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Abstract 

Many scientific and technological advances require the values of a set of parameters to be constrained 

or estimated using recorded data. Geophysical parameters usually describe a geological process, or 

the state of the Earth at a particular time. It is often possible to model data that would be recorded 

for particular parameter values using a computable and in general nonlinear function, where its 

inverse does not exist as a unique-valued mapping. The space of parameter values must then be 

explored to find values that are consistent with measured data. This may be achieved by sampling 

values at a sufficiently dense set of points in parameter space, evaluating the forward function for 

each sample, and testing their modelled data against the measured data. However, for many-

parameter (high-dimensional) systems, achieving sufficient sample density may be infeasible due to 

the ‘curse of dimensionality’ – the exponential increase in sampling required to achieve similar sample 

density in spaces of increasing dimensionality. This article shows that for each sample, significantly 

more information may be available than the forward function evaluation alone, due to symmetries 

and other properties of the physical system. Call this additional information the extension of a sample. 

In travel time tomographic imaging, the extension of every sample is shown to provide forward 

function values throughout continuous parameter semi-subspaces, almost for free. The 

dimensionality of these subspaces increases exponentially with the dimensionality of the problem, 

almost matching the rate of information increase required by the so-called curse of dimensionality. 

The use of extensions within physics-based sampling schemes may therefore contribute to increase 

the dimensionality of problems in which one can explore parameter space, solve inverse or inference 

problems, or provide distributed information about forward function values directly. 

  



Introduction 

In many fields of science and engineering, important processes or properties are described by 

mathematical parameters. Geophysical parameters usually describe geological processes for example 

in the study of geodynamics, or the state of the Earth at a particular time as in tomographic imaging. 

Advances are made by estimating the family of possible parameter values from recorded data, a 

process referred to as Geophysical inference.  

Say the values of parameters 𝒎 in parameter space 𝑀 must be estimated using recorded data 𝒅 in 

data space 𝐷. It is often the case that it is possible to estimate 𝒅 for any particular values of 𝒎 using 

some known, computable, in general nonlinear function 𝒇(𝒎), but the inverse function is unknown 

and does not exist as a unique-valued mapping. Since the goal is to estimate 𝒎 given values of 𝒅, 

inverse or inference theory must then be deployed. 

The most commonly used inverse methods involve linearising 𝒇(𝒎) around an initial estimate of the 

parameter values, solving the resulting inverse problem of estimating values of 𝒎 that best fit 

recorded data under that linearised (approximate) version of 𝒇, then re-linearising the function 

around the new parameter estimates and solving the newly linearised inverse problem. This process 

is iterated to convergence. Given parameterised uncertainty on data 𝒅, corresponding uncertainty in 

values of 𝒎 may be estimated using the gradients of 𝒇 linearised around the final parameter estimate 

(Tarantola 2005).  

While apparently computationally efficient, linearised methods may fail to converge towards the best-

fit solution when 𝒇 is nonlinear, and whether or not the best-fit solution has been found remains 

unknown. In addition, gradient-based uncertainty estimates only account for the linearised 

approximation to the physics and this is only valid near the solution found. As a result, in significantly 

nonlinear problems, both the minimum-misfit solution found, and corresponding linearised 

uncertainty estimates may be highly misleading as shown by Galetti et al. (2015) and Zhang et al. 

(2018). 

It is therefore increasingly common to solve inverse problems without linearization, using sampling-

based methods. These methods explore space 𝑀 by evaluating the consistency between parameter 

values 𝒎, recorded data 𝒅, and any other pertinent a priori (prior) information that is independent of 

the data, at a succession of points or samples of 𝑀. The samples may be chosen pseudo-randomly as 

in Monte Carlo methods (Gelfand & Smith 1990; Mosegaard & Tarantola 1995; Sambridge 1999; 

Malinverno 2002), from a deterministic set of values for each parameter as in grid-search methods 

(Lomax & Curtis 2001; Lomax et al., 2009), or using a variety of other algorithms such as particle 

swarms (Kennedy & Eberhart 2001), simulated annealing (Kirkpatrick et al., 1983), genetic algorithms 

(Goldberg 1989; Sambridge and Gallagher 1993) or variational methods (Zhang & Curtis 2020a,b). 

Several of these can be tuned either to converge around already-discovered models that are 

consistent with recorded data and prior information, or to explore space 𝑀 more broadly.  

In a third class of methods, samples can be distributed probabilistically to reflect to the state of 

knowledge prior to collecting any current data set. These so-called prior samples can then be used to 

train machine learning or other algorithms to solve inverse problems swiftly for any particular data 

set that may arise in future, and to provide fully nonlinear parameter uncertainty estimates (Devilee 

et al., 1999; Meier et al., 2007a,b; Maiti et al. 2007; Shahraeeni & Curtis 2011; Shahraeeni et al., 2012; 

Käufl et al., 2016; Karmakar et al., 2018; Nawaz & Curtis 2019; Earp and Curtis 2020; Earp et al., 2020). 

Key for these methods is the ability to sample the set of parameter values sufficiently densely to 

represent all possible true values by interpolation or regression through these samples. 



In all of the above sampling algorithms, the function 𝒇 is evaluated for each sample. These evaluations 

may be used to find a set of models that are consistent with measured data, or for more formal 

uncertainty analysis using Bayesian inference (Tarantola 2005). However, in all cases the principle 

holds that where the function value has not been evaluated, it remains unknown. If we wish to infer 

results from such explorations it is therefore important to have included samples that span all relevant 

parts of parameter space 𝑀 (those with a significant probability of representing the true state of 

nature) with reasonable sample density. This is problematic because a priori we do not know which 

parts of 𝑀 are relevant, so a key part of Geophysical inference is to explore 𝑀 with sampling that is 

sufficiently dense to discover high probability regions. 

The barriers to exploring space 𝑀 are almost always a combination of:  

(i) 𝑀 is too high-dimensional to be explored due to the ‘curse of dimensionality’ (Curtis & Lomax 

2001). 

(ii) Prior information is too weak to constrain parameters to a sufficiently small sub-volume of 𝑀. 

(iii) The cost of evaluating forward function 𝒇 for each sample is too high. 

The first barrier reflects the so-called curse of dimensionality, which states that the number of samples 

required to explore 𝑀 with a given sample density expands exponentially with the number of 

dimensions (Curtis & Lomax 2001). The second simply states that prior information is too weak to 

overcome the exponential expansion in computation required by the curse. If parameters are 

numerous and (i) and (ii) apply, then barrier (iii) is the least significant: one could reduce the cost of 

the forward evaluation almost to zero, and it would make little or no difference to our practical ability 

to explore high-dimensional problems by sampling. The curse of dimensionality is so extreme that 

without prior information to remove its exponential expansion, even storing dense sample sets on 

disk becomes impossible as the number of parameters gets large. Nevertheless, the third barrier 

remains important for low-dimensional problems as it indicates that even then the expense of 

computing the forward function may preclude sufficiently dense sampling.  

Any attempt to overcome these barriers using smarter algorithms must take into account the ‘No Free 

Lunch theorem’ (NFL). Loosely speaking, this states that any one optimisation algorithm performs no 

better than any other when averaged over all problems (Wolpert & McReady 1987). The proof of NFL 

covers a broad class of optimisation algorithms, and since the best sampling methods are those that 

select an ‘optimal’ set of samples according to some criterion, NFL also applies to sampling algorithms. 

NFL is important because it implies that more efficient sampling methods cannot even be conceived 

of in general: they can only be devised for limited and specific classes of problems. 

Standard sampling methods therefore often follow a pragmatic strategy. They are designed to 

increase efficiency by exploring 𝑀 only at a level of detail that is proportional to the probability of 

parameters being true. In Bayesian solutions, this consistency is embodied in a so-called posterior 

probability density function (pdf) constructed using Bayes rule, which combines prior information 

about parameters with information from the recorded data (shown below). A common sampling 

strategy is to attempt to select samples with sample-density proportionate to this pdf. This is called 

importance sampling, and for certain classes of problems it may be approximated using Markov chain 

Monte Carlo algorithms (Green 1995; Mosegaard & Tarantola 1995; Malinverno 2002; Bodin & 

Sambridge 2009; Fichtner et al., 2019) and variational methods (Liu & Wang 2016; Zhang & Curtis 

2020a,b), or achieved exactly using so-called exact sampling methods (Propp & Wilson 1996; Walker 

& Curtis 2014). 



