anIsotropy fromNotebook of Arc welding (MINA)model
was first presented in [19]. Given a small set of welding parameters, it was shown that the
MINA model could predict the variation in local anisotropy that is present in a multipass
weld. This work was validated against experimental EBSDmeasurements in [20] and built
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upon in [8,16], where ultrasonic phased array measurements were used to invert for the
key welding parameters in the case where these are not known. Further examination of the
orientation maps specific to welds is carried out in [17] where the weld structure is studied
using a combination of finite element modelling and metallographic and crystallographic
analyses and the elastic constants are also inverted from ultrasonic measurements. A more
generally applicable approach is studied in [4] where ultrasonic phased array travel time
data is inverted using a Markov chain Monte Carlo approach to reconstruct the orienta-
tions map of an austenitic steel weld. Here, the authors initialized the algorithm using an
approximation of the weld structure generated using the Ogilvy model of a weld [21].

Building upon this existing body of work, the work presented in this paper presents
the reversible-jumpMarkov chain Monte Carlo (rj-MCMC) method [22] as an alternative
means for inverting ultrasonic phased array data to obtain information on the distribu-
tion of crystal orientations in polycrystalline materials. The authors have already applied
this inversion method to reconstruct the varying velocity field in locally isotropic, random
media [5,23,24] and in this paper, the method is extended to map the locally anisotropic
grain structure of austenitic steel welds. Similar to the methodology presented in [4], and
in contrast to the work carried out in [8,16,17,19,20], this methodology is not weld-specific
and may be applied to any environment in which waves propagate through heterogeneous
and locally anisotropic media (for example, it may be easily adapted for application by
the seismic community where isotropic assumptions are often made in materials known
to be anisotropic, negatively impacting the fidelity of the resulting reconstructions). Fur-
thermore, we employ a Bayesian approach rather than a deterministic one, which provides
additional information on the reconstructed maps; most notably the standard deviation
map which highlights regions that lie at the interface between different macro regions of
the materials. Additionally, and unlike the work presented in [4], no a priori assumptions
are made on the distribution of crystal orientations within the component here: the initial
model arbitrarily assigns orientations drawn from an uninformative uniform distribution
to the irregularly partitioned domain, to retain the general nature of the approach and to
avoid the inclusion of any bias. The only prior information exploited is the sample’s exterior
dimensions, the location of the transmitting and receiving array elements and the mate-
rial’s slowness curve (derived from the elastic constants which we assume are known here
but which in practice may need to be approximated experimentally and the uncertainty
attached to these approximations considered [17,25]). Note we consider only longitudi-
nal waves travelling in the plane transverse to the weld direction as it has been shown
from experimental measurements in flat welds that the beam skewing out of the weld is
weak and thus we can approximate the weld as transversely isotropic [17,20]. The results
presented are complementary to those that have gone before as they offer an alternative
approximation to the weld geometry. This is driven by the irregular partitioning of the
domain in contrast to the regular square mesh used in the previous studies. Since the rj-
MCMC is transdimensional (that is the number of degrees of freedom in partitioning the
domain can change) and naturally parsimonious, the resulting reconstructions are often
much coarser than those obtained in [4,19], for example, exhibiting macro trends in the
distribution of anisotropy and offering an alternative perspective on the weld structure. It
is due to this macroscale perspective that we refrain here from using the term microstruc-
ture and instead refer to effective orientation maps. This paper also contributes a novel
forwardmodel of wave front propagation through the anisotropicmedium; the anisotropic
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multi-stencil fast marching method (AMSFMM). In contrast to Dijkstra’s method, which
is implemented in [4] and does not converge to the underlying partial differential equation
for travel time, it has been shown that the higher order fast marching method (on which
the AMSFM is based on) diminishes the grid bias and converges to the underlying geodesic
distance when the grid step size tends to zero [26]. Once the orientationmap has been con-
structed (using the rj-MCMC), the AMSFMM is used again in conjunction with the Total
FocussingMethod (TFM) [1] (from herein we refer to this extension as the TFM+) to cor-
rect for fluctuations in the predicted travel times of each wave caused by the anisotropic
nature of the material. The success of the approach is quantified via the accuracy of the
resulting flaw image and how it compares to that arising from application of the standard
TFM algorithm (which assumes a constant wave speed throughout the domain) in terms
of defect characterization and positioning.

2. Methodology

2.1. The observed data

Ultrasonic phased array systems have become increasingly popular as tools for flaw
detection and characterization within the non-destructive testing industry. They provide
improved resolution and coverage by transmitting and receiving ultrasound signals over
multiple transducers, which, when fired in predefined sequences, can provide increased
control over beam directivity [27]. The capability of these arrays to both transmit and
receive ultrasonic signals simultaneously presents us with two alternative experimental
set-up options: the pulse-echo set-up, where only one phased array is employed to simulta-
neously transmit and receive signals, and the pitch-catch arrangement, where two phased
arrays are employed, one to transmit and one to receive. In both cases, when the full matrix
capture (FMC) technique is employed to collect the data [1] we have N transmitting ele-
ments and N receiving elements, and thus N2 so-called A-scans (the collected time-series
data). However, for thework presented in this paper, we need only the first time of arrival of
the wave, and do not exploit the entirety of the reflected waveform as is the practice in the
computationally expensive full waveform inversion techniques [28,29]. Additionally, we
consider only a pitch-catch scenario, where two arrays are placed directly opposite each
other, on either side of the component (known as through-transmission). This set up sim-
plifies the extraction of the first time of arrival of the signal: in the pulse-echo arrangement,
scattering by other artefacts can interfere with the detection of the back wall scattering
and an added element of uncertainty is thus introduced. In the pitch-catch scenario, the
time of flight is estimated by the first point in time that As,r(t) > ε, where A is the time
domain signal transmitted at element s and received at element r, ε is some chosen ampli-
tude threshold (10−6Pa here), and 0 ≤ t ≤ T is the time period over which the signal is
collected. Of course, in this simulated environment, there is some uncertainty attached
to the selection of arrival time threshold ε, and this uncertainty would be amplified in the
extraction of time of flight data in an experimental scenario. However, the chosen inversion
methodology also inverts for the system noise level, a global parameter which aggregates
the aleatoric and epistemic uncertainties, thus tempering the impact of uncertainty in the
travel time estimations. Once the arrival times have been obtained, they are stored in a time
of flight (ToF) matrix T0, where each element ts,r represents the time taken for the wave
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to travel from transmitting element s to receiving element r. In a homogeneous, globally
isotropic medium, the time taken is dependent only on distance and so we obtain symmet-
ric, banded ToF matrices. However, as soon as an element of heterogeneity is introduced,
these bands are distorted [5] and it is this distortion that we exploit to obtain information
on the material’s underlying structure.

