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S U M M A R Y
Surface wave tomography uses measured dispersion properties of surface waves to infer the
spatial distribution of subsurface properties such as shear wave velocities. These properties can
be estimated vertically below any geographical location at which surface wave dispersion data
are available. As the inversion is significantly non-linear, Monte Carlo methods are often used to
invert dispersion curves for shear wave velocity profiles with depth to give a probabilistic solu-
tion. Such methods provide uncertainty information but are computationally expensive. Neural
network (NN) based inversion provides a more efficient way to obtain probabilistic solutions
when those solutions are required beneath many geographical locations. Unlike Monte Carlo
methods, once a network has been trained it can be applied rapidly to perform any number of
inversions. We train a class of NNs called mixture density networks (MDNs), to invert disper-
sion curves for shear wave velocity models and their non-linearized uncertainty. MDNs are able
to produce fully probabilistic solutions in the form of weighted sums of multivariate analytic
kernels such as Gaussians, and we show that including data uncertainties as additional inputs
to the MDN gives substantially more reliable velocity estimates when data contains significant
noise. The networks were applied to data from the Grane field in the Norwegian North sea to
produce shear wave velocity maps at several depth levels. Post-training we obtained probabilis-
tic velocity profiles with depth beneath 26 772 locations to produce a 3-D velocity model in
21 s on a standard desktop computer. This method is therefore ideally suited for rapid, repeated
3-D subsurface imaging and monitoring.
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1 I N T RO D U C T I O N

Seismic surface waves travel around the surface of the Earth but
are sensitive to heterogeneity in elastic properties within the sub-
surface. Different frequencies of surface waves travel at different
speeds since they depend mainly on the shear wave velocity struc-
ture at different depths. Surface wave tomography uses this prop-
erty (called dispersion) to infer the spatial distribution of subsurface
shear velocities over global scales (Woodhouse & Dziewonski 1984;
Trampert & Woodhouse 1995; Shapiro & Ritzwoller 2002; Zhou
et al. 2006; Meier et al. 2007a,b), regional scales (Montagner &
Jobert 1988; Curtis & Woodhouse 1997; Curtis et al. 1998; Ritz-
woller & Levshin 1998; Devilee et al. 1999; Villasenor et al. 2001;
Simons et al. 2002) and reservoir scales (Bussat & Kugler 2011; de
Ridder & Dellinger 2011; Mordret et al. 2014).

Surface wave tomography is often performed using a two-step
inversion scheme (Trampert & Woodhouse 1995; Ritzwoller et al.
2002). In step 1, traveltimes of surface waves between pairs of
known locations are measured at various fixed periods, then used

to create geographical phase or group velocity maps at each period
using 2-D tomography. In step 2, the dispersion properties (speed
of the waves at different periods—often referred to as a dispersion
curve) at each point on the 2-D map are then inverted to estimate
a 1-D shear wave velocity profile with depth below that point. The
1-D velocity profiles beneath many geographical locations can then
be placed side-by-side and interpolated to create a 3-D model of the
subsurface.

Both of the two-step surface wave inverse problems are non-
linear. They can be solved approximately by partially linearized
(Bodin & Sambridge 2009), or fully non-linear (Rawlinson et al.
2014; Galetti et al. 2015, 2016) Monte Carlo methods. These types
of approaches provide relatively robust estimates of the range of
possible shear wave velocity structures with depth that are con-
sistent with the measured surface wave speeds (often referred to
as the solution uncertainty) by using the Markov chain Monte
Carlo (McMC) algorithm to perform the inversions in a Bayesian
framework. However, all existing sampling based methods, includ-
ing the direct (one-step) 3-D Monte Carlo tomography method of
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Zhang et al. (2018), are extremely demanding computationally. If
large data sets are to be inverted rapidly while maintaining our abil-
ity to assess post-inversion uncertainties without making lineariz-
ing approximations to the Physics, different methods are needed to
speed up fully non-linear inversions.