With the exception of exact sampling methods, such algorithms only distribute their samples 

proportionally to the true posterior pdf in the limit of infinite samples. Indeed, their mathematical 

proofs assume that in the infinite limit they explore all parts of parameter space for which the 

posterior pdf is positive. Nevertheless, many importance sampling algorithms do not explore 

parameter space efficiently. Instead they tend to focus sampling iteratively on higher probability 

regions that have already been discovered by previous samples – indeed, this is often perceived as 

their strength. In practice therefore, importance sampling algorithms are approximate, use a limited 

number of samples, and explore in detail only the higher-probability regions of parameter space that 

happen to have been discovered using the existing set of samples. Any inferences made from a finite 

set of samples are thus potentially biased to an unknown extent because unexplored parts of 𝑀 that 

have non-zero posterior probability are not taken into account. 

If we are to believe conclusions reached using sampling methods, it is therefore important to reduce 

the computational power required to explore all relevant parts of 𝑀. This has been attempted 

previously by reducing the dimensionality of the problem to be solved (Douma et al., 1996; Grana et 

al., 2019), tightening a priori constraints on parameter values (Curtis & Wood 2004; Walker & Curtis, 

2014; Nawaz & Curtis 2019; Linde et al., 2015), developing more efficient forward computations 

(Rawlinson & Sambridge 2005; Nissen-Meyer et al., 2014; van Driel et al., 2015; Krischer et al., 2017), 

approximating the forward function with an emulator that can be explored more rapidly (Das et al., 

2018; Moseley et al., 2020), or improving predictions of where samples might usefully be located in 

unexplored parts of 𝑀 (e.g., Fichtner et al., 2019; Khoshkholgh et al., 2020). However, in all such 

studies the same principle holds: where the parameter space 𝑀 has not been sampled, the value of 𝒇 

is unknown.  

By contrast, the introduction of new analytical results has been shown to allow sampling to be avoided 

either partially or entirely in certain classes of spatially structured inverse problems (e.g., Nawaz & 

Curtis 2017, 2018). Many Geophysical problems are formulated in a spatial domain, and have 

additional underlying physical structure that tends to be ignored. The rest of this article therefore 

investigates the use of information about the structure of the physical forward function 𝒇 to improve 

sampling algorithms. 

Most of the algorithms cited above require that 𝒇 has properties of continuity or smoothness, but we 

may have far more knowledge about its structure. While attempts have been made to include physical 

symmetries in sampling methods, for example in Physics (Chuang Chen et al., 2018; Ji-Yao Chen et al., 

2018) and Genetics (e.g., Felsenstein 1981), that work is highly specialised to those fields and not easily 

transferable. This article shows how our understanding of the geophysics of problems to be solved 

may lead to highly efficient exploration of parameter space.  

Symmetries of a function 𝒇 are transformations of parameter values 𝑻(𝒎) that leave 𝒇(𝒎) 

unchanged, such that 𝒇(𝒎) = 𝒇[𝑻(𝒎)]. The existence of symmetries thus implies that more 

information is available from each sample 𝒎𝑖 than simply 𝒇(𝒎𝑖) (where 𝑖 indexes the sample 

number): we also know the value of 𝒇 evaluated at all possible values of 𝑻(𝒎𝑖). Let us call this extra 

information the extension of sample 𝒎𝑖, defined as all information about other forward function 

evaluations that is available from 𝒇(𝒎𝑖) without requiring any further evaluation of 𝒇.  

This article shows that while some types of sample extension are already used in Geophysical 

applications, using them directly for sampling and exploration problems can lead to radically different 

algorithms. Information in an extension depends on the particular physics of the problem, so 

constructing extensions-based sampling algorithms circumnavigates limitations imposed by the No 

Free Lunch theorem. 



We examine the example problem of finding maps of wave or particle speed that are consistent with 

measured travel time data. Extensions offer the possibility for extreme reductions in the number of 

samples required to explore parameter space to any desired level of detail compared to standard 

search methods. The most informative samples are found using a physics-based criterion which may 

eventually lead to methods that involve no random sampling at all. And importantly, as the number 

of parameters increases, information provided by these extensions increases approximately 

proportionately to the added volume of parameter space (i.e., exponentially). This suggests that it 

may be possible to explore parameter space despite the curse of dimensionality, at least in some 

specific classes of problems.  

Similar models, data and physics to the above example occur in diverse problems of acoustic, seismic 

and electromagnetic travel time tomography or in positioning and location problems, and in inversions 

for parameters controlling fluid flow given fluid break-through times. These occur in Geophysical 

applications, and in other fields of science and engineering. Sample extensions may therefore 

significantly expand the range of scenarios in which fully nonlinear uncertainty analysis can be applied. 

 

Inverse Problem Formulation 

Say we seek to constrain the values of a set of 𝑝 parameters described by vector 𝒎 ∈ 𝑀𝑃 where 

parameter space 𝑀𝑃 is defined by parameterisation 𝑃. These will be constrained using recorded data 

𝒅 in data space 𝐷𝑆 which is defined as the set of all possible measured values using survey or 

experimental design 𝑆. Variable 𝑃 defines how the mathematical model 𝒇(𝒎): 𝑀𝑃 → 𝐷𝑆 that relates 

parameters to data is parameterised since this is usually subject to choice; for example a spatial model 

might be represented within a variety of coordinate axis orientations and scalings, and may be 

parameterised using continuous basis functions of arbitrary resolution or approximated using 

different families of discrete cells. Variable 𝑆 defines data types, and how, where and when the data 

are measured, all of which may also be a matter of choice. 

It is common to use Bayes rule to solve such problems: 

 𝒫(𝒎|𝒅) =
𝒫(𝒅|𝒎) 𝒫(𝒎)

𝒫(𝒅)
 (1) 

In equation (1), 𝒫(𝒅|𝒎) is referred to as the likelihood and measures the extent to which parameter 

values 𝒎 are consistent with the measured data, and 𝒫(𝒎) is the prior pdf which defines the state of 

information about 𝒎 independent of information in the data. 𝒫(𝒎|𝒅) is called the posterior 

probability distribution function (pdf) and represents the final state of information about parameters 

𝒎 given the prior information and the data 𝒅, and is the solution to the overall inverse problem. 𝒫(𝒅) 

is called the evidence and is a measure of the consistency between data 𝒅, prior information about 

values 𝒎, and the mathematical model 𝒇(𝒎) that is used to relate the two within the likelihood.  

Notice that all terms in equation (1) depend on either the model or data parameterisations or both, 

and that such dependencies were dropped from notation. The full expression is 

 𝒫(𝒎|𝒅, 𝑃, 𝑆) =
𝒫(𝒅|𝒎, 𝑃, 𝑆) 𝒫(𝒎|𝑃)

𝒫(𝒅|𝑃, 𝑆)
 (2) 

The prior pdf does not depend on 𝑆 since under the Bayesian approach it represents information that 

exists independently of the current data set. We will use the notation in equation (1) but dependencies 

in equation (2) are implicit. 



