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S U M M A R Y
Seismic full-waveform inversion (FWI) can produce high-resolution images of the Earth’s
subsurface. Since full-waveform modelling is significantly nonlinear with respect to velocities,
Monte Carlo methods have been used to assess image uncertainties. However, because of the
high computational cost of Monte Carlo sampling methods, uncertainty assessment remains
intractable for larger data sets and 3-D applications. In this study, we propose a new method
called variational FWI, which uses Stein variational gradient descent to solve FWI problems.
We apply the method to a 2-D synthetic example and demonstrate that the method produces
accurate approximations to those obtained by Hamiltonian Monte Carlo. Since variational
inference solves the problem using optimization, the method can be applied to larger data sets
and 3-D applications by using stochastic optimization and distributed optimization.
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1 I N T RO D U C T I O N

Seismic full-waveform inversion (FWI) is a method that character-
izes properties of the Earth’s subsurface by exploiting information
throughout recorded seismic waveforms (Tarantola 1984; Gauthier
et al. 1986; Pratt 1999; Tromp et al. 2005). The method has been
used successfully from industrial scale (Prieux et al. 2013; Warner
et al. 2013), regional scale (Chen et al. 2007; Fichtner et al. 2009;
Tape et al. 2009) to global scale (French & Romanowicz 2014;
Bozdağ et al. 2016; Fichtner et al. 2018).

The FWI problem is often solved using optimization by minimiz-
ing a misfit function between observed and predicted seismograms.
Since the problem is highly nonlinear with multimodal objective
functions, a poor starting model can cause convergence to incorrect
solutions. Apart from finding an adequate starting model, numerous
misfit functions that can reduce multimodalities have been proposed
(Luo & Schuster 1991; Fichtner et al. 2008; Brossier et al. 2010;
Van Leeuwen & Mulder 2010; Bozdağ et al. 2011; Métivier et al.
2016). Nevertheless, although optimization has been used widely
in practical applications, the method cannot provide accurate un-
certainty estimations which makes it difficult to assess and interpret
the results of FWI.

Monte Carlo sampling methods provide a procedure to solve gen-
eral nonlinear problems and quantify uncertainties (Brooks et al.
2011). The methods have been applied to traveltime tomography
(Bodin & Sambridge 2009; Galetti et al. 2015; Zhang et al. 2018,
2019) and FWI (Ray et al. 2016; Biswas & Sen 2017; Ray et al.
2017; Gebraad et al. 2020). However, Monte Carlo sampling meth-
ods are computationally expensive and remain intractable for large
data sets due to the curse of dimensionality (Curtis & Lomax 2001).

To extend nonlinear uncertainty analysis to larger systems, Nawaz
& Curtis (2018, 2019) and Zhang & Curtis (2019) introduced varia-
tional inference methods to geophysics, and Zhang & Curtis (2019)
applied them to seismic traveltime tomography. By optimizing a
different formulation of the inverse problem, variational inference
methods can be more efficient than Monte Carlo sampling methods
(Bishop 2006; Blei et al. 2017), can be applied to larger systems
by using methods like stochastic optimization (Robbins & Monro
1951; Kubrusly & Gravier 1973) and distributed optimization, and
provide uncertainties in the form of marginal probability distribu-
tions on parameters (Nawaz & Curtis 2018, 2019; Zhang & Curtis
2019; Nawaz et al. 2020).

In this study, we apply variational inference methods to FWI,
which we refer as variational FWI (VFWI). Specifically we use
Stein variational gradient descent (SVGD) to solve FWI problems
because SVGD can produce accurate approximations to the results
of Monte Carlo sampling methods (Zhang & Curtis 2019). In section
2, we provide a brief overview of SVGD and FWI. In section 3, we
apply the method to a 2-D synthetic test and compare the results
with those obtained by Hamiltonian Monte Carlo (HMC). We then
provide a discussion about the possibility to apply the method to
larger systems and 3-D applications.

2 M E T H O D S

2.1 SVGD

Bayesian methods update a prior probability density function (pdf)
p(m) with new information from the data to produce a probability
distribution of model parameters post inversion, which is often
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Figure 1. The true model for Vp, Vs and density. The dashed black line indicates the study region within which parameters are inverted. Sources are located
at the bottom which are represented by beachballs and receivers are shown with black triangles.

called a posterior pdf, written as p(m|dobs). According to Bayes’
theorem,

p(m|dobs) = p(dobs|m)p(m)

p(dobs)
, (1)

where p(dobs|m) is the likelihood, which is the probability of ob-
serving data dobs if model m was true, and p(dobs) is a normalization
factor called the evidence. The likelihood function is often repre-
sented as the exponential of a misfit function L(dobs, m),

p(dobs|m) = 1

C
exp(−L(dobs, m)) (2)

where C is the normalization factor. This process is called Bayesian
inference.

