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S U M M A R Y
Marchenko methods are a suite of geophysical techniques that convert seismograms of energy
created by surface sources and measured by surface receivers into seismograms that would
have been recorded by a virtual receiver at an arbitrary point inside the subsurface—an oper-
ation called redatuming. In principle these redatumed seismograms contain all contributions
from direct, primary (singly-reflected) and multiply-reflected waves that would have been
recorded by a real subsurface receiver, without requiring prior information about interfaces
that generated the reflections. The potential of these methods for seismic imaging and re-
datuming has been demonstrated extensively in previous literature, but only using 1-D and
2-D Marchenko methods. There remain aspects of the methods that are poorly understood
when applied in a 3-D world, so we investigate the application of Marchenko methods to
3-D data, subsurface structures and wavefields. We first show that for waves propagating in
three dimensions, Marchenko methods can be applied to seismic data collected using both
linear (so-called 2-D seismic) and areal (3-D seismic) acquisition arrays. However, for 2-D
acquisition arrays the Marchenko workflow requires additional dimensionality correction fac-
tors to obtain accurate solutions, even in a subsurface that only varies with depth. Without
these correction factors phase errors occur in redatumed Marchenko estimates; these errors
propagate through the Marchenko algorithm and create depth errors in the Marchenko images.
Furthermore, applying Marchenko methods to fully 3-D seismic wavefields recorded by linear
(2-D seismic) arrays that contain out-of-plane reflections deteriorates surface-to-subsurface
Green’s function estimates with spurious energy and resulting images are less accurate than
those created using ‘conventional’ imaging methods. The application of fully 3-D Marchenko
methods using data recorded on areal arrays solves both of the above problems, creating ac-
curately redatumed wavefields and images with reduced artefact contamination. However, it
appears that source–receiver spacing at most of λA/4 is required for accurate results using
existing Marchenko methods, where λA is the dominant wavelength and in many real 3-D
seismic acquisition scenarios this is impractical.

Key words: Controlled source seismology; Wave propagation; Wave scattering and diffrac-
tion.

1 I N T RO D U C T I O N

The aim of seismic imaging is to produce maps indicative of spa-
tial variations in properties of the Earth’s subsurface. Methods of
seismic imaging, such as Reverse Time Migration (RTM – Baysal
et al. 1983) typically use seismograms recorded on or near the
surface of the Earth and assume that seismic reflections observed
in these seismograms are singly-scattered, meaning that they have
reflected or diffracted only once from subsurface heterogeneities.
This assumption is imposed within such methods by the use of

a low-wavenumber, smoothly varying estimate of the subsurface
seismic velocity, to extrapolate surface seismic data into the subsur-
face. Extrapolating the injected source wavefield estimates what the
wavefield looked like before it scattered, and back-extrapolating the
wavefield recorded at the surface estimates the subsurface wave-
field after it scattered (both operations being called redatuming).
These wavefield are combined to form an image of any scatter-
ing heterogeneity that converted the source wavefield into the re-
ceiver wavefield. However, the extrapolated wavefields and hence
the images are generally in error since in reality some parts of the
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wavefield scattered multiple times from the omitted high
wavenumber velocity variations as they propagate through the
subsurface.

Marchenko methods overcome the single scattering assump-
tion by extrapolating wavefields into the subsurface including all
multiply-scattered waves, even when only a smoothly varying esti-
mate of the subsurface velocity structure is available (Broggini et al.
2012; Wapenaar et al. 2013). Images created using these wavefields
and a variety of imaging conditions exhibit a reduction in the arte-
facts that usually contaminate seismic images due to multiples (da
Costa Filho et al. 2015; da Costa Filho & Curtis 2016; Singh &
Snieder 2017).

Following the development of Marchenko methods (Marchenko
1955; Rose 2001; Broggini et al. 2012) their application was ini-
tially limited to synthetic acoustic seismic imaging and redatum-
ing problems without allowing for free-surface reflections (Wape-
naar et al. 2013). Further developments have extended Marchenko
methods to elastic media (da Costa Filho et al. 2014, 2015 Wape-
naar 2014) and to seismic data containing free surface multi-
ples (Singh et al. 2015, 2016). More recently Marchenko meth-
ods have been applied to real, reservoir scale, seismic data sets
(Ravasi et al. 2016; Jia et al. 2017; Staring et al. 2018) and
to real ultrasonic data (Cui et al. 2018a; da Costa Filho et al.
2018; Wapenaar et al. 2018). However, given the novelty of these
methods there are still aspects that are poorly understood. One of
these, and the focus of this paper, is the behaviour of Marchenko
methods when applied to 3-D seismic data, structures and
wavefields.

Marchenko methods are based on mathematical derivations by
Wapenaar et al. (2013) that all assume three spatial dimensions,
but only recently have Marchenko methods been applied to 3-D
seismic data (Lomas & Curtis 2017). The prospect of applying
Marchenko methods in three dimensions was discussed in ear-
lier work (Wapenaar et al. 2014), however concerns were raised
about the practicalities of the spatially dense acquisition geome-
tries that would be required for the input reflectivity. This is be-
cause similarly to seismic interferometry (Snieder 2004a; Curtis
et al. 2006) and RTM (Baysal et al. 1983), Marchenko methods
rely on destructive and constructive interference of seismograms
from neighbouring source and receivers in order to produce the
seismograms of interest. Recorded waveforms can only accurately
interact with adjacent signals if they are recorded with a source or
receiver spacing that is a fraction of the seismic wavelength (van
Manen et al. 2005, 2006; Wapenaar & Fokkema 2006), hence the
concern.