It is often the case that data are assumed to be mutually independent, and to have a symmetric 

uncertainty depending on the distance from each measured datum under an ℎ-norm for some ℎ. In 

that case the likelihood term may be assumed to take the form (Tarantola 2005) 

 𝒫(𝒅|𝒎) = 𝑐1 exp ∑ ‖
𝑑𝑖 − 𝑓𝑖(𝒎)

𝜎𝑖
‖

ℎ

𝑞

𝑖=1
 (3) 

where 𝑑𝑖  is the 𝑖th of 𝑞 data in vector 𝒅, and 𝑐1 is a normalising constant which ensures that the right 

side of the equation defines a valid probability distribution (its integral over parameter space must be 

1). It is common to assume a squared norm (ℎ = 2) and Gaussian uncertainties with standard 

deviation 𝜎𝑖 on the 𝑖th datum, whence the likelihood becomes  

 𝒫(𝒅|𝒎) =  ((2𝜋)𝑛/2  ∏ 𝜎𝑖

𝑛

𝑖=1
)

−1

 exp (− ∑ (
𝑑𝑖 − 𝑓𝑖(𝒎)

𝜎𝑖
)

2𝑛

𝑖=1
) (4) 

The expression on the right can be rewritten ∏ (2𝜋𝜎𝑖
2)

−
1

2 exp [− (
𝑑𝑖−𝑓𝑖(𝒎) 

𝜎𝑖
)

2
]𝑛

𝑖=1  which is the product 

of likelihoods 𝒫(𝑑𝑖|𝒎) of the sub-problem involving the single datum 𝑑𝑖  given parameters 𝒎. We 

therefore obtain 𝒫(𝐝|𝐦) = ∏ 𝒫(𝑑𝑖|𝒎)𝑛
𝑖=1  and Bayes rule becomes  

 𝒫(𝒎|𝒅) =
𝒫(𝐦)

𝒫(𝐝)
   ∏ 𝒫(𝑑𝑖|𝒎)

𝑛

𝑖=1
 (5) 

We may also be able to assume that the evidence can be written as the product of pdf’s over the 

evidence in sub-problems involving individual data: e.g., for fixed model and data parameterisations 

the evidence is independent of parameter values 𝒎, and hence it is constant. It can then be divided 

between the various sub-problems, 

 𝒫(𝒎|𝒅) =  ∏
𝒫(𝐦)

𝒫(𝑑𝑖)
𝒫(𝑑𝑖|𝒎)

𝑛

𝑖=1
=  ∏ 𝒫(𝒎|𝑑𝑖)

𝑛

𝑖=1
 (6) 

where the latter equality is obtained by Bayes rule. Thus we see that the solution to the full Bayesian 

problem is the product of the posterior pdf’s of the set of 𝑛 Bayesian sub-problems, each involving 

constraints from a single datum. 

The expression for 𝒫(𝒎|𝒅) in equation (6) evaluates the pdf of any particular set of parameter values 

𝒎. Often we wish to estimate statistics of this pdf such as its mean 𝝁 or variance. This involves 

calculating integrals of the form ∫ 𝑚𝑖
𝑟𝒫(𝒎|𝒅) 𝑑𝒎

𝒎∈𝑀𝑃
 to obtain the 𝑟th moment of the 𝑖th parameter. 

In turn, this requires that we know 𝒫(𝒎|𝒅) over at least a representative set of samples 𝒎𝑖, and from 

equation (4) we see that this involves evaluating the forward function 𝒇(𝒎𝑖) for each 𝒎𝑖. For 

example, using equation (5) the mean of parameter 𝑖 is given by  

 �̅�𝑖 =
1

𝑃(𝒅)
 ((2𝜋)𝑛/2 ∏  𝜎𝑖

𝑛
𝑖=1 )

−1
∫ 𝑚𝑖 𝑃(𝒎) exp (− ∑ (

𝑑𝑖−𝑓𝑖(𝒎)

𝜎𝑖
)

2
𝑛
𝑖=1 ) 𝑑𝒎

𝒎∈𝑀𝑃
  (7) 

Even if we do not take a Bayesian approach to inversion, in order to estimate confidence intervals on 

parameters we must know 𝒇(𝒎𝑖) for each of a representative set of samples 𝒎𝑖. It is therefore 

necessary to explore 𝒇(𝒎𝑖) over parameter space 𝑃, and by equations (1) and (5) this exploration may 

be performed considering all data at once, or one datum at a time. 

Almost all standard Bayesian sampling methods to solve nonlinear inverse problems consider all of 

the data at once and explore the solution using equation (1). This follows from an assumption that the 

more data constraints placed on parameter vector 𝒎, the more limited will be high-likelihood areas 



of parameter space, hence the more tractable will become the sampling problem. Alternatively, one 

might choose to solve single-datum travel time tomography problems to obtain 𝒫(𝑑𝑖|𝒎): as shown 

below, extensions to single-datum problems may be easier to describe and evaluate, and may span 

large hyper sub-spaces of 𝑃. Single-datum solutions can then be combined using equation (5). 

 

Sample Extensions 

Define the 𝑖th sample of parameter space to be 𝒎𝑖 = [𝑚𝑖,1, … , 𝑚𝑖,𝑝] ∈ 𝑀𝑃 where 𝑚𝑖,𝑗 is the 𝑗th of 𝑝 

parameters of the mathematical model. For each sample we assume that the forward function 𝒇(𝒎𝑖) 

has been evaluated. The total state of information derived from the 𝑖th sample is then  

 {𝒎𝑖, 𝒇(𝒎𝑖; 𝑀𝑃 , 𝐷𝑆), 𝑋𝑖} (8) 

Here, 𝒇(𝒎𝑖, 𝑀𝑃 , 𝐷𝑆) is the forward function (noting explicitly that the model and data space affect the 

form of 𝒇), and 𝑋𝑖  represents the extension of sample 𝑖. The extension 𝑋𝑖  is defined to be all 

information about other forward function evaluations that is obtainable from {𝒎𝑖, 𝒇(𝒎𝑖, 𝑀𝑃 , 𝐷𝑆)} 

without performing further forward function evaluations. Extension 𝑋𝑖  is a set: it may contain 

information about the value of 𝒇 for parameter values other than 𝒎𝑖, or values of different forward 

functions �̂�(�̂�𝑖, �̂�, �̂�) which map samples �̂�𝑖 in space �̂� to space �̂�, where spaces �̂� and �̂� may 

differ from 𝑀𝑃 and 𝐷𝑆, respectively. By analogy, we define the second order sample extension 𝑋𝑖,𝑗 of 

samples 𝒎𝑖 and 𝒎𝑗   to be all information about other forward function evaluations that is obtainable 

from the set {𝒎𝑖, 𝒇𝑖(𝒎𝑖; 𝑀𝑃,𝑖, 𝐷𝑆,𝑖)  ;  𝒎𝑗, 𝒇𝑗(𝒎𝑗; 𝑀𝑃,𝑗, 𝐷𝑆,𝑗)} without performing further forward 

function evaluations. Again, either or both of model and data spaces (and hence the forward 

functions) might differ between parameter values 𝒎𝑖 and 𝒎𝑗, hence the additional subscripts 𝑖 and 𝑗 

throughout. Higher order extensions are defined analogously. In this article we refer to the first order 

sample extension simply as the extension of 𝒎𝑖, and to simplify notation the forward function 

𝒇(𝒎𝑖, 𝑀𝑃 , 𝐷𝑆) is denoted 𝒇(𝒎𝑖) except where we wish to focus on the parameter and data space 

dependencies. 

Symmetries 𝑻 always provide sample extensions. By definition, 𝒇(𝒎𝑖) = 𝒇[𝑻(𝒎𝑖)], so if 𝒇(𝒎𝑖) has 

already been evaluated then 𝒇[𝑻(𝒎𝑖)] is a member of the extension of 𝒎𝑖 that is available at the cost 

of evaluating 𝑻(𝒎𝑖). In linear problems, the particular set of symmetries for which the parameters 

best-fit recorded data are referred to as the null space and in theory can be found using matrix 

methods (Snieder & Trampert 2000). In nonlinear problems they must be found using sampling 

methods (Fichtner & Zunino 2018). Symmetries extend the concept of a nonlinear null space, as they 

provide information about parameters throughout 𝑀𝑃, irrespective of fit to a particular data set.  

In addition to those derived from symmetries, a variety of other types of extension may also be 

available. Extensions generally fall into four main types: function value, data space, parameter space 

and interpretational extensions of 𝒇(𝒎𝑖), defined as follows. 