Bayesian inference is often solved by using Markov chain Monte
Carlo (McMC) methods. However, due to the high computational
expense of Monte Carlo methods, they cannot easily be applied to
large dats sets that are often expensive to simulate given a set of
model parameters. Variational inference provides a different way to
solve Bayesian inference problems: the method seeks an optimal

approximation to the posterior pdf within a pre-defined family of
distributions by minimizing the Kullback–Leibler (KL) divergence
(Kullback & Leibler 1951) between the approximate probability
distribution and the posterior probability distribution (Blei et al.
2017). Since variational inference solves Bayesian inference prob-
lems using optimization, it can be more efficient than Monte Carlo
sampling methods (Blei et al. 2017; Zhang & Curtis 2019).

Stein variational gradient descent (SVGD) is one such algorithm
based on iterative incremental transforms of the prior pdf (Liu &
Wang 2016). In SVGD, a smooth transform T (m) = m + εφ(m)
is used, where m = [m1, ..., md ] and mi is the ith parameter, and
φ(m) = [φ1, ..., φd ] is a smooth vector function that describes the
perturbation direction and where ε is the magnitude of the per-
turbation. Say qT (m) is the transformed probability distribution of
the initial distribution q(m). The gradient of KL divergence with
respect to ε can be calculated as (Liu & Wang 2016)

∇εKL[qT ||p] |ε=0 = −Eq

[
trace

(
Apφ(m)

)]
(3)
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Figure 2. The mean (left) and standard deviation (right) for Vp, Vs and density obtained using SVGD.

where Ap is the Stein operator such that Apφ(m) =
∇mlogp(m)φ(m)T + ∇mφ(m). It has been found that the right-hand
expectation is maximized when

φ∗ = φ∗
q,p(m)/||φ∗

q,p(m)||Hd (4)

and

φ∗
q,p(m) = E{m′∼q}[Apk(m′, m)] (5)

where H d is a reproducing kernel Hilbert space and k(m′, m) is a
kernel function (see details in Liu & Wang 2016). The expectation
in eq. (5) can be calculated using a set of particles.

Given the above solution, SVGD minimizes the KL divergence
by iteratively applying the optimal transform φ∗ to the current ap-
proximate probability distribution represented by a set of particles,
and eventually converges to an approximation to the true posterior.
The method has been introduced to geophysics to solve 2-D seismic
traveltime tomographic problems by Zhang & Curtis (2019). In this
study we use SVGD to solve VFWI problems.

2.2 FWI

FWI uses full-waveform information to image the Earth’s subsur-
face. In this study, we solve a P–SV wave system along a 2-D verti-
cal cross-section of isotropic wave velocities and density. The wave
equation is solved by using a fourth-order variant of the staggered-
grid finite-difference scheme (Virieux 1986; Gebraad et al. 2020).
The gradients with respect to velocities and density are calculated

using the adjoint method (Tarantola 1988; Fichtner et al. 2006; Liu
& Tromp 2006; Plessix 2006) and are used to transform the pdf
in the SVGD algorithm. For the misfit function, we choose the L2

waveform difference:

L = 1

2

∑

i

(
dobs

i − di (m)

σi
)2 (6)

where i is the index of time samples and σ i is the standard deviation
of each data point. Since the L2 misfit is dominated by large ampli-
tude shear waves, it is probably more sensitive to shear velocities
than to P-wave velocities.

3 R E S U LT S

We apply the above method to a 2-D synthetic example identical to
that in Gebraad et al. (2020) who used a particularly efficient MC
method, so that the results can be fairly compared. Fig. 1 shows
the true model for Vp, Vs and density. Sources are located at the
bottom of the region and have random moment tensors. For source-
time function, we use a Ricker wavelet with dominant frequency of
50 Hz. Receivers are located at the depth of 10 m near the surface.
The data are simulated using the staggered-grid finite-difference
scheme over a 220 × 110 gridded discretization in space, within
which a 180 × 60 subgrid of cells has free parameters (region within
the dashed black box in Fig. 1).

To reduce the complexity of the inverse problem, we use strong
prior information as in Gebraad et al. (2020): Uniform distributions
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Figure 3. The mean (left) and standard deviation (right) for Vp, Vs and density obtained by Gebraad et al. (2020) using Hamiltonian Monte Carlo.

in the interval of 2000 ± 100 m s−1 for Vp, 800 ± 50 m s−1 for Vs
and 1500 ± 100 kg m−3 for density. For the noise level, we use a fixed
data variance of 1 μm2 as this variance produces a more accurate
model when using HMC (Gebraad et al. 2020). For SVGD, we use
600 particles that are initially generated from the prior probability
distribution. The particles are first transformed to an unconstrained
space as in Zhang & Curtis (2019) and updated using 600 iterations.
The final particles are transformed back to the original space and
are used to calculated mean and standard deviations.

Fig. 2 shows the mean and standard deviation models for Vp,
Vs and density obtained using SVGD. The mean model of Vs suc-
cessfully recovers the true model, whereas the mean model of Vp
provides a significantly different image to the true model. This
is probably because the waveforms are more sensitive to Vs than
to Vp, so that large-scale structure of Vp can be recovered. The
mean model of density shows similar features to the true model
near discontinuities, which is likely because waveforms are primar-
ily sensitive to density gradients. In comparison, the bottom high
density structure is not present in the result.