In this paper, we first show that Marchenko methods hold in three
dimensions when seismic data collected with sufficient boundary
coverage in both horizontal directions are available. However, given
issues with the practicality of acquiring such data we also assess
the performance of Marchenko methods on data acquired along
a linear surface seismic array above a 3-D Earth. We show that
simply subsampling the full areal 3-D wavefield along this line
and applying the same Marchenko methods produces a redatumed
wavefield that contains phase inconsistencies which produce depth
errors in subsurface images. These can be removed by the applica-
tion of correction factors within the Marchenko workflow to account
for inconsistencies in dimensionality. Finally, we demonstrate the
impact of out-of-plane reflections on Marchenko estimates using
data from linear seismic arrays. We show that these can be detri-
mental to the redatumed seismograms and the resulting images.
These errors do not exist when using seismic data from full areal
arrays.

2 M A RC H E N KO M E T H O D S

2.1 Theory

The theoretical foundations of Marchenko methods are the one-
way reciprocity theorems of the convolution and correlation type
for pressure-normalized wavefields (Wapenaar & Grimbergen 1996;
Wapenaar et al. 2014):
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Eqs (1) and (2) are the 3-D acoustic reciprocity theorems given in the
frequency domain. Two states are represented by A and B, and these
represent directionally decomposed (+/−) wavefields (p) travelling
through two different media (or subsurface models) chosen to be
those described in Fig. 1. These wavefields are decomposed to rep-
resent either the component propagating downwards (+) or upwards
(−) at the recording location, therefore no horizontally propagating
waves are accounted for within current Marchenko theory. Eqs (1)
and (2) describe the relationship between the measured wavefields
in these two different media. We define state A to be a so-called
focusing state, in which the wavefield injected at the surface would
focus to create a spatio-temporal impulse at location x′

i = (x ′, y′, i)
at time defined to be t = 0. Thereafter this impulsive energy will
diverge like a source placed at x′

i . In order for this to be possible
the medium is defined to be equal to the true Earth’s acoustic struc-
ture above, and to be reflection-free below the horizontal subsurface
boundary ∂Di ; this defines the so-called reference medium. State B
is the true medium within which the true Green’s functions between
the surface source–receiver array at locations x′′

0/x0 (on the hori-
zontal surface boundary ∂D0) and the subsurface point x′

i exist, and
these are ultimately the wavefields of interest. We define Green’s
functions (G) as the pressure recordings measured at a receiver loca-
tion due to the firing of a spatio-temporally impulsive source at t =
0: G therefore depends on source and receiver locations and on fre-
quency or time. Additionally, x0 represents an array of points with
a fixed depth coordinate z = 0 and a variable horizontal coordinate
at an array of locations which vary in both the first (x) and sec-
ond (y) horizontal dimension: x0 = {(x j , y j , 0) : j = 1, 2, . . . , N },
where N is the number of surface source–receiver positions. For the
implementation presented here x0 has to equal x′′

0 and x′
i represents

a point on the boundary ∂Di .
Given the relationships described in Fig. 1 we can assign values

to the wavefields of interest in eqs (1) and (2). In state B quantity
p+/−

B is a Green’s function created by a source at location x′′
0 and

measured on the boundary represented by the integral (∂D0/ i ). In
state A, quantity p+/−

A is a focusing function (denoted f+/− below).
We define a downgoing focusing function f+ as a set of signals that
when injected at a boundary as a source time function would collapse
to a singular peak in the pressure field at the focusing location; the
upgoing focusing function f− is the reflected component (in State A)
of the downing focusing function recorded at the injection surface.
In state A we define the focusing location as a point x′

i on the
boundary ∂Di . This focus is created by injecting a source time

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/1/296/5585391 by U

niversity of Edinburgh user on 09 June 2020



298 A. Lomas & A. Curtis

(a) (b)

Figure 1. A 3-D diagrammatic comparison of the differences between states A and B, described in eqs (1) and (2). Panel (a) shows state A (the reference
medium) which is equal to the true medium above constant depth boundary ∂Di , and is reflection free below ∂Di where xi is the focusing location and is a
point on the boundary ∂Di . Panel (b) is the true medium, which is identical to state A above the surface ∂Di but also includes the true medium heterogeneity
below this depth.

function at the boundary represented by the integral (∂D0/ i ). Hence
the values are defined as p+/−

A = f +/−(x0/xi , x′
i , ω) and p+/−

B =
G+/−(x0/xi , x′′

0, ω). We assume free-surface multiples have been
removed from the data so that the upper (ground surface) boundary
∂D0 is effectively absorbing. Furthermore, state A is reflection free
below the boundary ∂Di . These two conditions allow us to simplify
eqs (1) and (2) when we substitute in the wavefields defined above—
this is formally derived in appendix A of Wapenaar et al. (2014),
and fully expanded this gives:

G−(x, y, i ; x ′′, y′′, 0; ω) =
�
∂D0

[R(x ′′, y′′, 0; x, y, 0; ω)

× f +(x, y, 0; x, y, i ; ω)]dx dy

− f −(x ′′, y′′, 0; x, y, i ; ω) (3)

G+(x, y, i ; x ′′, y′′, 0; ω) = f +(x ′′, y′′, 0; x, y, i ; ω)∗

−
�
∂D0

[R(x ′′, y′′, 0; x, y, 0; ω)

f −(x, y, 0; x, y, i ; ω)∗]dx dy. (4)

Eqs (3) and (4) are the 3-D equivalent of eqs (11) and (12) pre-
sented by Wapenaar et al. (2014) (as well as most of the literature
on this topic), therefore for convenience we will revert back to
standard notation from this point forward, where xi = (x ′, y′, i),
x0 = (x, y, 0) and x′′

0 = (x ′′, y′′, 0). Eqs (3) and (4) define a rela-
tionship in three dimensions between the focusing functions (f) and
the Green’s functions (G) of interest. These are linked by the re-
flectivity (R) which is the vertical (z) particle velocity component
measured in the true medium and created by a volume injection rate
impulsive source, where both the sources and receivers are on the
boundary ∂D0 (Wapenaar & Fokkema 2006). Additionally this is
multiplied by a scaling factor of −2 and by reciprocity is equiva-
lent to the pressure recording but created by a vertical force source
(Thorbecke et al. 2017).