Function Value Extensions:  These provide the values of 𝒇(𝒎) for parameter values other than 𝒎𝑖. 

Functional symmetries lead to function value extensions as explained above. Other types of 

information may also exist within these extensions, such as function values for numerical 

combinations of already-evaluated parameter values. 

Parameter Space Extensions:  These provide forward evaluations from spaces that differ from 𝑀𝑃. 

They typically arise by changing parameterisation 𝑃 in ways that affect the function value predictably. 

This may involve adding, removing or otherwise changing parameters. Parameter space extensions 



may be particularly useful in problems involving many sets of parameter values with different 

parameterisations, including model selection problems (Box & Draper 1987; Linde 2014), reversible-

jump Monte Carlo methods (Green 1995; Malinverno 2002; Bodin & Sambridge 2009) and 

interrogation problems (Arnold & Curtis 2018).  

Data Space Extensions:  These provide forward evaluations to spaces that differ from 𝐷𝑆. Data space 

extensions are already used in various contexts. They are particularly important for experimental 

design problems where we attempt to define an optimal suite of data types, locations and recording 

times (all defined by design 𝑆) in order to obtain particular target information (Curtis 2004; Maurer et 

al., 2010; Bloem et al., 2020). In these studies, the ability to test different designs without having to 

evaluate different functions 𝒇 increases efficiency.  

Interpretational Extensions:  These provide alternative interpretations of the same parameter, data 

or function values. They are important in a variety of settings, and such extensions may differ 

substantially in their nature.  

Extensions are particularly important when they can be evaluated at substantially lower cost than 

evaluating 𝒇. In such cases, extensions of previous samples might be used to guide more efficient 

future sampling strategies, or may answer questions of interest directly. The importance of each type 

of extension becomes clear when discussing tangible cases, so we now introduce a specific application 

that we follow through the rest of this article. 

 

Travel Time Tomography 
Travel time tomography is an inverse problem that uses the measured travel times of energy or 

particles travelling between source-receiver pairs, to infer the speed or slowness (the reciprocal of 

speed) of propagation across the spatial domain through which the energy travelled. The 

parameterisation consists of any means to define the slowness map across the domain, so the 

parameter space is the set of all parameter values that define a valid slowness map. The data space is 

the set of possible travel times between each source-receiver pair considered in the problem. One set 

of travel times is recorded experimentally, which constitutes the measured data. Prior information 

usually exists about physical parameters, and must be combined with information from the data to 

find the posterior uncertainty in the parameter values. The posterior pdf that describes this 

uncertainty is the solution to the inverse problem. 

 

Figure 1  (a) Map of slowness of wave propagation (colour) and ray (green) of first-arriving energy at receiver (triangle) from 
the source (star). (b) Corresponding map of time taken to travel from the source (star) to each grid cell (colours) and rays 
(black) to two of several receivers (triangles). 



A specific example is introduced in Figure 1. Figure 1a depicts a gridded (cellular) slowness structure 

of a 2-dimensional isotropic medium. This is referred to as a slowness map, and represents sample 𝒎𝑖 

where each element of vector 𝒎𝑖 is the slowness in one cell. A ray path between a source and receiver 

depicts the fastest route between the two points. For an isotropic source, this is the path taken by the 

first energy to arrive at the receiver, and we define its travel time to be 𝑑𝑖. The forward function in 

this case calculates 𝑑𝑖  given map 𝒎𝑖 and the source and receiver locations. It is now standard practice 

to calculate travel times by solving the eikonal equation across the grid using a fast marching method 

(e.g., Rawlinson & Sambridge 2005). This computation is the forward function 𝑑𝑖 = 𝑓(𝒎𝑖). If desired, 

rays can then be calculated by tracing the negative gradient of travel time from each receiver back to 

the source. 

Function Value Extensions 

We obtain a first example of a function value extension by invoking the physics of refracting rays. For 

easy reference, we define this extension using the following Lemma: 

Lemma 1:  Given travel times 𝒅 = 𝒇(𝒎) through slowness map 𝒎 ∈ 𝑀𝑃, the corresponding travel 

times 𝒇(𝜆𝒎) for map 𝜆𝒎 are given by 𝜆𝒅 for any positive scalar 𝜆. 

Proof:  Ray geometries are defined by angles of incidence and refraction at each cell boundary, 

which in turn are governed by Snell’s law: 𝑠1 cos 𝜃1 = 𝑠2 cos 𝜃2 where angles 𝜃1 and 𝜃2 and 

slownesses 𝑠1 and 𝑠2 are defined for one cell boundary in Figure 2a. If the slownesses are multiplied 

by positive scalar value 𝜆, Snell’s law remains identical: 𝜆 appears on both sides and cancels, so the 

ray path remains in its original position. The travel time of any packet of energy travelling along a 

ray is the length of path in each cell multiplied by the cell slowness, summed over all cells. Since 

the ray and hence these path lengths do not change, the travel time along the ray in slowness map 

𝜆𝒎 is the travel time in map 𝒎 multiplied by the same scalar 𝜆 (Figure 2b). End Proof. 

 

Figure 2  (a) Slownesses s1 and s2 in two cells leads to angles of incidence and refraction θ1 and θ2, respectively, measured 
from the cell boundary. (b) As for (a) but with slownesses multiplied by λ. 

Say we evaluate the travel time function 𝑑 = 𝑓(𝒎𝑖) for any slowness map 𝒎𝑖 to obtain a source-

receiver travel time 𝑑𝑖. By Lemma 1, we obtain the corresponding travel times at an infinite number 

of other slownesses 𝜆𝒎𝑖 essentially for free by using the relation 𝜆𝑑𝑖 = 𝑓(𝜆𝒎𝑖). All such models in 

the set {𝜆𝒎𝑖:  ∀𝜆 ∈ ℝ>0} are therefore in the extension of 𝒎𝑖, where ℝ>0 is the set of strictly positive 

real numbers. 

It is useful to visualise the extension of models in parameter space. Figure 3a plots a conceptual 

slowness map 𝒎𝑖 in a graph of its first three slowness parameters (labelled 𝑠1 to 𝑠3), and we evaluate 

𝑑𝑖 = 𝑓(𝒎𝑖). The extension {𝜆𝒎𝑖:  ∀𝜆 ∈ ℝ>0} is depicted by the red line in that figure, showing that 

we immediately know the function value at an infinite number of other models. A similar line, 

generally at different trajectories, exists in all parameter sub-spaces spanned by slownesses in 𝒎𝑖. 



 

 

Figure 3  Parameter space for 3 cells containing slownesses s1, s2 and s3. (a) Sample (circle) and extension (line). (b) & (c) 
Similar to (a) but extensions are planar (red) if cell 1 (b) or cell 2 (c) does not lie on the ray. (d) Extension is a solid volume 

(red) if neither cells 1 nor 2 lie on the ray. 

 

Function value extensions can also be derived using the following result: 

Lemma 2:  Let 𝒓1 be a vector that describes a shortest travel-time path between a fixed source and 

receiver, through a medium with slowness map 𝒎. Increasing the slowness in any part of 𝒎 that 

does not lie along ray 𝒓1does not alter the smallest travel time source-to-receiver path 𝒓1, nor the 

travel time 𝑡1 of the first-arriving energy at the receiver. 

Proof:  Consider any perturbation 𝒅𝒎 to parameter values 𝒎 such that 𝑑𝑚𝑖 ≥ 0  ∀𝑖, and 𝑑𝑚𝑗 = 0 

for cells 𝑗 intersected by ray 𝒓1. By definition of 𝒅𝒎 the travel time along path 𝒓1 does not change 

in map 𝒎 + 𝒅𝒎. Consider any second path 𝒓2  ≠  𝒓1 between the source and receiver. By 

definition of 𝒓1, energy travelling along path 𝒓2 in map 𝒎 has travel time 𝑡2 ≥ 𝑡1. And by definition, 

𝒅𝒎 cannot increase speed (decrease slowness) anywhere on path 𝒓2. Thus path 𝒓2 has travel time 

𝑡2 ≥ 𝑡1 in map 𝒎 + 𝒅𝒎. Thus path 𝒓1 remains a shortest travel time path, and the travel time 

remains 𝑡1.  End Proof. 