2.2. Material parametrization by Voronoi diagrams

To minimize the degrees of freedom within our inverse problem, we reconstruct a lower
resolution map of the grain orientation maps than that afforded by electron backscatter
diffraction measurements, for example. To this end, groups of crystallites are considered
as a single homogeneous grain which is assigned an effective orientation, thus produc-
ing a coarsened representation of the material’s spatially varying structure. In this paper,
we restrict our attention to polycrystalline materials, whose grains are irregularly shaped
and cannot be well described by a coarse rectangular grid. Voronoi diagrams have already
been used successfully as the basis for finite element (FE) simulations of waves propagat-
ing through polycrystalline materials [18,30]. Given an arbitrary set of seeds S (here a set
of two-dimensional Cartesian coordinates), a Voronoi tessellation can be generated by first
constructing the Delauney triangulation of these points and then taking the perpendicu-
lar bisectors of its edges to be the edges of the Voronoi diagram (the Voronoi diagram is
the geometric dual of the Delauney triangulation) [31]. Thus, the Voronoi diagram is a
set of non-overlapping convex regions or cells where any point within a cell is closer to
the seed of that cell than any other seed. These seeds are a discrete set of points (xi, yi) for
i = 1, . . . ,M, whereM is the number of regions and so the Voronoi diagram describes the
partitioning of our spatial domain using 2M variables.

To parameterize the weld with a Voronoi diagram, we must assign a third parameter
to each cell: its orientation φi. In this work, we consider only in plane rotation and so the
assigned orientation dictates the rotation of a slowness curve in each cell (as opposed to
a slowness surface). Thus, given the incident wave angle, the speed that the wave travels
through that cell can be calculated from where the wave vector bisects the rotated slow-
ness curve. The longitudinal group slowness curve (the reciprocal of the group velocity)
for a transversely isotropic cubic austenitic weld is obtained by solving the Christoffel
equation [12] with a cubic stiffness tensor where c11 = 203.6GPa, c12 = 133.5GPa and
c44 = 129.8GPa and the density is ρ = 7874kg/m3 (these are taken from the weld prop-
erties used in [32,33]). Note that the method is not restricted to the examination of
cubic materials and a straightforward extension could be realized to consider hexagonal
materials. Thus, we have a parametrization with 3M+ 1 unknowns (where M is itself
an unknown), and N2 equations, describing the known time of arrival between every
transmit/receive pair of elements.

2.3. The anisotropicmulti-Stencil fast Marchingmethod

Having parametrized the material’s structure using Voronoi cells, we now require an effi-
cient forward model which outputs the time of flight matrix Tm for any particular instance
of the material model m. To consider the effects of the locally anisotropic grain struc-
ture on the wave’s path and speed, we have developed a new algorithm based on the
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fast marching method (FMM) [34], to model the monotonically advancing wave front
through the material. In the standard FMM, we let τ(xi, yj, s) denote the shortest time
for a wave to travel from the transmitter s ∈ ∂I, on the boundary of the discretized rep-
resentation of our image domain I = x × y, to the point (xi, yj) ∈ I. The Eikonal equation,
|∇τ(xi, yj, s)| = 1/V(xi, yj), is then solved for τ(xi, yj, s) using an upwind finite difference
scheme [34,35], where, V(xi, yj) represents the velocity at point (xi, yj). Solving this over a
regular grid superimposed over a given velocity field, the shortest travel-time between each
transmitter s and receiver r ∈ ∂I can be calculated and thematrixTm constructed (note that
only the travel time information is modelled and other physical phenomena such as scat-
tering, attenuation and dispersion are ignored). To consider maps of the spatially varying
crystal orientation rather than the inhomogeneous velocity field, the algorithm requires
some modification. Firstly, in the implementation of the standard FMM, movement of the
wave is restricted along the vertical and horizontal edges of a regular rectangular mesh.
This limitation means that even if the wave speed at each point on the grid is calculated by
taking into account the wave direction and the rotation of the slowness curve at that point,
the cell is still treated as locally isotropic due to the symmetries of the slowness curve [36].
To counter this, we first exploit the multi-stencils fast marching method (MSFM) [37].
It is well known that errors accumulate along diagonal trajectories when the fast march-
ing method is employed as it considers only nearest neighbours of each node. The MSFM
(in two dimensions) introduces an additional stencil at each node, rotated by 45◦, allow-
ing next nearest neighbours (neighbouring nodes along the diagonal) to contribute to the
shortest time calculations at each point. This significantly improves the error in travel time
estimation along the diagonal directions and is sufficient for the study of wave propagation
in locally isotropic media [5]. However, due to the additional diagonal axes of symme-
try of our slowness curve, to account for local anisotropy, we must extend this principle
and examine four stencils (denoted SH , H = 1, 2, 3, 4) on a 25 point finite difference
scheme (see Figure 1), allowing movement of the wave along four distinct directions in
each quadrant.This requires use of a mixed order scheme, where calculations on S1 and
S2 are nominally second order accurate (reverting to a first-order approximation when the
travel-times for the second-order approximation are unavailable) and the solutions found
on stencils S3 and S4 are only first order accurate and solved on a coarser grid. This mixed
order, four stencil approach combined with the assignment of an orientation to each cell
rather than wave speed, forms the basis for our anisotropic multi-stencil fast marching
method (AMSFMM). Importantly, we propose that the Eikonal equation can be solved
locally for each of the four stencils in the same manner as employed by the standard FMM
by assigning a velocity at each node that is dependent on the angle of rotation of the sten-
cil along which it is being solved and the assigned crystal orientation at that node. Thus,
locally, the solver treats the medium as isotropic but in actual fact the incident wave direc-
tion and locally anisotropic crystal orientation have already been accounted for. To begin,
we rewrite the Eikonal equation as