The aim of the Marchenko method is to calculate the Green’s
functions. However, the only known quantity in eqs (3) and (4) is

the measured reflectivity. Therefore, to solve for G+ and G− we re-
quire a method that enables an estimate of the focusing functions to
be obtained. An elegant algorithmic way to solve this problem is first
described by Slob et al. (2014) and Wapenaar et al. (2014), discus-
sions of the mathematical foundation of the algorithm are described
by van der Neut et al. (2015a), and an intuitive demonstration of
how this method works is given by van der Neut et al. (2015c),
Cui et al. (2018b) and Lomas & Curtis (2019). The algorithm is
an iterative procedure which requires as input both an estimate of
the reflectivity (R), and an estimate of the direct arrival between the
chosen virtual receiver (location xi ) and the surface sources (de-
noted Td). The algorithm is embodied within eqs (5)–(8), and upon
convergence the solutions for f+/− can be used as input to eqs (3)
and (4):
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∫
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× M+
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f +
n (x′′

0, x′
i , ω) ≈ Td (x′

i , x′′
0, ω)∗ + M+

n (x′′
0, x′

i , ω). (8)

In eq. (5), the complex conjugate (∗) of the estimated direct arrival
(Td) in the frequency domain (ω) is convolved with the reflectivity
(a multiplication in the frequency domain). The result is multiplied
by a window θ (x′′

0, x′
i , t) in the time domain which filters out data

that does not contribute to the focusing functions. The operator θ

is therefore defined as a transform from the frequency to the time
domain, a multiplication by window θ and then a transfer from the
time to the frequency domain. The time window component of this
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operation is defined as:

θ (x′′
0, x′

i , t) =
⎧⎨
⎩

0 t ≤ −td (x′′
0, x′

i )
1 −td (x′′

0, x′
i ) < t < td (x′′

0, x′
i )

0 t ≥ td (x′′
0, x′

i ),
(9)

where td is the traveltime between its two arguments (x′′
0 and x′

i ).
The initial estimate for f −

0 is then used to begin a procedure that
iterates eqs (6) and (7). These two equations are repeated for n
iterations, until convergence, upon which eq. (7) produces a value
for the upgoing focusing function f− and eq. (6) produces a value for
the coda (scattered component) of the downgoing focusing function
M+

n . The final step consists of solving for f +
n by summing Td and

M+
n (eq. 8).
Eqs (3)–(8) are the 3-D form of the 2-D equations implemented

in existing applications of the Marchenko method. The only differ-
ence between the two forms is the acquisition boundary which has
changed from a line in 2-D applications to a surface integral in 3-D
applications, and consequently an extra dimension is added to all
coordinates.

2.2 Dimensionality of seismic data

There are two main factors to consider when working with 3-D
rather than 2-D wavefields. The first is the difference between mea-
sured responses to waves propagating through 2-D and 3-D media.
The second is the data acquisition array, given that the Marchenko
method ideally needs full boundary coverage (to infinite offsets)
in both horizontal spatial dimensions to perform integrals in the
equations above.

First consider the measured seismic response for a wavefield
propagating through a lossless 3-D medium. In this case a source
signal will propagate outwards from the injection point in all di-
rections (x, y, z) distributing the initial energy over an increasingly
large wavefront as it propagates. This change in energy is a function
of the distance any packet of energy on the wavefield has travelled
r = |x′

i − x′′
0|. In three dimensions this energy change is propor-

tional to the surface area of a sphere, hence the amplitude change is
a function of 1/r (since amplitude is proportional to the square root
of the energy). In two dimensions the same intuition applies but
the energy is only distributed over a 2-D wavefront (x, z) so ampli-
tude change is instead a function of 1/

√
r . Furthermore, differences

in phase, and an additional frequency dependent difference in am-
plitude occur between two and three dimensions. These various
differences can be expressed mathematically within the expressions
for the 2-D and 3-D Green’s functions for a homogeneous medium
as (Snieder 2004b; Auer et al. 2013; Galetti et al. 2013):

G2D(r, k) ≈ 1

2
√

2πkr
exp

(
ikr + iπ

4

)
(10)

G3D(r, k) = 1

4πr
exp (ikr ) . (11)

Eqs (10) and (11) are expressed in the frequency domain. However,
for simplicity of notation we have expressed the solutions in terms
of angular wavenumber k, which is a function of angular frequency
(ω) and the velocity (c) of the medium (k = ω

c ). It is worth noting
that the 2-D Green’s function (G2D) given in eq. (10) is an approx-
imate solution which is valid in the far-field of the source. This
approximation only holds if the distance r is significantly greater
than the wavelength (r > λ).