Lemma 2 defines symmetry 𝑻1(𝒎) = 𝒎 + 𝒅𝒎 with 𝒅𝒎 defined as above, since 𝒇(𝒎) = 𝒇[𝑻1(𝒎)]. 

This provides travel times for a family of other maps without further evaluation of 𝒇. The power of 

this symmetry can be observed by applying Lemma 2 to any of the models 𝜆𝒎𝑖 in the extensions of 

𝒎𝑖. Assume that cell 𝑘 in the model does not lie on the particular source-receiver ray path for which 

𝑓(𝒎𝑖) was evaluated. Lemma 2 states that slowness 𝑠𝑘 can be increased arbitrarily without changing 

travel time 𝑑𝑖. Thus we observe that if 𝒅𝒎𝑘 = [0, … , 0, 1, 0, … , 0] is the unit 𝑝-vector with 𝑘th 

element equal to 1, then the set of models {𝒎𝑖 + 𝜇𝒅𝒎𝑘:  ∀𝜇 ∈ ℝ>0} lies in the extension of 𝒎𝑖. Since 

there exists a similar extension to every model 𝜆𝒎𝑖 along the extension defining the line in Figure 3a, 



all models in the set {𝜆𝒎𝑖 + 𝜇𝒅𝒎𝑘:  ∀𝜆, 𝜇 ∈ ℝ>0} lie in the extension of 𝒎𝑖. This set is the plane 

shown in Figure 3b for the case in which cell 1 does not lie on the source-receiver ray, and in Figure 3c 

if cell 2 does not lie on the ray. If neither cell 1 nor cell 2 lie on the ray then every model in the extension 

in the 𝑠1 direction (Figure 3b) can also be extended in the 𝑠2 direction, so the solid wedge of models 

in Figure 3d also lies in the extension of 𝒎𝑖. Thus it is clear that if 𝑞 cells do not lie on the ray, there is 

an extension of the line {𝜆𝒎𝑖:  ∀𝜆 ∈ ℝ>0} into 𝑞 dimensions of parameter space; this creates a hyper-

wedge in 𝑞 + 1 dimensions of the 𝑝-dimensional parameter space 𝑀𝑃 within which the forward 

function values are obtainable given a single function evaluation for parameters 𝒎𝑖.  

 

Figure 4  Same map as in Figure 1(a), but highlighting 226 cells (outlined in yellow) that are not intersected by the ray. 

Figure 4 shows that for the slowness maps used in examples above, 226 cells do not lie on the source-

receiver ray. The extension of the model shown in the figure is therefore a solid hyper-wedge in 227 

dimensions. This example shows the power of sample extensions: a space of such dimensionality is 

impossible to search with Monte Carlo or grid search methods (having a sample density of only 2 

samples per dimension in 227 dimensional space requires that we evaluate the forward function 2227 

= 2x1068 times. This is currently infeasible on any computer for any forward function, either to evaluate 

the function or to store the results. Yet sample extensions make this information available almost for 

free anywhere inside the hyper-wedge, at the cost of a single forward model evaluation and tracing a 

ray. Clearly this extension type may be important when the goal is to explore the values of the function 

across parameter space 𝑀𝑃.  

Notice that the extension defined using Lemma 2 is exactly half of the null space that would be 

calculated using linearised methods if the recorded travel time was equal to the calculated value for 

any sample. Such methods define the set of linear combinations of slownesses that can be added to a 

particular solution 𝒎∗ of an inverse problem without affecting the data values predicted by the 

linearised forward function �̅�(𝒎 + 𝒅𝒎) = 𝒇(𝒎∗) + 𝒅𝒎𝑻[𝝏𝒇(𝒎∗) 𝝏𝒎⁄ ] where the 𝑙th row of the 

matrix in square brackets is [𝜕𝒇(𝒎∗) 𝜕𝑚𝑙⁄ ]𝑇 assuming column vectors. Standard practice is to 

evaluate singular values of the matrix of partial derivatives, identify parameter space singular vectors 

with associated singular values equal to zero, and define the linearised null space by adding any 

multiple of those vectors to the particular solution 𝒎∗. In the above example, some of these vectors 

would span all off-ray cells, and so the null space would define part of the extension of sample 𝒎∗ 

under the approximate function �̅�(𝒎). Unfortunately this function only approximates the true 

forward function if gradients 𝝏𝒇(𝒎) 𝝏𝒎⁄  are close to  𝝏𝒇(𝒎∗) 𝝏𝒎⁄  for all  𝒎. This is only guaranteed 

in the vicinity of 𝒎∗ for forward functions with smoothly varying first derivatives. Smoothness is not 



guaranteed if we decrease the slowness of cells that are not intersected by the ray. The fastest ray 

may then jump to a different location, changing first derivatives discontinuously. This explains why 

Lemma 2 restricts consideration to linearised null-space vectors that give positive perturbations to 

slownesses away from the ray: this guarantees that the ray remains constant, and that the 

corresponding extension exists for the true, nonlinear forward function 𝒇(𝒎).  

A similar type of extension exists for some cases where the data consists of recordings of waveforms 

of arriving wave energy. In waveform tomography, the recording of the first-arriving wave (rather than 

its travel time) may be used as data to invert for the slowness map. In that case the forward function 

involves either solving the wave equation to estimate wavefields between each source and receiver 

from which the first-arriving waves are extracted (e.g., Zhou et al., 2018), or estimation of first arriving 

waveforms directly (e.g., Lomax 1994; Snieder & Lomax 1996).  

It will usually be the case that slownesses across much of the map have no influence on the first 

arriving waveform, and for such cells we can invoke Lemma 2 to define similar extensions to those 

above. For a cell to have influence, energy must be able to travel from the source to that cell, and 

from that cell back to the receiver, before the end of the first arriving waveform. Say we evaluate two 

travel time calculations across the grid similar to that in Figure 1 (these are typically far cheaper than 

calculating waveforms): the first has a source at the true source location, the second has a source at 

the receiver location. These are sufficient to calculate the travel time along the fastest path from the 

source to any cell and then onward to the receiver. Any cell for which this total time is larger than that 

of the latest energy in the first arriving wave cannot affect that waveform. We may therefore increase 

the slowness in such cells without inducing a change in those waveforms, and all such perturbed 

slowness structures lie in the extension of the unperturbed model. 

Data Space Extensions 

Data space extensions are often available when the evaluation of 𝒇 at existing or proposed spatio-

temporal data-recording points and types defined by experimental design 𝑆, necessarily also produces 

synthetic data for other recording points and types. Such data do not lie in data space 𝐷𝑆, hence they 

extend sample information to other spaces. Function evaluations at these other data points and types 

are often obtained almost for free. 

A typical case occurs when evaluating 𝒇 requires a computer simulation of a physical process that 

evolves dynamically through space or time until it spans observation points in design 𝑆. The full 

simulation then also represents values of the underlying process at other space-time points, perhaps 

also for different data types, the set of which define an experimental design 𝑆′. These synthetic data 

would be members of a different data space 𝐷𝑆′ , and hence are values of a forward function 

�̂�(𝒎𝑖, 𝑀𝑃 , 𝐷𝑆′) where �̂�: 𝑀𝑃 → 𝐷𝑆′. Such information would be included in extension 𝑋𝑖  because it is 

available without requiring further forward evaluations – it merely requires that we store the dynamic 

evolution at other space-time points as we evaluate 𝒇. 