|∇τ(xi, yj, s))| = V̂(φi,j,SH) (1)

where V̂(φi,j,SH) is the slowness at the point (xi, yj) dependent on the crystal orientation
φi,j assigned to that point and the rotation of the stencil SH along which the equation is
being solved. When evaluating over S1, we adopt the second order forward and backward
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Figure 1. Four stencils are used for application of the anisotropic multi-stencil fast marching method
(AMSFMM): (a) S1, (b) S2, (c) S3 and (d) S4. Calculations on S1 and S2 are nominally second order
accurate with step size �x and

√
2�x , respectively, whilst stencils S3 and S4 utilizes only first-order

approximations and have step size
√
5�x (recall that �x = �y must hold for application of the

AMSFMM).

finite difference approximations of the gradient to approximate Equation (1) by

2∑
v=1

max
(

3
2�v

(τi,j − τv), 0
)2

= V̂(φi,j,SH)
2 (2)

where τi,j = τ(xi, yj, s), here �1 = �x is the grid side length in the x direction and
�2 = �y is the grid side length in the y direction, τ1 = min( 4τi−1,j−τi−2,j

3 , 4τi+1,j−τi+2,j
3 ) and

τ2 = min( 4τi,j−1−τi,j−2
3 , 4τi,j+1−τi,j+2

3 ). If the solution (τ ∗
i,j, say) to Equation (2) is greater than

max(τ1, τ2), then τi,j is the solution of the quadratic equation

2∑
v=1

(
3

2�v
(τi,j − τv)

)2
= V̂(φi,j,SH)

2. (3)

Otherwise, if τ1 > τ ∗
i,j > τ2 then τi,j = τ2 +�2V̂(φi,j,SH), or if τ2 > τ ∗

i,j > τ1 then τi,j =
τ1 +�1V̂(φi,j,SH). On S1, this is simply the the Higher Accuracy Fast Marching Method
[37]. To adopt our multi-stencil approach, we enforce the condition that�x = �y so that
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Table 1. List of variables for the finite difference approximation given in equations (2) and (4) for
S2, S3, S4.

S2 S3 S4

τ1 min(
4τi−1,j−1−τi−2,j−2

3 ,
4τi+1,j+1−τi+2,j+2

3 ) min(τi−2,j+1, τi+2,j−1) min(τi+1,j−2, τi−1,j+2)

τ2 min(
4τi−1,j+1−τi−2,j+2

3 ,
4τi+1,j−1−τi+2,j−2

3 ) min(τi−1,j−2, τi+1,j+2) min(τi−2,j−1, τi+2,j+1)

�1 = �2
√
2�x

√
5�x

√
5�x

we are operating on a regular square mesh. On stencil S2, we solve Equation (2) with τ1, τ2
and�1 = �2 taking the values as listed in Table 1. For stencils S3 and S4, we adopt a first-
order finite difference approximation on a coarser grid (see Figure 1).Here, we approximate
equation (1) by

2∑
v=1

max
(
(τi,j − τv)

�v
, 0

)2
= V̂(φi,j,SH)

2. (4)

with values for τ1, τ2 and�1 = �2 as listed in Table 1.
All FMM inspired methods are based on solving these discrete quadratic equations

across the grid in the same direction as the propagation of the wave, where the downwind
values of τi,j are calculated from known upwind values, and satisfy the causality relation-
ship that the arrival times at each point are dependent only on neighbouring points which
have a shorter travel time. To model the wave propagation through the grid, the FMM
uses a narrow-band approach, where each point in the grid is assigned a status: known,
close or far. A point is labelled known once its travel time has been calculated and it
cannot be changed. Points which neighbour known points, but which are not known them-
selves, form the narrowband and are labelled close. Although these points have travel times
attached to them, they may still be updated (only known points can be used to calculate
and update travel times for close points). Points which lie ahead of the narrowband (far
points) are assigned an infinite travel-time and do not inform the travel time calculations
at the close points. To initialize the method, all nodes are assigned an infinite travel time
and a far status, apart from the root node at the source of the wave, which is assigned a zero
travel time and close status. At each step, the close point which has the shortest travel time
is assigned known status, and its neighbour’s travel times are recalculated. The shape of the
narrowband as it progresses through the discretized domain, approximates the evolution
of the monotonically advancing wave front. By stepping through the grid in this way, the
narrowband of points is propagated through the grid until all of the points are assigned a
known staus. In the Anisotropic Multi-Stencil Fast MarchingMethod (AMSFMM) at each
close point (xi, yj), we select the known points which are connected to our point by one of
our four stencils as depicted in Figure 1. We solve the relevant quadratic equation along
each stencil subject to the criteria given by Equations (3)–(4). Then, the shortest travel time
over all of the stencils is selected to update our travel time at (xi, yj).

To demonstrate the improvement made by considering four stencils over only two sten-
cils in capturing the anisotropic behaviour of the media, wave propagation through a
single anisotropic crystal orientated by 20◦ wasmodelled. Since we are considering a single
homogeneous medium, evolution of the wave front should follow the shape of the inverse
of the slowness curve rotated by 20◦. Figure 2(a) demonstrates why the standard Higher



1702 K. M. M. TANT ET AL.

Figure 2. Contour plots of the travel time field (going from black to white as time increases) modelled
by a fast marching based method when (a) stencil S1 is used, (b) both S1 and S2 are used and (c) when
S1,S2,S3 and S4 are used (AMSFMM). The centre point marks the location of the source.