Given the formula in eqs (10) and (11) we can calculate an
approximate function that transforms data from waves propagating

in a first dimensionality into the equivalent data that would have been
obtained if the waves had propagated in the other dimensionality:

G2D(r, k) ≈ G3D(r, k)

√
2πr

k
exp

(
iπ

4

)
(12)

G3D(r, k) ≈ G2D(r, k)

√
k

2πr
exp

(
− iπ

4

)
. (13)

Implementing the filters in eqs (12) and (13) is not straightforward
in variable velocity media because the ray path r is generally un-
known. Implementation is therefore often approximated (Auer et al.
2013) or r can be estimated using ray theory (Bleistein 1986). In
this paper this problem has been avoided by using a known con-
stant velocity medium but we acknowledge that in further work in
variable-velocity media a more robust algorithm will be required
and there will be errors associated with our implementation.

In Fig. 2, we have modelled wave propagation using staggered-
grid finite difference methods through a 2-D and a 3-D medium
(GTRUE). The measured responses for a set of source–receiver pairs
at an offset of 750 m are plotted in black in Figs 2(a) and (b). In this
example the injected wavelet is the temporal derivative of a 15 Hz
Ricker wavelet. Each of these two signals is then transformed to the
other dimensionality to test the accuracy of the transfer functions
given in eqs (12) and (13), with results given by the dashed red lines
in Figs 2(a) and (b).

Fig. 2 confirms, perhaps counter intuitively that the response to
a Ricker wavelet source in two dimensions is more complex than it
is in three dimensions, undergoing a phase shift which offsets the
zero-crossing from the predicted arrival time (marked by a black
cross). The comparisons after transferring between the two forms of
Green’s function are a good match even though this is not an exact
solution given the approximation made in eq. (10) and errors in the
finite difference wave propagation. These transforms will therefore
be used in the remainder of this paper. It is important to consider
these differences when implementing the Marchenko method in
three dimensions. All real data from seismic waveforms originates
from 3-D wave propagation, however it is very common for seismic
surveys to sample these wavefields only in two dimensions (e.g.
seismic streamers use approximately linear spatial arrays plus time).

3 E X P E R I M E N TA L S E T U P

The seismic data examples presented in this paper are based on
a synthetic data set, created by modelling acoustic seismic wave
propagation through a 3-D subsurface model. The model has vari-
able density but a constant velocity (3000 m s–1) in order to make
straight ray based interpretations of the various packets of energy.
It contains a 3-D trough structure, which varies in both the x and
y directions, and multiple horizontal planar layers (see Fig. 3). Al-
though this model is simple it was designed to optimize compute
times due to its symmetries about vertical planes, to easily separate
events observed in the seismic wavefield and to enable simple analy-
sis of the results, yet to contain sufficient 3-D structure to illuminate
features of interest.

The seismic data from each impulsive source at location x0 to all
receivers at locations x′′

0 are used as an approximation to the 3-D
reflectivity R(x′′

0, x0, t), measured using an areal grid of sources and
receivers on the model ground surface (z = 0). Sources and receivers
are colocated at 32 m intervals in both directions giving a total of
5922 locations (Fig. 3b). This spacing was chosen to reduce the
computational cost of Marchenko receiver redatuming but ensure
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(a) (b)

Figure 2. A comparison of the modelled responses following the injection of a 15Hz Ricker derivative wavelet inside a homogeneous medium (c = 3000 m s–1).
Panels (a) and (b) compare the signals that are measured at the receiver in two and three dimensions respectively in repose to a source of 750 m offset. A second
comparison in panels (a) and (b) show the modelled 3-D Green’s function converted to the equivalent 2-D Green’s function (panel a) and the modelled 2-D
Green’s function converted to the equivalent 3-D Green’s function (panel b).

Figure 3. The 3-D variable density, constant velocity (3000 m s–1) model
used to created synthetic seismic data. In panel (a) we compare two slices
through the model (x = 1004 m and y = 1000 m). The red sphere defines a
subsurface virtual receiver position xi at location at (1292 m, 1000 m, 600
m). Panels (b) and (c) show the areal and linear acquisition geometries used
in later sections of this paper: each dot is both a source and receiver location.
The linear arrays in panel (c) are at x = 1292 m and y = 1000 m.

accurate solutions were obtained. The source wavelet for the reflec-
tivity is a constant-amplitude frequency spectrum wavelet with a
bandwidth of 0−45 Hz, so designed to remove the need for source-
signature deconvolution that would otherwise be required in order to
estimate R, thus eliminating a potential source of error (Thorbecke
et al. 2017). A second 15 Hz Ricker derivative wavelet, is used to

calculate the direct arrival (eq. 5); as this is then convolved with the
reflectivity, which has a flat frequency spectrum, this is the ‘effec-
tive’ injected wavelet that will be contained within our Marchenko
Green’s function estimates and in this example this was modelled
to reduce errors in the estimated Green’s function. We produced
seismic data using the parameters described above, with each of
the 5922 source positions measured by all 5922 receivers—a total
of 35 070 084 seismic traces. Each of these traces has a recording
length of 2 s and a temporal sampling interval of 0.002 s. These
data form the reflectivity R used as input to the 3-D Marchenko
algorithm (eqs 3–8).

In the later sections of this paper we consider the implications
of subsampling the 3-D seismic data along spatially linear source
and receiver arrays shown in Fig. 3(c). The reflectivity for these
linear arrays are created by taking sources and receivers first with
a constant y co-ordinate (blue profile) and then a constant x co-
ordinate (red profile).

4 3 - D G R E E N ’ S F U N C T I O N
E S T I M AT I O N

We can use the seismic data set and the virtual receiver position
defined in Fig. 3 as input to the 3-D Marchenko algorithm defined
in eqs (3)–(8). First, five iterations of eqs (5)–(8) are used to estimate
the focusing functions f +

n and f −
n which are shown in Figs 4(a) and

(b), respectively. Then we solve for the directionally decomposed
Green’s functions G+/− using eqs (3) and (4) and sum the result
to obtain the full Green’s function G = G+ + G−. This result can
be compared to the true modelled Green’s function as displayed in
Fig. 4(d).