Figure 1 depicts a specific example. Figure 1a shows a slowness map 𝒎𝑖, and a ray path between a 

source and an existing receiver that depicts the fastest route between the two points. Say the travel 

time along that ray is 𝑑𝑖. Simulating 𝑑𝑖  using the fast-marching method constitutes forward function 

𝑑𝑖 = 𝑓(𝒎𝑖) and also provides travel times to every point on the grid (Figure 1b). So as a by-product 

of this calculation we obtain travel times to any other receiver location. Such travel times lie in a 

different data space, and hence in the data space extension. As another example, the derivatives of 𝒇 

in space can be calculated by applying finite-difference operators to the values of 𝒇 in Figure 1b. If 

spatial derivatives of travel times are measured, as for example in stereo slope tomography (Tavakoli  

F. et al., 2017), then this represents a change in data type and hence experimental design. All such 



information is included in the data-space extension of slowness 𝒎𝑖, and is available at low 

computational cost given the original calculation of 𝑓(𝒎𝑖). 

Parameter Space Extensions 

Common examples of parameter space extension are referred to as grid refinement, grid coarsening 

and effective medium theories. In all of these, a newly gridded parameterisation 𝑃′ produces a sample 

�̂�𝑖 from a new parameter space 𝑀𝑃′. This sample has known function value �̂�(�̂�𝑖) where �̂�: 𝑀𝑃′ →

𝐷𝑆, which is obtained without any additional function evaluations, and hence is in the parameter space 

extension.   

Say parameterisation 𝑃 defines a gridded model where each grid-cell represents a region that has 

certain parameterised properties as in Figure 1, and evaluation of 𝒇 requires a hypothesised physical 

process (here, travel time) to be simulated across this grid. Any grid cell may usually be replaced by a 

partition of smaller grid cells with properties that exactly match those of the original cell, without 

changing the value of 𝒇 since the old and new grids represent exactly the same distribution of 

properties in the underling physical space or process. This refined parameterisation increases the 

dimensionality of 𝑀𝑃, as depicted in Figure 5 for the same travel time calculation as in Figure 1.  

 

Figure 5  Same map as in Figure 1(a), but with one cell divided into a partition of four sub-cells (magnified on right). 

Grid coarsening (sometimes called up-scaling) is the opposite process, and may be applied for example 

where neighbouring cells contain identical properties, or affect the physical process as though they 

were a single cell with a single ‘effective’ property: such cells can be replaced by a single, larger cell 

containing the effective property without changing the evolution of the underlying physical process. 

For example, if all of the red cells in Figure 5 had the same slowness, any adjacent subset of them 

could be replaced by a single cell with the same slowness without changing either the ray path or the 

travel time of the wave travelling between the source and receiver. This change in parameterisation 

reduces the dimensionality of 𝑀𝑃. 



 

Figure 6 Top-left: same map as in Figure 1(a) with magnified portion shown top-right. Lower plots are similar but the 
magnified cells have had all of their slownesses replaced by their maximum value. 

Above we showed that Lemma 2 defines a symmetry 𝑻1(𝒎𝑖) that provides travel times for a family 

of other models of the same dimensionalities. In fact it does so also for models of different 

dimensionalities, found for example by combining cells, as depicted in Figure 6. The slowness map 𝒎𝑖 

shown in the upper left panel is the same as that in Figure 1. Four cells shown in the upper-right inset 

have differing slownesses, and none of those cells lie on the source-receiver ray path. Lemma 1 states 

that if we increase the slownesses of any such cells, the source-receiver travel time remains 

unchanged. This is illustrated in the lower plots where three cells have increased slowness to match 

the maximum of the original four slownesses. Since the four cells now have equal slowness they can 

be combined into a single cell as shown lower-right, and thus we obtain the slowness distribution in 

the lower-left panel. This has lower dimensionality 252 rather than the original 255, and the travel 

time for this model is known without further evaluations of 𝒇(𝒎𝑖), and is equal to that in map 𝒎𝑖. 

Any sets of neighbouring cells that do not lie on the ray path can be combined in a similar manner to 

provide models of significantly reduced dimensionality and with known travel time, all of which lie in 

the extension of the original sample 𝒎𝑖. 

The above are simple examples of effective medium theories. These essentially define symmetries 

across parameterisations of different spatial scales, and therefore also imply parameter space 

extensions. They are used to find properties of parameters at a coarser scale, which produce exactly 

the same data as media with (in general) different properties at finer scales. They exist not only for 

travel time data, but for data sets consisting of amplitudes, anisotropy, or even full seismic waveforms 

(Capdeville 2010; Capdeville & Cance 2015).  

Interpretational Extensions 

This type of extension involves no changes in parameter or data spaces, nor in the values of function 

𝒇, but extends the interpretation of the model, data or function values. This may be important in a 

variety of settings, between which such extensions may differ substantially in both nature and form.  



One philosophical example is that under certain conditions on parameter and data uncertainty 

distributions, it can be shown that a linearised inverse problem solution can be formulated that has 

exactly the same mathematical form under a Bayesian or non-Bayesian interpretation of the 

parameter-data system (e.g., Snieder & Trampert 2000, equations 44-48). Since numerical values of 

the data, and the mathematical operations are identical, the numerical values of parameters in the 

solution are identical. Solving the problem within either the Bayesian or the frequentist philosophy 

thus also provides the solution to the problem interpreted within the other philosophy, for free. 

Interpretational extensions of a different nature are often available from an evaluation of a forward 

function at one scale in a physical domain, or when the function is evaluated in dimensionless units. 

Extensions to any other scaling in the physical domain may then be represented by identical values in 

parameter space. For example, the scalar wave equation 
𝑑2𝑢

𝑑𝑥2 =
1

𝑐2

𝑑2𝑢

𝑑𝑡2  remains identical under the 

coupled transformations �̅� = 𝜆𝑥  , 𝑐̅ = 𝜆𝑐:  ∀𝜆 ∈ ℝ>0, where 𝑐(𝑥) is the local wave phase speed at 

location 𝑥. So, say the forward function involves solving the acoustic wave equation to predict 

recorded waveforms for speed map parameterised at one spatial scale (or in dimensionless form). 

Then exactly the same waveforms would be obtained in a spatial domain that is 𝜆 times as large with 

a speed map that is 𝜆 times as fast – and we obtain that solution for free through a simple 

reinterpretation of the original solution. Thus, the solutions to infinitely many other problems may be 

interpreted from a single forward calculation, and all of these alternative interpretations lie in its 

extension. 

 

Example: 3-parameter travel time tomography 

We now define a particular travel time tomography problem that has only three parameters so that 

parameter space, samples and extensions can be represented fully in three coordinate axes. Equation 

(5) shows that the Bayesian solution can be found provided that the likelihood can be integrated 

through parameter space, and equation (4) shows that this typically requires that the forward function 

is known across this space. So our goal here is to define the forward function 𝒇(𝒎𝑖)  at a dense set of 

points 𝒎𝑖 distributed throughout 𝑀𝑃. 

 

Figure 7  (a) Slowness map comprising 3 cells of constant slowness (lighter grey-shades are slower). Source and receiver 
locations are marked and the fastest ray is shown in green. (b) In parameter space the red sample corresponds to map in 

(a); blue line and green surface are extensions described in the main text. 



In this example, parameter vectors 𝒎𝑖 ∈ 𝑀𝑃 consist of three slowness values that define the full 

medium considered. Figure 7(a) shows a simple 3-cell model for the slowness structure around a 

source and receiver pair between which a first-arrival travel time is measured. The cells have laterally-

constant wave slowness (grey shade) and fixed geometry, leaving only the 3 cell slowness parameters 

(𝑚𝑘 = slowness in cell 𝑘; 𝑘 = 1,2,3) variable.  

The function 𝒇(𝒎) that predicts travel time data given a set of parameters 𝒎 comprises components 

  𝑓𝑗(𝒎) = ∫ 𝑠(𝒙, 𝒎𝑖) 𝑑𝒙
𝒙∈𝑅𝑗(𝒎)

 (9) 

Here, 𝑠(𝒙, 𝒎𝑖) is the slowness at location 𝒙 in the medium which is specified by parameters 𝒎𝑖, 𝑅𝑗 is 

the ray path between the 𝑗th source and receiver pair, and 𝑓𝑗 is the travel time along that path. While 

this integral looks linear provided that 𝑠 is linear in 𝒎𝑖, in fact 𝒇 is always nonlinear since ray 𝑅𝑗(𝒎𝑖) 

is the path along which energy takes least time to travel from source to receiver. This is also a function 

of the slowness distribution in the medium, hence ray 𝑅𝑗 also depends on parameters 𝒎𝑖, and the 

problem is nonlinear. 