Accuracy Fast Marching Method cannot be used. By only considering movement in hori-
zontal and vertical directions, we obtain a wave front profile whichmoves with equal speed
along these axes and does not correctly capture the altered symmetries of the slowness
curve caused by the 20◦ rotation of the crystal. By allowing the wave to travel along S2 the
situation is improved and the result is shown in Figure 2(b). However, movement along the
shorter arms of stencil S1 still dominates and the rotation of the crystal is not captured. By
considering the additional stencils S3 and S4, the 20◦ rotation of the axes of symmetry of
the slowness curve is finally captured (see Figure 2(c)) and the wave propagation is slowest
in the 20◦ direction as expected (see [36]).

A more interesting example of the AMSFMM’s ability to estimate the travel time field
is shown in Figure 3. Here, a randomly generated Voronoi diagram was input into a finite
element software package (Onscale [38]). Each Voronoi cell was assigned an orientation
φi and, using the elastic constants of austenitic steel, the anisotropic wave propagation
through this random, locally anisotropic media was modelled. Thirty-two sources were
placed on the top boundary of the domain and a pressure wave (with centre frequency
1.5MHz) was sent into the material from each source in turn. The average time-variant,
normal stress was then measured at 32 points along the bottom edge of the domain to
simulate our receiving array [33]. These received waveforms were processed to extract the
first times of arrival of the wave front (measured as the time at which the receiver is first
subjected to a stress greater than 10−6Pa). These give the solid lines in Figure 3(b) for
the case where the pressure wave was activated at transmitters s = 5, 14, 28, as indicated
in Figure 3(a) along the top edge of the domain. The same map was then used within
the AMSFMM algorithm (with a grid size of �x = �y = 0.1mm which is comparable to
the 0.13mm element size employed within the FE simulation which is ultimately deter-
mined by the wavelength of the inspecting wave) to calculate the travel time to each point
in the domain. The first times of arrival at each receiver were then interpolated from the
grid points at depth 40mm from the sources. These are plotted by the dashed lines in
Figure 3(b) and good agreement between the two approaches is observed: not only are the
general trends captured but more local features are also well matched, such as the longer
travel times observed when transmitting on element 5 and receiving across the elements
located between 7 and 12mm along the x-axis. This is despite the fact that the times of
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Figure 3. Plot (a) showsa randomlygeneratedVoronoi tessellationwith 100 seeds anda randomassign-
ment of orientations. Plot (b) compares the travel times from each of the sources s = 5, 14, 28 (marked
by crosses on the top boundary) to all 32 receivers (placed at intervals of 2mm along the bottom of the
domain) through this geometry calculated using the finite element software (Onscale [38] – full line) and
the AMSFMM (dashed line).

arrival arising from the FE dataset are estimated at an arbitrarily chosen amplitude thresh-
old (see Section 2.1) and so have an associated error tolerance. In terms of computational
expense, for the parameters used in this scenario the AMSFMM implemented in Fortran
provided an O(102) speed up over the FE simulation (although note that this is only an
indicative value as this improvement is largely dependent on the hardware and software
used).

Having demonstrated the ability of the proposed numerical scheme to model the wave
travel times through locally anisotropic structures, we present a brief study of its conver-
gence. Using the same material model as presented in Figure 3, the travel times from a
single transmitter to each receiver were computed using the AMSFMM on a series of grids



1704 K. M. M. TANT ET AL.

Figure 4. Convergence of the absolute travel time error to the reference solution at three receivers,
r = 1, 21, 31 from source s = 12 (see Figure 3(a)). Here �h = 21−hmm, h = 1, . . . , 9, ‖eh‖ = ‖Th0 −
Tr0‖2, Tr0 is the reference time of flight vector and Th0 is the corresponding time of flight vector for each
grid size�h.

with decreasing spacing. As the travel times estimated using the FE simulation are subject
to some uncertainty, we compare our computed travel times,Th

0 , to a reference solution.T
r
0,

generated using the AMSFMM computed on a grid with spacing �x = �y = 1/512mm.
We denote the absolute error between the estimated travel times and the reference solution
by ‖eh‖ = ‖Th

0 − Tr
0‖2, where h is the level of discretization (the side lengths are equal to

�h = 21−hmm for h = 1, . . . ,9). Figure 4 plots the convergence of the travel times to the
reference solution at three different receivers, r = 1, 21, 31, when the wave is initiated at
source s = 12. It can be observed that ‖eh‖ converges linearly at an approximate rate of
1/2, which agrees with the convergence rates observed in [39] for the second-order FMM.

2.4. A probabilistic framework

The reversible-jump Markov chain Monte Carlo (rj-MCMC) method produces a poste-
rior distribution for transdimensional spaces (where the number of degrees of freedom
of the model is not fixed). The posterior probability density function is given by Bayes’
rule, p(m|T0) ∝ p(T0|m)p(m), where p(m) is the a priori probability of thematerial model
m and p(T0|m) is the likelihood that the observed time of flight data T0 arises from that
model. Since minimizing the misfit function is equivalent to maximizing the probabil-
ity of a Gaussian likelihood function, we can write p(T0|m) ∝ exp(−ψ/2), where ψ =
‖(Tm − T0)/σn‖2 is the least-squares misfit function between the observed and modelled
data, and σ 2

n is the variance of the noise present in the data which is discussed below. Fol-
lowing the approach taken in [23,40], we represent the prior probability density functions
for eachmodel parameter using uniformdistributions over predefined ranges, informed by
measured experimental parameters. Firstly, we allow the prior on the number of Voronoi
cells used to parametrize the material’s underlying structure, p(M), to be defined by a
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discrete uniform distribution given by

p(M) =
{
1/�M, if M ∈ M
0, otherwise,

where M = [Mmin,Mmin + 1, . . . ,Mmax − 1,Mmax], �M = Mmax − Mmin + 1 and the
boundsMmin,Mmax ∈ Z are chosen to reflect the wavelengths present in our system. The
distribution that the crystal orientationsφi ∈ 
 can be drawn from, can be altered to reflect
prior information on their distribution. However, to facilitate generalization to a wide class
of applications, and to ensure transparency (as choosing a prior distribution that is close
to the known material map would be advantageous to the reconstruction algorithm of
course), we assume here that they are uniformly distributed

p(φi) =
{
1/�φ, if φmin ≤ φi ≤ φmax

0, otherwise.