Qualitative analysis of Fig. 4 suggests a good match between the
true and estimated Green’s functions. A second test of the solu-
tion accuracy is given in Fig. 5(a) where we make a trace by trace
comparison of the calculated 3-D Marchenko estimate and the mod-
elled Green’s function (recorded along a 2-D profile). The results
demonstrate the applicability of Marchenko methods to 3-D wave-
fields and structures. There are some small discrepancies in Green’s
function components at far offsets due to the wavefields interacting
with the steeply dipping trough structure (see Fig. 3). The poorer
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Figure 4. 3-D focusing functions, common virtual receiver gathers estimated using the Marchenko method, and directly modelled Green’s functions. Panels
(a) and (b) respectively show the estimated solutions for the focusing functions f +

n and f −
n obtained from eqs (5) to (8). These functions are used to estimate

the Green’s functions G = G+ + G− where G+/− are estimated from eqs (3) and (4), and G is displayed in panel (c). This can be compared to the directly
modelled Green’s functions in panel (d).

estimation of these components is due to the limited source and re-
ceiver aperture of the seismic array (the errors increase as aperture
is decreased) and hence could be improved by including additional
sources and receivers beyond the extremities of the current experi-
ment. This limitation is not unique to this method and is also known
to cause inaccuracies in conventional imaging algorithms like
RTM.

A consideration for all implementations of Marchenko methods
is how to scale the amplitude of the reflectivity. Marchenko methods
will only iterate to accurate solutions when the amplitude of the true
reflectivity is known. This problem is often overcome in synthetic
experiments by using perfectly scaled wave propagation codes but
in our experiment, as is the case with real seismic (field) data,
the reflectivity is not scaled correctly. We therefore implement a
method for calculating a scaling factor (which is then multiplied
by the reflectivity) using the ‘j-curve’ analysis presented by van
der Neut et al. (2015b). This method provides a solution that can
be implemented regardless of the dimensionality of the seismic
data, and therefore reduces systematic and subjective errors in the
comparisons we make in the following sections.

5 G R E E N ’ S F U N C T I O N E S T I M AT I O N
W I T H A 2 - D - S E I S M I C P RO F I L E

5.1 In-plane reflections

All previous applications of Marchenko methods in geophysics (us-
ing both synthetic and real data) have used seismic data sets col-
lected along a spatially linear acquisition geometry. This is a reason-
able avenue of study as it is common to acquire seismic data along
a line of sources and receivers where only one of the horizontal
coordinates varies. However, with the exception of real data appli-
cations, these studies have also been limited to 2-D media. In this
section we investigate Marchenko solutions when the acquisition
geometry is linear but wave propagation is 3-D. The differences in
the measured seismic responses are of the type defined in eqs (10)
and (11) and illustrated in Fig. 2.

To test the impact of these differences we extract a linear-array
data subset from the areal survey measured over the 3-D model given
in Fig. 3(a), taken along the line y = 1000 m (see Fig. 3c). This
provides a reflectivity profile collected with a constant y coordinate
but with 3-D wave propagation and therefore 3-D Green’s functions.
This line was selected as it contains minimal out-of-plane reflections
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Figure 5. A comparison of the estimated Marchenko common receiver gathers (red) compared to the modelled receiver gathers (black). Panel (a) shows the
fully 3-D Marchenko estimate, panel (b) shows the 2-D Marchenko estimate for waves propagating in three-dimensions, and panel (c) shows the dimensionally
corrected 2-D Marchenko estimate. Panel (d) compares a single trace for each Marchenko estimate from source position (1292 m, 1000 m, 0 m). For display
purposes a time dependent gain has been applied to all panels.

(we discuss the implications of those in more detail in the following
section). We apply the 2-D equivalents of eqs (3)–(8) (Wapenaar
et al. 2014) to this subsampled data set to calculate an estimate of the
Green’s functions between the surface sources and the same virtual
receiver position as in the previous 3-D examples. We compare
the solutions for 2-D and 3-D Marchenko methods applied to 3-D
wavefields, as shown in Figs 5(b) and (a), respectively.

The results in Fig. 5(b) show calculation of the Green’s functions.
However the trace comparison highlights that there is a mismatch
in phase between some components of the calculated and true solu-
tions. This mismatch does not appear in the equivalent 3-D solution
given in Fig. 5(a). It can therefore be assumed that the errors ob-
served are due to the differences in acquisition geometries which
impose the constraint that the 2-D Marchenko methods can not in-
tegrate over the second horizontal spatial dimension. A solution to
overcome this problem is to apply a transform to the seismic data
measured along a linear array but propagating in three-dimensions,
to convert it into the 2-D equivalent data by implementing eq.
(12). This modified data set can then be used as input into the 2-D
Marchenko scheme and the result is then approximately equivalent
to one propagating in two dimensions. For purposes of comparing
it to the full 3-D solution it must therefore first be transferred back
into its 3-D equivalent using eq. (13). The final estimate is displayed
in Fig. 5(c).