The forward problem consists of calculating the travel time of the earliest arriving wave travelling 

between the source and receiver, in this case found by calculating the fastest ray path and integrating 

the slowness along its length. Figure 7(a) shows an example slowness structure and corresponding 

source-receiver ray path, for a particular parameter-space sample shown as a red spot in Figure 7(b). 

Lemma 1 showed that if the absolute magnitudes of the slownesses are scaled by any constant then 

the ray does not change, and the corresponding travel time is given by the same scaling. Hence all 

scaled structures lie in the extension of the sample, and these are represented by the blue line through 

the origin in Figure 7(b). 

The ray does not pass through cell 3. Lemma 2 proves that making cell 3 slower than its current value 

can not change the shortest travel time; hence, all parameter sets constructed from those within the 

blue extension by making cell 3 slower, are also in the extension of this sample. These are represented 

by the green slice in Figure 7(b). Thus, it can be seen that any slowness map 𝒎 that lies in a significant 

part of a 2-dimensional subspace now has known travel time. Given a measured datum, the likelihood 

in equation (5) is also directly calculable at every such map 𝒎, and this information is available given 

only a single forward function evaluation. 

Figure 8(a) shows 15 random samples {𝒎𝑖: 𝑖 = 1, … ,15} generated from a Uniform prior distribution 

in the range (0,1] in each slowness. An average of 2 samples per dimension would require 23 = 8 

samples, whereas 3 samples per dimension would require 33 = 27 samples, so 15 samples represents 

a density of between 2 and 3 samples per dimension. It can clearly be seen that much of parameter 

space has not been sampled: throughout the region of white space neither the forward function value 

(travel time) nor the likelihood is known, so we can not know whether or not we have sampled the 

high probability regions. 

Samples in this figure have been colour coded to represent the ray that gives the fastest path from 

source to receiver. If the ray passes through cells 1 and 2 similarly to that in Figure 7 the sample is 

green, if the ray goes directly from source to receiver within cell 1 the sample is blue, whereas if the 

ray goes through cells 1 and 3 the sample is red. Similarly to Figure 7, samples whose rays go through 

cells 1 and 2 have both absolute scaling extensions (Lemma 1), and extensions in the direction of larger 

slowness in cell 3 (Lemma 2), and these are represented for each sample by green semi-planes in 

Figure 8(b). The symmetric situation is where rays pass through cells 1 and 3 and hence have 

extensions towards increasing slowness in cell 2, represented by red semi-planes in Figure 8(b). Rays 



that only pass through cell 1 have extensions towards larger values of slowness in cells 2 or 3: this 

creates volumetric 3D pyramid-shaped extensions, which are represented in Figure 8(b) as sets of 

multi-coloured, closely spaced planes so that extensions of one sample that lies within the extension 

of another can also be seen. 

 

Figure 8  (a) 15 randomly selected samples plotted in parameter space. Green samples do not intersect cell 3; red samples 
do not intersect cell 2; blue samples pass only through cell 1. (b) Extensions corresponding to samples in (a). 

A comparison of Figure 8(a) and (b) illustrates why extensions are important. They provide continuous, 

volumetric information about both forward function and likelihood values, potentially across the full 

dimensionality of parameter space (the pyramid structures above is three dimensional), or across 

lower-dimensional sub-spaces. Without using extensions, sampling provides no continuous 

information across parameter space, leaving open the possibility that high probability regions lie 

between samples and so remain undetected. Of course, regions of parameter space remain 

unsampled in Figure 8(b), but these are dramatically reduced in volume compared to that in Figure 

8(a). 

Figure 8(b) also shows that extensions render some of the random samples entirely redundant – 

specifically those that lie within the extension of another sample. These can be seen as pyramids 

within the largest pyramidal extension in that figure. The latter pyramid spans around 1/6th of 

parameter space (and below it is shown that this could have been up to around 1/4), so a large 

proportion of forward model evaluations could be considered to be wasted if selected randomly 

without reference to extensions. Indeed, the situation might be significantly worsened had we 

deployed typical Markov chain Monte Carlo (McMC) sampling schemes: the strength of those methods 

is to focus future samples around previously discovered areas of high probability. If such a method 

discovers a high probability region within the largest pyramid, it would tend to focus future samples 

there too, with the possibility that much of this computation would be redundant.  

Figure 9(a) shows an alternative set of 13 non-random samples. These have been chosen in a 

systematic manner: six closely spaced pairs of red and green samples lie either side of a line (not 

plotted) rising diagonally in the 𝑚1 = 1 plane from the point (1,0,0), terminating in a single blue 

sample in the 𝑚3 = 1 plane. Their importance is apparent in Figure 8(b) which shows their extensions: 

parameter space is now relatively densely sampled, with known travel time values across regularly 

distributed portions of continuous subspaces in either 2 or 3 dimensions. There are no redundant 

samples (the origin and two coordinate axes appear to be repeated by several samples but are 



precluded on physical grounds since zero slowness is impossible), and the distribution of known travel 

times and hence likelihoods is far more informative in Figure 8 than in Figure 7a or 7b, despite using 

fewer samples.  

 

Figure 9  Similar to Figure 8 but for deterministically distributed samples. 

The samples in Figure 9 have the following characteristics. The central point between each pair of red 

and green samples describes a slowness map which exhibits multi-pathing along two fastest rays (let 

us call this double-pathing). In fact, any map that lies exactly on the line passing between the sample 

pairs has two rays that give the same shortest travel time between source and receiver – one path 

going through cell 2, the other through cell 3. Moving the sample even infinitesimally in the direction 

of increasing slowness in cell 2 ensures that the path through cell 3 becomes uniquely fastest, and vice 

versa, thus producing each pair of samples shown. It can therefore be understood that the red-green 

pairs of samples are merely for illustration, since their extensions are both given from the single 

double-pathed point that lies in between: that point produces both the red and green extensions. 

Using double-pathed samples instead of sample pairs reduces the total number of samples required 

to produce this set of extensions to 7 – fewer than 2 samples per dimension, and fewer than half the 

number used in Figure 8.  

The entire pyramid-shaped extension is generated by the single sample in blue. The sample has a 

straight ray between source and receiver within cell 1, and varying the absolute scaling of this sample 

produces the line between the sample and origin; the pyramid consists of all models that can be 

derived from those on that line by increasing the slowness in cells 2 or 3. 

The blue sample is clearly the most important from the point of view of exploring parameter space 

since its extension spans almost a quarter of the total volume. It is in fact the single point of triple-

pathing: rays could take either a direct path, a path through cell 2, or a path through cell 3 through 

the corresponding slowness map, and arrive at the receiver in the same shortest possible time. 

Graphically, if we were to place another pair of samples just to the left of the blue point they would 

have red and green 2D extensions similar to those of the other sample pairs, each 2D extension 

bounding the pyramid on one side. However, similarly to above, this implies that we only need the 

single, triple-pathed sample to define all three extensions: by increasing the slowness value of any two 

cells infinitesimally (such that the travel time through those cells increases by an infinitesimally small 

amount) we obtain the extension of the path that traverses the third.  



It is possible to reduce sampling further while also increasing information density if we invoke more 

physics about rays, and allow a certain degree of approximation. Fermat’s principle states that travel 

time varies to first order with changes in slowness, and to second order with changes in ray path. In 

other words, if we compare small changes in ray paths versus small changes in cell slowness along the 

ray, the latter have far greater effect on travel times. This is often used to justify linearising 

tomographic problems by fixing ray paths in their prior best estimate locations, and solving for 

slownesses along those rays that are consistent with data. By contrast, here we use Fermat’s theorem 

only to infer that travel time varies slowly with changes in ray geometry, compared to changes in 

slownesses, leading to a different linearization as follows. 