By the same reasoning, we assume independence of the neighbouring crystal orientations
and so we can write

p(
|M) =
M∏
i=1

p(φi).

Here, φi is measured in degrees and �φ = φmax − φmin + 1, where the bounds φmin = 0
and φmax = 90 are selected to reflect the symmetries of the slowness curve. Assuming that
the seed positioning has a uniform probability distribution, and that our M seeds must
haveM distinct locations (that is the seeds cannot lie on top of each other), we have

p(S|M) =
[ |I∗|!
M!(|I∗| − M)!

]−1

where |I∗| is the cardinality of our computational domain where the discretization is
determined by the numerical precision with which the seed co-ordinates are assigned.

Finally, an important consideration tomake when employing a transdimensional inver-
sion scheme is the parametrization of the data uncertainty, which encompasses errors
in data measurement and omission of complex physical phenomena from the forward
model [41]. In this work, we treat the uncertainty as a single unknown which aggregates
the aleatoric and epistemic uncertainties accumulated over each raypath. We allow the
algorithm to infer the uncertainty level present in the system by drawing values from a
uniform distribution over some predefined range,

p(σn) =
{
1/�σn, if σmin

n ≤ σn ≤ σmax
n

0, otherwise,

where�σn = σmax
n − σmin

n + 1 and we choose σmin
n = 0.01μs and σmax

n = 1μs (the aver-
age travel-times are around the order of 10μs). The level of uncertainty attributed to the
dataset has a direct impact on the complexity of the solution: by restricting the range too
much the algorithmwill attempt to overfit the data, increasing the complexity of themodel
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in order to minimize the data misfit, whilst permitting larger data uncertainties causes the
model space to become large and difficult to search efficiently. The reader is referred to [23]
for alternative and more in depth treatment of the noise parameter.

Given that we assume no prior knowledge of the covariance between the model param-
eters, we choose the partitioning of the spatial domain to be independent of the regional
crystal orientation assignment and system noise level. The full a priori probability den-
sity function can then be written as a product of the probability density functions of the
individual model parameters and so the a priori probability of a given modelm is

p(m) = p(M)p(
|M)p(S|M)p(σn) = M!(|I∗| − M)!
�M(�φ)M|I|!�σn ,

provided that the model parameters lie within their predefined ranges and is equal to 0
otherwise.

2.5. The reversible-JumpMarkov chainMonte Carlomethod

The reversible-jump Markov chain Monte Carlo method allows dimensional jumps in the
model space which can later be reversed [22]. The process possesses the Markov prop-
erty so that each perturbation of the model is dependent only on its current state and not
on its history. To begin, a parametrization of the material microstructurem is constructed
using a Voronoi tessellation. The initial number of cells is chosen arbitrarily and each cell is
assigned a crystal orientation φi drawn from a uniform distribution bounded by φmin and
φmax. For each pair of transmit-receive elements, the travel time field is modelled through-
out the locally anisotropic geometry using the AMSFMM (see Section 2.3), and the time
taken for the wave to propagate to each receiver is estimated. These travel times are com-
pared with the first time of arrival information as extracted from the observed dataset and
the posterior p(m|T0) for the initial model is calculated. The model is then perturbed to
create a new model m′. Large steps through the model space can alter the complexity of
the solution towards which the algorithm converges [42], and so to avoid this potential
problem the model parameters are perturbed independently to isolate their effects. Each
perturbation is made subject to a proposal distribution, which represents the conditional
probabilities of proposing a state m′ given m. In this work, the model can be perturbed
in one of five ways: a cell birth, death or move, a system noise change or a cell orienta-
tion change. Details of the proposals on the first four of these perturbations can be found
in [5]. The perturbation of the orientation φi in cell i is given by φ′

i = φi + Xσφ where
X ∼ N(0, 1) is a standard normal deviate with mean 0 and variance 1, and σφ is the stan-
dard deviation of the proposal distribution for orientation. Once a perturbation has been
made, the posterior p(m′|T0) is calculated. The probability that a perturbation is accepted
is subject to the Metropolis-Hastings criterion

p(accept) = min
(
1,
p(m′|T0)

p(m|T0)
× q(m|m′)

q(m′|m)
)
, (5)

where q(m′|m) is the proposal distribution; that is the probability of moving to model m′
from m (the ratio of the reverse step q(m|m′) to the forward step q(m′|m) is equal to one
if the perturbation is not transdimensional) [42]. If m′ is rejected, the model is discarded
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and the original modelm is perturbed again. If accepted, the modelm′ replaces the model
m and the process begins again.

Poor choices of standard deviations on the proposal distributions for the orientation,
noise and geometry perturbations will result in a slow exploration of the model space. In
our work, the proposal distributions are tuned until the acceptance rates lie somewhere
between 23% and 44%, as declared optimal in [43]. A delayed rejection scheme (where
secondary perturbations drawn from proposal distributions with smaller standard devia-
tions are made on the rejection of the initial perturbation) has also been implemented to
improve the efficiency of the model space search [44].

To generate a reliable estimate of the posterior, the model must be evaluated iteratively
throughout the model space. After the initial sampling period (the burn in period), the
Markov chain begins an importance sampling, favouring the higher likelihood regions of
the model space. Ideally, the algorithm would be terminated when the Markov chain has
converged: that is when the ensemble of models exhibits a density proportional to the pos-
terior probability distribution.However, there exists no reliablemethod for the detection of
convergence as it is effectively themeasure of howwell our estimate of the distribution rep-
resents the underlying, unknown stationary distribution of the Markov chain [45]. In this
work, to best assess convergence, the misfit and data noise are monitored throughout the
running of the algorithm to ensure that they are converging to values which align with our
expectations based on our prior knowledge of the residuals between an observed dataset
and a modelled dataset. Once we believe convergence has been achieved, the algorithm
is terminated and the Markov chain of accepted models is sampled at an interval of κ ,
where κ is the relaxation time of the randomwalk (the number of steps required before we
can expect to obtain a model that is considered independent of the last). In deterministic
optimization schemes, themodel with the smallestmisfit (the globalminimum)would typ-
ically be taken as the solution. Within the Bayesian framework, we consider the posterior
distribution as a whole and instead of examining a single model, analyse various moments
and characteristics of the distribution. To produce the mean image of the material map, we
project the sampled partition models into the spatial domain and average. Given the large
number of samples, when the Voronoi tessellations are stacked, the partitions overlap and
the resulting regional orientation map is effectively a continuous function of the plane. It
is also useful to study the median and maximum a posteriori (MAP) estimators at each
point in the spatial domain, particularly if our posterior distribution is skewed or multi-
modal. This framework also allows the study of the variance over the domain which can
be exploited for uncertainty quantification studies and probability of detection work.