Fig. 5(a) shows the fully 3-D result and can be viewed as a ref-
erence solution—the best result that can be achieved if 3-D seismic
data is available over a dense areal array. The result in Fig. 5(b)
uses a subsampled version of the 3-D data that is only recorded
along a linear-array, thus forcing 2-D Marchenko methods to be
applied which in turn produce a solution that contains phase er-
rors. If we calculate the l2-norm of the data misfit between the true
and Marchenko result for both the reference solution and the re-
sult in Fig. 5(b) it increases by 60 per cent in the latter case. If
we compare the l2-norm of the data misfit between the reference
solution and the dimensionally corrected result, shown in Fig. 5(c)
(which uses the same input data as Fig. 5b), there is only a 4 per
cent increase in the latter case. It is worth noting that the synthetic
model in Fig. 3 has a constant velocity, therefore the amplitude
versus offset variation is not as significant in Fig. 5 as it would
be if the subsurface had an equivalent variable velocity structure.
This means there is likely to be a larger mismatch in the gathers
shown in Fig. 5 when there are variations in subsurface velocity
(Mildner et al. 2019). Nevertheless, we have demonstrated how
to accurately retrieve Marchenko solutions with 3-D wavefields
when using 2-D seismic data: the data first needs to undergo di-
mensionality corrections. This method appears to be accurate in
the case that there are minimal out-of-plane reflections in the data
used.
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5.2 Out-of-plane reflections

A significant motivation to use seismic data from areal arrays is
their ability to discriminate reflections that occur outwith the ver-
tical plane beneath any linear array and thus allow us to map 3-D
geological structures accurately. In this section we investigate the
implications of seismic data containing out-of-plane reflections on
the solutions to the 2-D and 3-D Marchenko methods.

Consider a linear seismic array with a constant x coordinate of
1292 m (Fig. 3c) that is perpendicular to the line in the previous
section. We use this dimensionally corrected data as input to the
2-D Marchenko method with results displayed in Fig. 6(b). For
comparison we also use the data from the full areal array to construct
the same virtual receiver gather with results shown in Fig. 6(a).

The results in Fig. 6 show that with a linear array spanning only
part of the top boundary, the Marchenko method is not able to
process out-of-plane reflections correctly. The final virtual receiver
gather estimates are therefore inaccurate. However, when 3-D data
is used for the same reconstruction the results are accurate.

6 M U LT I D I M E N S I O NA L M A RC H E N KO
I M A G I N G

One of the reasons Marchenko methods are of particular interest to
Geophysicists is because of their applications in subsurface imag-
ing. The Marchenko Green’s functions estimates from eqs (3) and
(4) can be used to produce seismic images with reduced multiple
related contamination (Behura et al. 2014). Marchenko imaging
operates similarly to other imaging algorithms such as RTM, by
applying imaging conditions to the estimated subsurface wavefields
to identify where seismic waves reflect. In this paper, as an example
we use a cross-correlation imaging condition in which we calculate
the zero-lag correlation coefficient of the upgoing Green’s function
(G−) and the direct arrival estimate (Td) at every desired image
point x′

i to form the image I (Claerbout 1971; da Costa Filho et al.
2015):

I (x′
i ) =

∫
∂D0

dx′′
0

∫ ∞

−∞
[G−(x′

i , x′′
0, ω)Td (x′

i , x′′
0, ω)∗] dω. (14)

This imaging condition essentially measures the similarity of the
two input signals. We therefore rely on these two signals being
similar when and only when the virtual receiver (image point) is
on a subsurface interface, as would be the case if the downgoing
direct-wave in Td had caused the upgoing Green’s functions G−

by reflection. However, given that the data we are using is fre-
quency band-limited we expect reflectors to be identified within
approximately half a wavelength of the true subsurface interface
location. There are alternative imaging conditions that can be ap-
plied in Marchenko imaging which include deconvolution (Singh &
Snieder 2017), multidimensional deconvolution (van der Neut et al.
2011) and imaging conditions that combine Marchenko imaging
with reverse time migration at relatively little extra cost (da Costa
Filho & Curtis 2016). Eq. (14) was chosen here because it is robust,
cheap to compute, it has been shown to provide clean images in 2-D
applications, and hence is a common choice amongst practitioners.

Applying eq. (14) to the redatumed Green’s functions shown in
Figs 5 and 6 gives four Marchenko images shown in Fig. 7 each of
which is based on data taken from the same 3-D wavefields. The
results in Figs 7(b) and (c), which use the data from Fig. 3(b) and the
blue line from Fig. 3(c), respectively, identify all subsurface inter-
faces. The true locations of the interfaces are shown in Fig. 7(a). The
input data for all of these images has undergone no pre-processing to

remove internal multiples. Despite this there is limited evidence of
false reflectors due to peg-leg multiples, which would be observed
at ∼600 m if RTM was deployed for example. However, there are
differences between the images presented in Fig. 7. The first and
most significant is the error in interface depth imaging. To highlight
this effect we picked the peak amplitude (which corresponds to the
interface location) of the signal in each image and compare them
in Fig. 7(a). This shows that the phase errors observed in Fig. 5(b)
manifest themselves as depth errors of 16 m in the Marchenko image
presented in Fig. 7(c). We have already demonstrated the accuracy
of our dimensionality correction which would enable us to construct
results similar to Fig. 7(b) with 2-D data. In Fig. 7(a) we have iden-
tified the true location of the subsurface interface within a margin
of error of ±8 m, where the residual uncertainty corresponds to
the image point spacing. In Figs 7 e and f we image an area of the
subsurface perpendicular to the images in Figs 7(b) and (c) using
the data from Fig. 3(b) and the red line from Fig. 3(c). Again, using
the full 3-D seismic data we are able to obtain accurate images of
the subsurface. However, when using a 2-D linear array of seismic
data across the strike of the subsurface structure the resulting image
is inaccurate. This is to be expected given the observed primary
components of the wavefield originate from features out-of plane.