All sample pairs in Figure 9 describe maps with rays that pass through the same cells. However, rays 

in different sample pairs vary in their exact geometry. Provided ray paths do not change too much, 

Fermat’s theorem states that it is reasonable to interpolate the travel time between the top and 

bottom point pair. This implies that to within a certain approximation, the travel time of any double-

pathed slowness structure can be inferred from only two samples: the lower-left double-pathed 

sample (A in Figure 9), and the upper-right triple-pathed sample (B in Figure 9) since the latter is also 

double-pathed with similar rays. The approximate travel time of any intermediate sample is obtained 

by interpolation, and since Lemmas 1 and 2 apply to that sample, the approximate travel time 

throughout the entire continuous parameter space can then be estimated – in this case using only two 

samples. This is an example of a second-order (approximate) extension: information in the extension 

is obtained from pairs of samples rather than individual samples alone.  

Whether 2 samples are used to obtain approximate information about the forward function 

continuously throughout parameter space, or 7 samples are used to obtain exact information 

throughout the coloured regions in Figure 9 (which can be interpolated to every point in that space), 

reasonably dense information about 𝑓(𝒎) is now available throughout parameter space. Similar 

physical principles hold for any source and receiver geometry, so a similarly dense set of information 

could be obtained for each travel time datum providing information about 𝒇(𝒎). Equation (4) can 

therefore be evaluated to produce an estimate of the posterior pdf at all points in parameter space, 

allowing integrals of moments in equation (8) to be calculated efficiently. Thus we solve the 

tomographic inverse problem.  

 

Discussion  

In the absence of strong prior information, the curse of dimensionality indicates that to explore 

solutions to high-dimensional problems in a computationally tractable manner we must obtain far 

more information than simply probabilities of point samples. The additional information contributed 

by the extension of each sample depends on the physics of the problem at hand. In the examples 

above, the ratio of the dimensionality of extensions to the dimensionality of parameter space 

approaches 1 as the density of cells in slowness maps (hence the number of parameters) increases. 

This exponential increase in the volume of information provide]d by extensions almost matches the 

order of increase in volume that must be searched due to the curse of dimensionality. This indicates 

that physics-based sampling methods may be tractable in high-dimensional systems even with weak 

prior information, at least for some classes of problem. 

The results in the simple tomographic problem analysed above suggest that the information within a 

set of extensions is likely to be maximised using multi-pathed samples, for which the shortest source-

receiver travel time occurs along multiple rays simultaneously. This is also true in more general 



tomographic problems: for an 𝑛-pathed sample we need only increase the slowness anywhere along 

exactly 𝑛 − 1 of those rays in order to produce another sample for which (a) we know that the single 

remaining ray produces the first arrival, (b) we know its travel time, and hence (c) we know its 

extension. Systematically perturbing the slownesses on each subset of 𝑛 − 1 rays produces all 𝑛 

single-pathed extensions, so all such extensions are included in the extension of the original 𝑛-pathed 

sample. 

This implies that to use travel-time tomographic extensions efficiently we might develop a procedure 

to find multi-pathed slowness maps. For example, considering 𝑚 samples at a time that have 𝑚 

different rays, one could attempt to generate a single sample that produces the same first arrival time 

along a subset or all of the rays. For example, the bifocal design algorithms of Winterfors & Curtis 

(2008; 2012) focus on travel times from two samples at a time, and it is possible that a similar approach 

could be taken for the task above. The forward function of the original 𝑚 samples might then have to 

be evaluated, and these samples may have useful extensions in their own right. However, the single 

multi-pathed sample could contain additional information. For example, compare the combined 

extensions of any red and a green sample in Figure 7 with the single multipathed example lying 

between any sample pair in Figure 8: the latter produces both red and green extensions that are 

always larger than the former combination. 

 

Figure 10  Cartoon of a slowness map comprising slow (white) and fast (blue) cells. Two rays are shown (yellow) between a 
source (star) and receiver (triangle). 

A more systematic algorithm might generate multi-pathed slowness maps directly. Figure 10 shows a 

map that has two fast paths between the source and receiver. This map could be adjusted in a number 

of ways: given the travel time along a ray that follows the lower path, slownesses along the upper 

path can be directly assigned to match that travel time, thus generating a double-pathed model. 

Similarly a triple pathed model could be generated by suitably increasing the speed of cells that lie on 

the straight line between source and receiver. The rays can then also be shifted by decreasing the 

speed in blue cells and increasing the speed of their neighbours. All such maps will have high-

dimensional extensions in parameter space. This suggests that an algorithm might be conceived that 

systematically samples sets of multi-pathed rays; maps that embody those rays could be generated 

automatically.  



Given travel time data between multiple source-receiver pairs, generally different parameter values 

will produce multi-pathed slowness maps for each datum. This might suggest that one should develop 

sampling algorithms that focus on multiple data at a time. However, above it was shown that 

interpretational extensions often allow the forward evaluation for one source-receiver pair to be 

converted to a similar evaluation for another source-receiver pair, by a simple rescaling. If the system 

can also be rotated and translated in space without affecting the forward function, then the forward 

evaluation for any source-receiver pair also provides a related forward evaluation for all other such 

pairs. The entire system of extensions found for any one datum may therefore be applicable to all 

others, by rescaling, rotation and translation, so single-datum extensions may remain important even 

in multiple-data scenarios. 

The approximate extension proposed in the three parameter tomographic example demonstrates the 

increased efficiency with which information can be obtained. Not only are the number of samples 

required reduced to two, but the information obtained from their first and second order extensions 

spans all of parameter space continuously. While for the region outside of the pyramidal extension 

this information is approximate, it is nevertheless useful for estimating approximate moments of the 

posterior pdf using equation (8), or for identifying regions of parameter space that are more likely to 

provide good data fits and hence high posterior probabilities. As a result this information could be 

used to guide sampling algorithms that invoke proposal distributions for each new sample selected, 

such as McMC algorithms (Mosegaard & Tarantola 1995). Proposal distributions are used to select 

samples that are expected to have a good chance of fitting the data before their forward function has 

been evaluated, and improving proposal distributions has been shown to dramatically improve the 

performance of McMC (Khoshkholgh et al. 2020). While exact extensions provide posterior 

information directly, approximate extensions could guide McMC towards better areas to sample.  

McMC and other importance sampling algorithms are usually used for integration, for example to 

estimate the expected value of any function over a posterior pdf, including moments of that pdf as in 

equation (8). Sampling apparently redundant areas within previously discovered extensions may then 

have value: if samples are distributed according to the posterior pdf then integrals such as equation 

(8) can be evaluated by simply averaging values of that function over the set of samples (Mosegaard 

& Tarantola 1995). Such algorithms might be made significantly more efficient if instead of evaluating 

computationally intensive forward functions for every sample, they used known values from 

previously discovered extensions. Indeed, McMC integration could be deployed with no further 

function evaluations at all, by estimating likelihoods for each new sample by interpolating previously 

discovered likelihoods between the nearest neighbour extensions.  

The redundancy of samples chosen in Figure 8, the deterministic (non-random) nature of highly-

informative samples in Figure 9, and the method of selecting samples using Figure 10 all suggest that 

efficient sampling of parameter space for travel time tomography may require a departure from 

existing random sampling methods, and indeed that it might be achieved deterministically. However 

achieved, the arguments presented herein show that physics-based sampling algorithms avoid 

limitations that might otherwise be imposed by the No Free Lunch theorem, can be particularly 

efficient in terms of number of samples evaluated, may add continuous and widespread information 

throughout parameter subspaces for each sample evaluated, avoid redundancy that may be rife in 

randomly-selected samples, and crucially may provide information that grows exponentially with the 

number of dimensions. The latter property provides hope that sampling algorithms may in future be 

tractable even in high-dimensional problems.  
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