The standard deviation of Vs shows similar features to the ve-
locity structure. For example, the horizontal higher velocity layers
and the bottom high-velocity structure have smaller standard devia-
tions. There are higher standard deviations at the boundary of tilted
layers which have been observed previously in traveltime tomogra-
phy (Galetti et al. 2015; Zhang et al. 2018; Zhang & Curtis 2019).
This suggests that the location of velocity boundaries are not well
constrained. The standard deviation of Vp shows similar features

to the mean model, for example, high velocities are associated with
lower standard deviations. Similar to the results of shear velocity,
the standard deviations of density are lower at the horizontal lower
density layers and the boundary of the tilted layers has higher stan-
dard deviations. Due to the fact that waveforms are more sensitive
to density gradients, the bottom constant higher density structure is
not well constrained and has higher standard deviations.

To validate the method we compare the results with those obtained
using HMC (Fig. 3) by Gebraad et al. (2020). Overall the results
from HMC are very similar to those obtained using SVGD except
for slightly different magnitudes. Since the same solution is found
by completely different methods, it is likely to be the true solution to
the full-waveform Bayesian inference problem. Note that the results
from SVGD appear to be smoother than those from HMC, which
is probably caused by undersampling and lack of convergence of
HMC as noted by Gebraad et al. (2020).

4 D I S C U S S I O N

We first compare the computational cost of the two methods. SVGD
involves 600 × 600 = 360 000 forward and adjoint simulations,
whereas HMC involves approximately 130 000 forward and adjoint
simulations. While in this case it thus appears that HMC is more ef-
ficient than SVGD, in the above example HMC was conducted using
only one chain which had not fully converged (Gebraad et al. 2020).
Since in practice multiple chains are usually required to produce an
accurate result, HMC may need more computational cost. Also, in
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contrast to HMC, the simulations in SVGD can easily be parallelized
which could make the method more efficient in real time (Zhang
& Curtis 2019). A Markov chain cannot be easily parallelized due
to dependence between successive Markov samples (Neiswanger
et al. 2013). In practice, HMC often requires deliberate and tedious
tuning to achieve an efficient Markov chain (e.g. see discussions in
Gebraad et al. 2020) so HMC may incur a significantly higher com-
putational cost than that reported above, whereas SVGD requires
less effort to achieve an efficient algorithm by using available opti-
mization techniques, for example, ADAGRAD (Duchi et al. 2011;
Liu & Wang 2016). Note that instead of tuning HMC manually some
adaptive methods may also be used (Hoffman & Gelman 2014). To
give an overall idea about the computational cost of SVGD, the
above example takes about 6 d parallelized using 16 CPU cores.

Although in this study we applied the method to a simple 2-
D example with only seven sources, the method can possibly be
applied to larger data sets and to 3-D applications by using stochastic
optimization (Robbins & Monro 1951; Kubrusly & Gravier 1973)
and distributed optimization by dividing large data sets into random
minibatches. In comparison the same technique cannot easily be
applied to McMC methods since it breaks the reversibility property
of Markov chains which is required by most Monte Carlo methods.
It is nevertheless not entirely obvious how SVGD will perform on
real 3-D applications, so further work is required to compare the
efficiency of the methods in a range of practical applications.

In this study, we used a simple L2 misfit function which may
cause multimodality in the likelihood function. Although SVGD
can approximate arbitrary probability distributions, the absence of
local minima may improve the efficiency of convergence and require
fewer particles. Therefore in practice other misfit functions that mea-
sure similarity of waveforms may be used to reduce multimodality—
assuming that the definitions of those misfit functions are derived in
a Bayesian formulation from the forward function and noise statis-
tics (Luo & Schuster 1991; Fichtner et al. 2008; Brossier et al. 2010;
Van Leeuwen & Mulder 2010; Bozdağ et al. 2011; Métivier et al.
2016). In the example we used a fixed noise level from Gebraad
et al. (2020). In practice, the noise level may be estimated from the
data (Sambridge 2014; Ray et al. 2016) or estimated in the inver-
sion in a hierarchical way (Malinverno & Briggs 2004; Bodin et al.
2012; Ranganath et al. 2016; Zhang et al. 2018, 2019).

5 C O N C LU S I O N

In this study, we introduced a new method called VFWI that uses
SVGD to solve FWI problems and provide accurate uncertainty
estimation. We applied the method to a 2-D synthetic example
and compared the results with those obtained using HMC. The
results show that SVGD can produce accurate approximations to the
probabilistic results obtained by HMC. Although in the simple 2-D
example SVGD is less efficient than HMC, the method can easily be
parallelized and applied to larger data sets by taking advantage of
methods like stochastic optimization and distributed optimization.
This can make the method more efficient in practice, allowing it to
be applied to larger dats sets and 3-D applications.
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