We take an alternative approach and use neural networks (NNs)
to perform non-linear inversion of the phase velocities of Rayleigh-
type Scholte surface waves (we refer to these simply as Rayleigh
waves) for subsurface shear wave velocity over length scales
∼1-10 km. NNs approximate a non-linear mapping between two
parameter spaces. The mapping is inferred from a set of examples
of inputs and corresponding outputs of the true mapping (these ex-
amples are called training data). Using certain types of NN-based
methods, uncertainties in the mapping can be output by the net-
work. NNs are therefore useful for problems where the forward
mapping is well known or simple to calculate (in order to construct
many training data) but the inverse mapping is complex or costly
to determine directly. In such cases training data can be generated
by applying the forward mapping to many sets of model parameter
values, after which the NN can be trained to map in the inverse
direction, taking the measurable data as input and outputting model
parameter estimates and their uncertainties.

Once trained, NNs can be applied to calculate the mapping for
any input parameters extremely efficiently. For this reason NNs have
become increasingly popular for solving geophysical problems in
recent years. Applications include well-log analysis (Aristodemou
et al. 2005; Maiti et al. 2007), first arrival picking (Murat & Rud-
man 1992; McCormack et al. 1993), fault detection (Araya-Polo
et al. 2017; Huang et al. 2017) and velocity analysis (Roth & Taran-
tola 1994; Calderón-Macı́as et al. 2000; Araya-Polo et al. 2018).
However all of these methods provide only deterministic estimates
of the inverse problem solution (in most cases, the mean model
estimate). NNs can also be used in a Bayesian sense to give fully
probabilistic solutions. They were first used in Geophysics to esti-
mate Bayesian uncertainties by Devilee et al. (1999) who inverted
surface wave phase and group velocities for large-scale subsur-
face velocity structure and interface depths. They inverted regional
dispersion curves for discretized probability distributions of crustal
thickness across Eurasia using histogram and median networks, and
analysed the trade-off between crustal thickness and velocity struc-
ture. Meier et al. (2007a,b) improved this method by using mixture
density networks (MDNs) to give continuous probabilistic estimates
of global crustal thickness and crustal velocity structure. A MDN is
a type of network that maps an input vector to a probability density
function (pdf) rather than to a single set of output values (Bishop
1995). Since the work of Meier et al. (2007a,b), MDNs have been
used to perform petrophysical inversion of surface wave data for
global water content and temperature in the mantle transition zone
(Meier et al. 2009), inversion of industrial seismic data sets for
subsurface porosity and clay content (Shahraeeni & Curtis 2011;
Shahraeeni et al. 2012), inference of the Earth’s 1-D global average
structure using body-wave traveltimes (De Wit et al. 2013) and for
earthquake detection and source parameter estimation (Käufl et al.
2014, 2015).

To produce a 3-D shear wave velocity versus depth model on
any scale using the two-step method, the inverse problem for
structure with depth must be solved at many geographical loca-
tions (usually many thousands) over the area of interest. McMC
inversion methods are computationally expensive and it is gen-
erally impractical to apply them in cases where parameters or
data sets are large, where computational efficiency and process-
ing time are usually limiting constraints due to the need to forward

model many samples (of the order of thousands or millions) at
each location. On the other hand, once trained, NNs and MDNs
can often solve such inverse problems in seconds with no addi-
tional sampling. In addition, in cases where we wish to moni-
tor changes in the subsurface, the same network can be applied
rapidly to repeated data measurements, enabling the possibility of
near-real time monitoring provided that the inputs to the networks
can be produced rapidly from the raw measured data (Cao et al.,
2020). Our aim herein is to investigate whether this is possible in
practice.

In what follows we first introduce NNs and MDNs and how they
can be used to invert Rayleigh wave phase velocities for models
of 1-D shear wave velocity with depth. We discuss the effect of
data uncertainty and how to incorporate this within a NN, then
apply trained networks to data from the Grane field in the Nor-
wegian North Sea to create 2-D shear wave velocity maps of spe-
cific depth intervals. We compare the results from the MDN to
non-linearized McMC methods, and thus prove that MDN surface
wave inversion methods are both efficient and robust at the scale of
reservoirs.