7 A C Q U I S I T I O N G E O M E T R I E S

A limitation of all Marchenko methods is the requirement for dense
source and receiver sampling along boundary ∂D0. This is particu-
larly problematic in three dimensions given that the densely sampled
area must span a surface rather than only a line. There is not a simple
solution to this issue because the method we have implemented de-
pends on constructive and destructive interference to calculate the
Marchenko Green’s functions; if traces required for either are miss-
ing due to limitations in the acquisition geometry then errors will
occur. Therefore, for application to more practical or cost-efficient
acquisition geometries an interpolation step may be required to den-
sify data sampled in space. However, it is not clear what impact this
would have on calculated Marchenko solutions as the interpolation
method would have to be able to recreate data at points where the
interference is critical. It could be that these issues are resolved
by alternative methods for implementing the Marchenko method.
Nevertheless this raises a further question: what spatial resolution
do Marchenko methods require to iterate to a solution?

In Fig. 8, we have queried the relationship between the accu-
racy of Marchenko solutions and variable source–receiver spac-
ing in a 2-D planar-layered medium (Fig. 8a). We have defined
a virtual receiver position in the subsurface of the model at point
x′

i = (1500, 1200), and calculated the Marchenko Green’s functions
(GMAR) to this point, comparing them with the modelled Green’s
functions (GTRUE). This comparison is made for a single trace be-
tween x′

i and a source position (1500,0) that is included within the
array x′′

0. Our measure of accuracy is defined as:

Accuracy = 1

||GMAR − GTRUE|| , (15)

where ||.|| denotes the l2-norm. The relationship between source–
receiver spacing and Marchenko estimate accuracy (eq. 15) is likely
to be dependent on both acquisition and subsurface properties. In
Fig. 8(b) we have tested the dependency on dominant apparent wave-
length (λA), which has been implemented by changing the dominant
frequency of the Ricker wavelet source. It is also likely that there is
a further dependency on structural dip in the subsurface, which we
have not considered in this experiment. The results in Fig. 8 confirm
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Figure 6. A comparison of two virtual receiver gathers constructed using Marchenko methods from seismic data recorded on a full areal array and a linear
array where the data contain out-of-plane reflections. Panel (a) shows the gather constructed using the full areal survey. Panel (b) shows the gather constructed
using only a seismic data subset from a linear array that contains out-of-plane reflections. In both panels the subsurface virtual receiver position is at (1292 m,
1000 m, 600 m) as shown in Fig. 3(a), and both the 2-D profile displayed and the data subset used in panel (b) have a constant x coordinate of 1292 m (Fig. 3c).
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Figure 7. Panel (a) shows a 2-D slice (y = 1000 m) taken from the 3-D
model in Fig. 3(a). Panel (b) is the 3-D Marchenko image created using the
areal survey shown in Fig. 3(b). Panel (c) is a 2-D Marchenko image created
using a seismic data set recorded on a linear array (the blue line in Fig. 3c)
without dimensionality corrections. The red line in panel (a) corresponds
to the peak amplitude in panel (b), likewise the black line corresponds to
the peak amplitude in panel (c). Panel (d) shows a second 2-D slice (x =
1000), perpendicular to the line shown in panel (a). Panel (e) shows the 3-D
Marchenko imaging result and panel (f) the 2-D Marchenko imaging result
using the data set recorded on a linear array (the red line in Fig. 3c).

there is a dependency on dominant apparent wavelength, and from
this graph we can extract an approximate empirical relationship for
the successful application of Marchenko redatuming:

�x0 �
λA

4
(16)

Typically for applications in seismic interferometry the Nyquist
criterion is used to define the spatial sampling required for signal
reconstruction (van Manen et al. 2006). However, the lowest fre-
quency components of the signal will have a negligible contribution
to the reconstructed signal, hence we have instead defined our em-
pirical relationship in terms of dominant frequency. The results in
Fig. 8 show that to retrieve accurate Marchenko solutions for the
wavelengths tested the required source–receiver spacing can vary
between maximum values of 19−38 m. Whilst this is only a 2-D
experiment, if similar relationships hold in three dimensions these
acquisition geometries are impractically dense. The solution going
forward is therefore either to use 2-D data sets where dense ac-
quisition geometries are possible, and as we have shown Green’s
functions using the Marchenko method can be accurately estimated.
However, in areas of structural complexity where 3-D surveys are
required, the iterative Marchenko method will require an interpo-
lation step; the accuracy and implementation of this part of the
workflow warrants further research.

8 D I S C U S S I O N

8.1 Out-of-plane reflections

Given that we are implementing Marchenko methods as an iterative
alogithm (as apposed to RTM which is not), this raises the ques-
tion: how do out of plane reflections cause errors in Marchenko
methods? The Marchenko method for Green’s functions estimation
presented in eqs (3)–(8) removes contamination due to multiples in
the overburden by ‘injecting’ downgoing focusing functions along
the top boundary ∂D0. These focusing functions are calculated using
the traveltime and amplitude relationships present in the measured
reflectivity (see van der Neut et al. 2015a). The 2-D Marchenko
method assumes that all components of the measured reflectivity
are caused by features in-plane. However, the out-of-plane events
still contribute to the formation of focusing functions and this means
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(a)

(b)

Figure 8. Fig. 10 A comparison of the accuracy of estimated Marchenko Green’s functions with variable source–receiver spacing. Panel (a) shows the variable
density constant velocity (1500 m s–1) subsurface model, with the virtual receiver x′

i , source array x′′
0 and the surface point (1500,0) from which the estimated

Green’s functions are calculated. Panel (b) compares the accuracy (eq. 15) of Marchenko estimates with increasing receiver spacings, these are shown to have
a dependence on apparent dominant wavelength (λA) which are represented by the variable colours.

that the focusing functions will not be consistent, so the signal ‘in-
jected’ at the surface will not accurately destructively interfere with
the internal multiples within the seismic data. Therefore, the fo-
cusing functions will either not completely account for the internal
multiples, or will add spurious multiples into the final result, both
of which would cause the focus at x′

i to be imperfect. This would
cause the Marchenko methods to produce inaccurate Green’s func-
tion estimates. To demonstrate this in Fig. 9 we compare the imaging
results from Fig. 7(f) with the image obtained using the initial es-
timates of the focusing functions, an imaging method equivalent to
RTM (da Costa Filho & Curtis 2016).