3. Results

3.1. Reconstruction of a synthetic material

When many grains and orientations are present in a complex sample it can sometimes be
difficult to visually assess the likeness of the reconstructed map with the known material
geometry, particularly when we are primarily interested in the effective medium which
will provide sufficient correction for defect imaging but may not accurately represent the
structure well. Thus we will first examine the simplified case of a 20mm diameter disc
with assigned orientation of 45◦ embedded in a host material with 0◦ orientation (see
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Figure 5. Material map reconstructions for a simplistic synthetic geometry. Plot (a) shows the true
geometry input to the FE simulation to generate the observed time-of-flight matrx T0. Plot (b) is an arbi-
trarily selected sample from the posterior distribution. Images (c), (d), (e) and (f ) plot the mean, median,
maximumaposteriori and standard deviation of the posterior distribution at each point in space, respec-
tively. The observed data arose from a through-transmission phased array inspection of the geometry in
(a) with a transmitting array spanning the top of the domain and a recording array spanning the base of
the domain.

Figure 5(a)), to allow visual comparison between the two. This example demonstrates
that although we partition the domain using polygons, we can in fact reconstruct curved
boundaries.

To construct synthetic data for this example, a phased array inspection (in the through-
transmission format) was simulated in the finite element package Onscale [38] where the
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geometry was meshed with square elements with side lengths of approximately 260μm.
Absorbing boundary conditions were employed on the vertical edges of the domain to
ensure energywas not reflected back into the domain at these edges (we assume the domain
we are imaging forms only a subsection of a larger component). Free boundary conditions
were assigned to the top and bottom edges of the domain on which the arrays were placed.
A 1.5MHz sinusoidal pulse (giving rise to a wavelength of approximately λ = 3.8mm) was
used to excite the system which consisted of two 32 element phased arrays placed directly
opposite each other on either side of the rectangular component. The arrays had a pitch
(element spacing) of 2mm and the depth of the component was 40mm. It is important
to note that the Onscale software models many of the physical phenomena present in the
ultrasonic phased array inspection, for example mode conversion and diffraction, and it
has previously been validated against experimental data [33]. We treat these aspects of
the data as system noise. Coupled with the subjectivity involved in selecting the first time
of arrival from the simulated time-domain data, the levels of uncertainty present in the
simulated data imitate those present in experimentally collected data and so the addition
of synthetic noise is not required here. The resulting time-of-flight matrix T0 then serves
as the observed data for the rj-MCMC.

An arbitrary set of seeds S and orientations 
 drawn from uniform distributions were
used to construct the initial Voronoi diagram. The rj-MCMC algorithmwas run for 50,000
samples and assumed to be stationary after 10,000 samples. These initial 10,000 samples
were discarded (the so-caled burn in period) and the remaining models were sampled at
an interval of κ = 100; it is these sampled models from which our statistics are drawn.
Figure 5(b) depicts an arbitrary sample drawn from the posterior distribution, and it can
be observed that the algorithm is sampling from the correct area of the model space (that
is it resembles the known geometry). Taking the mean of the posterior distribution for this
case, we obtain themap shown in Figure 5(c).We can also study themedian of the posterior
distribution on orientation at each point in the domain (Figure 5(d)) and the maximum-
a-posteriori (MAP - Figure 5(e)). Interestingly, if we study the posterior distribution of
a point lying on the high uncertainty loop observed in the standard deviation map (as
marked by the cross in Figure 5(f)), a bimodal distribution is observed (data not shown
for brevity) which suggests that the problem is poorly constrained on the boundary of the
anomaly; the pixels here may lie in either of the two regions as the data are not sufficient
to discriminate. This can be viewed as a nonlinear measure of spatial resolution [24] and
also explains the midrange values present on the boundary of the anomaly (circa 20° in the
mean image (Figure 5(c))).

3.2. Simulated inspection of an austenitic weld

Moving now to a more realistic NDT scenario, FE simulations of the ultrasonic phased
array inspection of an austenitic weld were run in the software package Onscale [38] using
electron backscatter diffraction (EBSD) measurements taken from an austenitic weld (the
macrographic details of this weld structure can be found in [32]). These measurements
were processed to provide a coarse map of the weld microstructure, resulting in a sim-
plified representation of the weld microstructure [32,46]. This map was input into the FE
model and meshed with elements with dimension equal to λ/15 (where λ is the smallest
wavelength in the system). A 1.5MHz centre frequency was used and the minimum shear
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wave speed was assumed to be 3000 m s−1, giving way to a correlation length (between
the wavelength and grain structure) of around λ/8 [47] and an element size of approxi-
mately 133μm (this is below the Rayleigh scatterer limit and sufficient to model accurate
wave propagation [32]). As before, a through-transmission set up was chosen to allow easy
extraction of the first time of arrivals for each transmit-receive pair. This involved two 50
element arrays, with 2mm pitch, placed directly opposite each other on either side of the
weld. The resulting FMC dataset was processed to yield the time of flight matrix and this
was taken as the input for the rj-MCMC algorithm.