2 M E T H O D

2.1 Grane data

Grane is an offshore oil field in the Norwegian North Sea. A per-
manent reservoir monitoring (PRM) system was installed in 2014
over approximately 50 km2 of the Grane seabed (Thompson et al.
2015). Ambient seismic noise is recorded continuously at the field
using four-component sensors—three-component geophones (Ver-
tical, North and East) and a hydrophone. The data used in this study
was preprocessed according to the protocol of Zhang et al. (2020),
summarized as follows. Data from the vertical and hydrophone
components were selected over a 6.5-hr interval. The data were
bandpass-filtered between 0.35 and 1.5Hz and data from every pair
of stations are cross-correlated using overlapping half-hour record-
ing sections, then correlations are stacked over the full 6.5-hr inter-
val. Cross-correlations of hydrophone and vertical component noise
mainly contain information about Rayleigh-type waves. Phase ve-
locities were automatically picked for the cross-correlation of each
station-pair. Seventeen phase velocity maps and their corresponding
standard deviation (uncertainty) maps were produced using eikonal
tomography for periods between 0.6 and 2.2 s at 0.1 s intervals over
a grid of cells with cell size 50 m × 50 m grid. Fig. 1(a) shows four
examples of the phase velocity maps at periods 0.7, 1.0, 1.3 and 1.9
s and their corresponding uncertainties.

Zhang et al. (2020) perform 1-D, 2-D and 3-D McMC tomog-
raphy over the Grane field to produce maps of the shear velocity
structure with depth. However, McMC solutions are relatively slow
to compute as they require ∼106 3-D or ∼109 1-D forward mod-
elling simulations to obtain robust results, and for 4-D applications
the set of simulations needs to be performed for every repeat survey.
A more efficient method to carry out 3-D tomography is desirable.

Continuous seismic monitoring is a relatively new field, enabled
by PRM systems and high bandwidth transfer and compute re-
sources. To fully utilize the large volumes of data collected by
PRM systems efficient algorithms are important. Whilst data from
ambient noise surface wave interferometry does not generally give
sufficient spatial resolution at typical depths of industrial operations
it is useful for overburden monitoring. Effects such as fracturing,
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(a)

(b)

Figure 1. (a) A selection of four phase velocity maps used to compute discretized dispersion curves. Periods shown are 0.7, 1.0, 1.3 and 1.9 s. (b) Maps of
estimated standard deviation of uncertainties in the phase velocity at each location. Velocities and uncertainty colour scales are saturated at either end to prevent
domination of outliers, and to highlight structure across the field. The vertical black line in the top-left-hand plot shows the location of a cross section shown
in other figures.

fault-reactivation and fluid migration or leakage happen on rela-
tively short time scales, and it is important to detect these as early
as possible. There is also a potential application at CO2 storage
sites for containment monitoring (Stork et al., 2018). On a longer
timescale, months to years, geomechanical effects due to pressure
depletion and reservoir compaction can be observed by changes
to shallow S-wave and P-wave velocities. Although a rapid detec-
tion system is not needed as urgently in that case, frequent repeat

measurements could help improve the signal-to-noise ratio and may
enable a better understanding of how these effects evolve over time.

2.2 Bayesian Inference

We wish to solve the surface wave inversion problem in a prob-
abilistic framework to find the Bayesian posterior distribution of
subsurface velocity structure parameters m that fit the given data d,
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(a) (b)

Figure 2. (a) Initial distribution of velocity structures created with a
piecewise-constant discretization over depth. (b) Distribution of velocity
structures created after averaging structures in (a) over larger depth inter-
vals. Grey-scale shows the probability density distribution, darker colours
represent higher density of velocity structures, and the black line is an ex-
ample of a randomly selected velocity structure in each panel which also
illustrates the depth intervals used in cases (a) and (b).