In Fig. 9 we have highlighted two features in the Marchenko im-
age (Fig. 9a) and the image produced using conventional methods
(Fig. 9b). The first is the presence of a ‘false’ subsurface reflector in-
dicated by the red arrow. This is present in both of the images which
suggests the out of plane-reflectors are disrupting the focus and
these events are not removed for the Green’s function estimation.
A second more concerning feature, highlighted by the blue arrow
in Fig. 9(b), is the increase in coherent noise in the Marchenko
imaging result. Again, this could be explained by the algorithm’s
inability to focus when out-of-plane reflections are included in the
input data, the focusing energy is instead misplaced and causes
additional artefacts to be superimposed on the resulting images.

(a) (b)

Figure 9. A comparison of (a) Marchenko imaging and (b) conventional
imaging results created using seismic data collected along a linear seismic
array (the red line in Fig. 3c). Highlighted by the red arrows in both images
is a ‘false reflector’ created by internal multiples in the input seismic data.
The blue arrows identifies artefects which are present only in the Marchenko
imaging result. For comparison purposes the true model is given in Fig. 7(d).
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Table 1. A comparison of the number of convolutions required for
Marchenko Green’s functions calculation with increasing dimensionality.
Column two provides a formula for the calculation count and column three
is an example based on the survey parameters used within this paper (Fig. 3b)
with n = 5.

Number of convolutions Example

1-D 2n + 3 13
2-D (2n + 3)(nx2) 1.41 × 105

3-D (2n + 3)(nx2 × ny2) 4.56 × 108

8.2 Computational cost

Consider first the differences in storage requirements for Marchenko
methods applied to 2-D and 3-D seismic data. There are three vari-
ables that impact the size of the seismic data set: the number of time
samples per trace (Nt), the number of sources (Ns) and the number
of receivers (Nr): the total number of time samples in a seismic
data set is: Nt × Ns × Nr. If we assume that the number of sources
is equal to the number of receivers (they are colocated) and that
the number of sources in the y direction is equal to the number of
sources in the x directions we can quantify the change in file size be-
tween two and three dimensions—this factor is N 2

s/r . For acquisition
setups even with relatively few sources and receivers this scaling
factor increases the data storage requirements by several orders of
magnitude. In practice this can be reduced through survey design
and data compression. This is a problem for implementation of any
imaging algorithm in three dimensions (e.g. RTM), however, for
the implementation of the Marchenko method defined in this paper
we require the full reflection response (from every source to every
receiver) to be convolved with the intermediate outputs (eqs 5–7)
multiple times to calculate the Green’s function for a single imaging
point. Therefore due to the large file size the 3-D Marchenko meth-
ods require shared memory machines and parallelized algorithms
to keep processing times reasonable.

It is also of interest to quantify how the number of calculations
required to implement Marchenko methods scales with increasing
dimensionality. The most computationally intensive parts of the
algorithm (in higher dimensions) are the convolution steps. There-
fore, in Table 1 we have calculated the number of convolutions
required for the implementation of Marchenko methods in 1-D, 2-
D and 3-D. Here n is the number of iterations, nx is the number
of sources–receivers in the x direction, and ny is the number of
sources–receivers in the y dimension. In Table 1 the number of con-
volutions 2n + 3 is the number of times in the Marchenko workflow
each input trace is convolved with each trace in the reflectivity. The
second component of this equation (e.g. nx2) is a function of the
size of the reflectivity which therefore varies between dimensions.
This term accounts for the number of convolutions between every
source and every receiver, so its value is the size of the data squared.
There are several orders of magnitude between the calculation count
required in different dimensionalities, and because of this in the ex-
amples conducted herein the run-time of the algorithm for a single
Green’s function estimate varies from fractions of a second in lower
dimensionalities to hours in higher dimensionalities.

9 C O N C LU S I O N

In this paper, we have shown that Marchenko methods can be ap-
plied to seismic data from areal arrays (so-called 3-D seismic data)
in order to image subsurface structures that are 3-D. However, if
only linear seismic acquisition arrays are used, the reflectivity must

first undergo amplitude and phase corrections to be consistent with
the 2-D Marchenko equations which must be applied. These cor-
rections result in significantly improved Green’s function estimates.
However, when out-of-plane reflections occur in the subsurface, 2-
D Marchenko methods are unable to estimate Green’s functions
accurately. This is because the accuracy of the focusing functions is
reduced so the advantages of the Marchenko method are compro-
mised and the resulting images are less accurate than those produced
using standard imaging methods. The minimum density of arrays
required to implement the Marchenko methods is a receiver spacing
of approximately λA/4 where λA is the dominant wavelength. This
represents an impractical constraint in many real acquisition scenar-
ios. Future work will require careful consideration of the mode of
implementation and the associated computational costs of applying
Marchenko methods in three dimensions.
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