The rj-MCMC algorithm was run for 1,000,000 samples, and stationarity was assumed
after 250,000 samples which were discarded as the burn-in period. The remainder were
sampled at a rate of κ = 100 to ensure that the ensemblewas constructed from independent
samples. It is important to note here that included in the reconstruction domain are areas
of the isotropic stainless steel parent material with wave speed 5790m s−1 (the weld can
be imagined as a central V-shaped section of the rectangular domain sandwiched between
our two linear arrays). To produce optimal results, an approximation of the V-shaped weld
domain was assumed to be known a priori (in practice, the outline of the weld region can
often be seen on the surface of the sample and so it is not unrealistic to exploit this informa-
tion). The rj-MCMC was adapted so that if a Voronoi seed lay outside of the defined weld
region (marked by black solid lines in Figure 6(c)), its cell was treated as isotropic (that is
independent of incident wave direction) with wave speed 5790m s−1. Due to the dynamic
nature of the material partitioning, these weld outlines could be perturbed by the inver-
sion process to adapt to the time of flight data, allowing flexibility in how the algorithm
perceives the properties of areas such as the heat affected zone (HAZ) at the parent-weld
interface. Failing to consider the parent material’s isotropic nature negatively effected con-
vergence of the method as the model struggled to explain the behaviour of the wave in this
region.

Figures 6(a–d) depict maps of the mean, median, maximum a posteriori (MAP) and
standard deviation of the posterior distributions on effective orientation reconstructed by
the rj-MCMC at each point within the inspection domain. Note that the isotropic regions
which model the parent material are assigned 0◦ orientation here for the purposes of visu-
alization, but given that the slowness curve assigned to these regions is circular with a
constant velocity value of 5790m s−1, these orientations could be arbitrarily selected. These
isotropic regions can be seen very clearly in both the median and MAP reconstructions
(plots (b) and (c), respectively) and it is clear that the dynamic partitioning has caused
perturbations to the outline of the weld region as these differ between the two plots. This
effect is also manifested in the high standard deviation values in plot (d). Due to the fact
that crystals with rotation 0◦ behave like crystals with orientation 90◦ (this is reflected in
the cyclic colour scheme), the posterior distribution on orientation at some points is bi-
modal and this results in a poorly resolved estimation of the material map by the mean
since it averages across multiple modes. Consequently, we claim that the MAP estimator
better represents the underlying posterior distributions as it better preserves the disconti-
nuities between regions, and sowewill use this as the basis of the TFM+ imaging algorithm
in Section 3.2.2. Histograms depicting the posterior distributions of the orientation at four
points in the spatial domain (as marked A–D in Figure 6(c)) have been plotted in Figure 7
and this bimodal distribution can be observed in the posterior distributions at point A
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Figure 6. Effective orientation maps of the weld geometry reconstructed by the rj-MCMC. Plot (a)
depicts themeanof the posterior distribution at eachpoint of the spatial domain. Plots (b)–(d) depict the
median, MAP estimator and standard deviation respectively. The observed data arose from the through-
transmission phased array inspection of the weld geometry with a transmitting array spanning the top
of the domain and a recording array spanning the base of the domain.

(and to a much lesser extent at point D). Point B of Figure 6(c) lies on the boundary of
the weld region and the algorithm fails to fully resolve whether this lies in the weld region
or in the parent region and this manifests in a large number of samples which assign this
particular pixel 0◦ orientation (as is our practice for points outside the weld domain). This
is also reflected in the posterior distribution on material classification at this point (that is
whether it is anisotropic or isotropic – these two phase plots are omitted for brevity) which
also exhibits a bimodal distribution and hence a high level of uncertainty.

Recall that in this transdimensional approach, the number of cells M which partition
the spatial domain, is itself a parameter to be inverted, as is the level of aggregated noise
σn. The posterior probability density functions p(M|dobs) and p(σn|dobs) are shown in
Figure 8(a,b), respectively. Although the structure of the true model is complex, the natu-
ral parsimony of the Bayesian approach [42] results in a posterior on the number of cells
with a surprisingly low mean of 43 cells. This is likely to be due to the fact that the time
of flight data is insufficient to fully constrain the problem and capture the fluctuations on
orientation at the microstructural level, resulting in resolution of the anisotropic trends on
a macro-scale. The low variance PDF on noise lying within the expected range as shown
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Figure 7. The estimated posterior distributions on orientation at four distinct points in the map (as
depicted in Figure 6(c)) generated from the inversion of the simulated ultrasonic array data arising from
the inspection of the weld geometry.

Figure 8. The estimated posterior distributions on (a) the number of cellsM used to partition the spatial
domain and (b) the noise parameter σn, from the inversion of the simulated ultrasonic array data arising
from the inspection of the weld geometry.

in Figure 8(b) suggests that for this case it is enough to study the single aggregated noise
parameter σn and themore complex noise models as explored in [24] are not required here
(potentially due to the enhanced and even coverage afforded byNDE inspections compared
to that used within a seismology setting).

3.2.1. The total focussingmethod
To account for our reconstructed anisotropic grain map, we employ the AMSFMM to cre-
ate a new imaging technique; as it is a natural extension of the TFM we denote it TFM+.
Treating each transmitting element in turn as a source, a set ofN travel-time fields τ s(x, y),
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Figure 9. Image (a) arises from application of the standard TFM algorithm with a constant wave speed
cl = 5790m s−1 (that of the parent material) assumed throughout the domain. Image (b) is a close up
of a 30mm2 region centred on the known location of the flaw, plotted at the -6dB measurement thresh-
old. Image (c) depicts the results when the material orientation map reconstructed by the rj-MCMC in
Figure 6(c) is used in conjunction with the TFM+ imaging algorithm and image (d) is a close up of the
30mm2 region centred on the known location of the flaw. The black discs depict the actual size, shape
and location of the defect.

s = 1, . . .N, through the reconstructed material map are generated using the AMSFMM,
providing us with the travel-times to each pixel in the imaging domain from each source.
Since source-receiver reciprocity holds, these travel-time fields also represent the time
taken for the wave to travel from each pixel back to each receiver. To create an image of
our inspection domain, the reflectivity at each pixel is therefore given by

wi,j =
∣∣∣∣∣
N∑
s=1

N∑
r=1

As,r
(
τ s(xi, yj)+ τ r(xi, yj)

)∣∣∣∣∣ , (6)

where τ s(xi, yj) is the time taken for the wave to travel from source s to the pixel (xi, yj)
and, similarly, τ r(xi, yj) is the time taken for the wave to travel from the pixel (xi, yj) to the
receiver r.