Figure 3. Graph showing a synthetic dispersion curve d (triangles) com-
pared to a dispersion curve with added noise d̃ (stars). The grey shaded area
is the standard deviation u from eq. (10).

written as p(m|d). This is defined as (e.g. Tarantola 2005):

p(m | d) = k p(d | m) p(m), (1)

where p(m) represents the prior probability density on the velocity
parameter space which describes information about m known prior
to using data d, p(d|m) is known as the likelihood and represents
the conditional probability of measuring data d given the velocity
parameters m, and k is a normalization constant. In multidimen-
sional problems where the dimensionality of m is greater than 1,
we often wish to infer the posterior inversion information about a
single parameter with index i and hence must calculate the marginal
posterior distribution p(mi|d). This is obtained by integrating over
all parameters mj that are not of interest:

p(mi | d) =
∫

∀m j �=mi
p(m | d) dm j (2)

In this study, we focus on estimating marginal distributions p(mi|d).

Figure 4. Diagram of network used to include standard deviation estimates
in the input vector, used for the Variable-Noise-MDN. Rounded edged boxes
represent inputs/outputs of network. Squared edges boxes represent one or
more fully connected layers within the model where the internal model
weights are optimized during training. The structure of these is described
in Table A2. The diamond box represents the concatenation of layers: this
step involves no new weights and simply concatenates the outputs of the
previous layers. The arrows represent the direction of flow of data through
the network.

2.3 MDNs

A NN can be trained to represent the arbitrary non-linear map-
ping between the spaces of input data d and output parame-
ters m by presenting the network with a set of N training pairs
T = {(di , mi ) : i = 1, ..., N } and minimizing a cost function that
measures the difference between the NN output and the defined
output, often called the ‘error’. For example if the set of training
velocity structures mi are distributed according to the prior pdf,
then a network trained to output mi given input di by minimizing
the sum-of-squared errors across set T will output an approximation
to the mean of the Bayesian posterior distribution p(m | d) when
presented with data d (Bishop 1995). By contrast, in this paper we
use a class of NNs called MDNs. These provide a framework for
modelling complete probability distributions. They are trained on
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Probabilistic neural network tomography 1745

Figure 5. Mean of the posterior marginal pdfs from Fixed-Noise-MDN inversions, versus the true value of velocity for each velocity structure in the set of
smooth models. Each graph represents a different depth interval as indicated above the graph. The black solid line on the right-hand side of each graph shows
the prior distribution on the training set. The corresponding Pearson correlation coefficient R is given in the top left-hand corner of each graph.

the same set T of data–velocity structure pairs, but instead of pro-
viding the mean estimate of the velocity structure, they provide an
estimate of the Bayesian posterior probability distribution p(m | d).
The estimate is parametrised by a mixture (sum) of Gaussian ker-
nels

p(m | d) =
M∑

k=1

αk�k(m | d), (3)

where αk are amplitude parameters that attach relative importance to
each Gaussian kernel, M is the number of Gaussians in the mixture
and �k are Gaussian density functions given by

�k(m | d) = 1

(2π )c/2σ c
k (d)

exp

{
− (mk − μk(d))2

2σ 2
k (d)

}
(4)

where c is the dimensionality of m.
The set of mixture parameters αk, means μk and standard de-

viations σ k fully define the set of Gaussian kernels and hence the
output of the MDN. Training an MDN thus requires that we cre-
ate a way to predict appropriate values for these parameters given
any input data. For this task we use a standard feed-forward NN
which contains a set number of layers and nodes. At each layer the
inputs of each node are weighted and summed before being passed

through a function that induces non-linearity in the mapping. This
provides an output value that can become the input for all units in
the following layer. These weights are adjusted during training to
provide the optimum mapping. The number of mixtures M dictates
the complexity of the final probability distribution, and the number
of network outputs is given by (c + 2) × M compared with the
output of a NN such as a multilayer perception or convolutional
network that have c outputs. The number of kernels that should be
used depends on the complexity of the problem; however, as long
as more kernels than necessary are used, an accurate number is not
required as the network can reduce the amplitude of any mixture
parameter to near zero for redundant kernels (Bishop 1995). For a
full description of MDN and NN structures see Bishop (1995), or
in a geophysical context see Meier et al. (2007a) or Shahraeeni &
Curtis (2011).

During training the internal weights of the network are adjusted
to maximize the likelihood of the desired pdf given the training data.
The cost function minimized is the negative log likelihood function
(Bishop 1995)

EM DN = −
N∑

n=1

ln

{
M∑

k=1

αk(dn)�k(mn | dn)

}
. (5)
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1746 S. Earp et al.

Figure 6. Mean of the posterior marginal pdfs from Variable-Noise-MDN inversions, versus the true value of velocity for each velocity structure in the set of
smooth models. Each graph represents a different depth interval as indicated above the graph. The black solid line on the right-hand side of each graph shows
the prior distribution on the training set. The corresponding Pearson correlation coefficient R is given in the top left-hand corner of each graph.

(a)

(b)

Figure 7. Individual probability density functions (pdfs) for depths below 1226 m for two synthetic velocity structures in (a) and (b), respectively. The solid
line is the marginal posterior pdf from the MDN, the vertical dashed line is the true velocity value, and the dot–dashed line is the prior pdf.
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(a)

(b)

Standard D
eviation (km

/s)

Figure 8. (a) Mean shear velocity cross-section, and (b) corresponding posterior standard deviation cross-sections from the Fixed-Noise-MDN inversion. The
top white layer represents the water layer where shear velocity is zero.

We train multiple networks with different network structures, and
each network’s parameters are randomly initialized before training
begins. The networks are then combined using a weighted average
of network outputs in order to improve generalization and prediction
accuracy (Dietterich 2000). The weights for each network are deter-
mined by the cost function EMDN evaluated over the so-called test
set—a portion of the data set removed before training and used to
test the network once training has completed. An approximation to
the posterior probability distribution of a set of velocity parameters
m given data d is thus given by

p(m | d) �
L∑

k=1

c∑
j=1

Ekαk j∑L
l=1 El

�k j (m | d), (6)

where

Ek = − exp(EMDN,k) (7)

and where L is the number of networks in the ensemble, EMDN, k is
the cost function value of the kth network, αkj is the jth weighting
parameter of the kth network and �kj is the jth Gaussian kernel of
the kth network. Once the networks have been trained, the outputs
can be used to estimate the posterior probability distributions using
eqs (4) and (6). This gives a more complete description of the
family of velocity structures that are consistent with the data than

does the output of a multilayer perception with only a deterministic
output.

2.4 Creating a training set

The velocity structures m are parametrized as follows: each 1-D
structure has a water layer of the true depth 126 m, followed by
constant velocity layers every 25 m to a depth of 100 m below the
water layer, then 50-m-thick layers down to 2000 m below the water
layer, beneath which there is a homogeneous half-space. For each
velocity structure the S-wave velocity of the top solid layer was
selected randomly from the Uniform probability distribution vtop ∼
U (0.2 km s−1, 0.5 km s−1) to represent unconsolidated near-surface
sediments. For a fundamental mode surface wave to be observed,
the top solid layer must have the lowest velocity (Galetti et al.
2016), therefore the following layers were randomly selected from
distribution U (vtop, 1.5 km s−1). We generated 1000 000 velocity
structures and Fig. 2(a) shows the resulting distribution of velocities
along with an example velocity structure.

The forward problem is solved for each of the generated veloc-
ity structures using the DISPER80 subroutines by Saito (1988) to
obtain corresponding fundamental mode Rayleigh wave dispersion
curves. The phase velocities were calculated for periods 0.6–2.2 s
at 0.1 s intervals in order to match the range available from ambient
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(a)

(b)

Standard D
eviation (km

/s)

Figure 9. (a) Mean shear velocity cross-section, and (b) corresponding posterior standard deviation cross-sections from the Variable-Noise-MDN inversion.
The top white layer represents the water layer where shear velocity is zero. Red star shows location of the joint pdf shown in Fig. 15.