3.2.2. Flaw reconstruction results
Here, the success of the reconstructed weldmap ismeasured via its use in conjunction with
theTFM+ algorithm in application to a one-sided (pulse-echo) inspection dataset inwhich
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a 3mm diameter void is located centrally, 33.8mm below the centre of the array. The flaw
reconstruction displayed in Figure 9(a) arises from application of the standard TFM to the
dataset where a constant wave speed of 5790m s−1 (that of the parent material) is assumed
throughout the domain and the plot is normalized with respect to its highest amplitude
and plotted over a dynamic range of 20 dB. A 30 × 30mm region centred on the known
location of the flaw is shown in Figure 9(b) and is plotted over a dynamic range of −6 dB
(the measurement threshold). Although the presence of a scatterer is clearly detected, the
energy is dispersed and does not lie within the known domain of the flaw as marked by
the black disc. The reconstruction of a locally anisotropic grain map of the weld via the
rj-MCMC algorithm (we use the MAP estimator – see Figure 6(c)) was used to provide
correction to the TFM imaging algorithm via Equation (6) (TFM+), and the results are
shown in Figure 9(c). Image (d) shows the area local to the flaw (again plotted at -6dB)
and we observe a significant improvement in the concentration of energy near the known
location of the scatterer compared to that shown in Figure 9(b). If we take the highest
amplitude point in image (b) as an indication of the flaw location, this is 6.8mm away
from the known centre of the flaw, compared to an error in placement of only 0.6mm
in image (d). Taking the flaw diameter to be the length of the region which lies above
the −6dB threshold (along the largest dimension), then the standard TFM gives rise to a
measurement of 6.2mm whilst the TFM+ reconstructs a scatterer with diameter 3.7mm.
It is worth noting that both the median and mean maps shown in Figure 6 gave rise to a
similar level of improvement when applied in conjunction with the TFM to this data set.
Although themeanmap appears to lack sufficient detail, it captures the overall global trend
and provides reasonable correction to thewaves skewed by the anisotropic behaviour of the
material.

4. Conclusions and discussion

A stochastic, transdimensional optimization approach for reconstructingmaps of spatially
varying crystal orientations in polycrystalline media from ultrasonic array measurements
has been put forward in this paper. An efficient forwardmodel for wave propagationwithin
complex, locally anisotropic media was presented and it was shown that this could provide
sufficiently good estimates of the travel times of longitudinal waves in this class ofmaterials.
It was then demonstrated that use of this model within the rj-MCMC inversion framework
could be successfully used to generate an approximation of the material map which in turn
could be exploited by a delay and sum style imaging algorithm (here, the TFM). In doing so,
improvements were achieved in flaw detection, flaw placement and flaw characterization.
In the case of a 3mm diameter void embedded centrally below the array at a depth of
33.8mm, a 6.2mm improvement in flaw placement and a 2.5mm improvement in flaw
measurement was achieved.

It must be noted that in its current form, this methodology does not allow us to draw
fair quantitative comparisons between the known material map and the reconstructed
map. There exist several reasons behind this. Firstly, the rj-MCMC reconstructs an effec-
tive medium, that is a representation of the material which will correct the travel times
of the propagating wave but may not accurately represent the microstructure of the weld
itself (in fact unphysical artefacts may enter the reconstruction, for example the presence
of crystals with 45 degree orientation at the bottom of the weld as in 6). The difference
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between this effective medium and the underlying microstructure used in the FE simula-
tion can be attributed in part tomodel simplifications (for example reducing the dimension
of the model space by only considering grain orientations which lie between 0◦ and 90◦),
and in part to the approximation of the weld as a transversely isotropic solid with the
associated simplification of considering crystal rotations in the xz plane only. This het-
erogeneous effective medium proves to be sufficient for the purposes of demonstrating
the methodology in this paper and the resulting flaw image improvement. However, if we
want to reconstruct an accurate representation of the crystalline structure itself (perhaps
for use at the manufacturing stage to monitor the texture of the weld), a more sophisti-
cated forward model within the inversion framework is required; the Eikonal equation,
with its basis in ray theory, only provides a good approximation of wave front propaga-
tion in the high-frequency regime, meaning it does not well model velocity variations
which occur on a scale smaller than the wavelength [48]. This can be seen in Figure 6,
where the reconstructions show variations in crystal orientation on a very coarse scale
(much greater than the millimetre order of the wavelength). To refine the resolution of the
reconstructed maps, more wave physics (diffraction for example [49]) must be included.
Additionally, the array pitch must be reduced to increase the coverage of the domain.
Of course, full aperture inspection (where transducers are placed over the entire bound-
ary, encircling the component) would also further constrain the problem and enhance
the resolution, however for NDT applications this is not often possible in practice due to
restrictions on surface access. In fact, even the through transmission acquisition geometry
presented in this paper will rarely be applicable in the field due to limited surface access
and the weld cap geometry. Consideration of a pitch catch inspection where both arrays
are mounted on wedges on the top surface of the weld is currently underway but a reduced
coverage of the weld by the ray paths means that this is a non-trivial extension. Further
to these practical constraints, addition of more sources and receivers is computationally
demanding.

Another consequence of the coarse resolution of the reconstructions obtained in this
work is that we are forced to ignore the sub-wavelength defect properties within the rj-
MCMC framework itself. Similar to the approach taken for including the isotropic parent
material, it would be possible to allow the Voronoi cells to adopt the material proper-
ties of air say, and thus allow the algorithm to invert the location and nature of any
embedded flaws. However, since we are interested primarily in sub-wavelength defects,
the time of flight data on which the method is applied lacks sufficient sensitivity to their
presence: currently, the delay in time of flight caused by a small flaw lies within the
noise level of the inversion method. Thus we require the subsequent application of the
TFM+ to exploit the full waveform data and successfully resolve the sub-wavelength
defects
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