noise recorded at Grane. The DISPER80 forward modeller needs
P- and S-wave velocity and density for each layer in depth in order
to calculate the phase velocities at each of any set of discrete peri-
ods. From our S-wave velocity structures calculated previously we
computed a corresponding P-wave velocity vp and the density ρ for
each velocity layer based on typical values for sedimentary rocks
using (Castagna et al. 1985; Brocher 2005)

vp = 1.16vs + 1.36 (8)

ρ = 1.74v0.25
p . (9)

Rather than attempt to invert surface wave speeds at 17 periods for
shear velocities in 40 depth layers, before training the velocity model
is averaged over seventeen larger fixed-depth intervals (Fig. 2b).
This averaging results in the prior distribution tending towards a
Gaussian pdf. We then train networks to invert for the velocity in
each of these larger depth intervals.

2.5 Uncertainties

In past work, uncertainty information about the data is only included
by adding random Gaussian noise to the training data set (Devilee
et al. 1999; Meier et al. 2007b; Shahraeeni & Curtis 2011; De Wit
et al. 2013). Adding noise acts to regularize the network, helps to

generalize when the network is inverting new data, and accounts
for the data uncertainty in the Bayesian solution. However the dis-
advantage of such an approach is that noise added is assumed to
be at a fixed level for all inversions, this is rarely the case in the
real Earth. This means that when presenting the network with new
data, updated uncertainty information for those particular data is
not included in the inversion; indeed, that network would invert the
data assuming that the incorrect data uncertainties still pertain.

By contrast, here the data uncertainty is included as an additional
set of inputs to the network, so that the noise level can vary in
amplitude between different data. This makes sense because uncer-
tainty is in fact additional pertinent information for each inversion.
To train the MDN the clean synthetically modelled data set is aug-
mented with varying levels of noised data. For each data point in
the dispersion curve in the original synthetic data set, a random
percentage of noise ε is selected between the bounds outlined in
Table 1 for six different Uniform distributions of ε. The noise is
then added to the data according to

u j = ε × d j (10)

d̃ j = N (0, 1)u j + d j , (11)

where uj is the standard deviation value of the noised data d̃ j and
N (0, 1) is a Standard Normal distribution with mean 0 and standard
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(a)

(b)

Figure 10. Fixed depth maps of (a) the mean and (b) the standard deviation of the shear velocity from Variable-Noise-MDN inversion of fundamental mode
Rayleigh dispersion at depth slices 176–226 m, 226–326 m, 526–626 m and 726–826 m. The dotted red boxes are locations where the structures in the shear
velocity maps are consistent with the phase velocity maps in Fig. 1(a).

deviation 1. An example of noised data and the randomly chosen
noise level is shown in Fig. 3. We thus generate an augmented train-
ing set of data-velocity structure pairs Tuncer = {([d̃ j , u j ], m j ) :
j = 1, ..., N }, where our data consists of the noised dispersion
curves d̃ j and their associated uncertainties u j . The final data sets T
and Tuncer are then shuffled and split into a training set (90 per cent
of training pairs) that is used to train the network for the optimum
mapping, a validation set (5 per cent) used during training to check
the network is not overfitting the training examples (see below), and

a test set (5 per cent) which is used post training to assess the net-
work performance on previously unseen data. This final assessment
provides weights Ei for the network ensemble in eq. (6). Early stop-
ping is used to prevent overfitting of the network to the data: this
is where the cost function is periodically checked on the validation
set during training. When the cost function stops decreasing it is
assumed that the network is already fit to the training data but is
no longer improving its generalization to new data. Training is then
stopped.
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(a)

(b)
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Figure 11. (a) Mean shear velocity cross-section, and (b) corresponding posterior standard deviation cross-sections from the Variable-Noise-MDN inversion
of fundamental and first higher mode Rayleigh dispersion. The top white layer represents the water layer where shear velocity is zero.

3 R E S U LT S

3.1 Network design

Networks are trained for two different data sets: first a training
set T in which data were perturbed by 10 per cent Gaussian noise
is used to train what we refer to herein as a Fixed-Noise-MDN.
This MDN does not include standard deviation in its input vector.
A second training set Tuncer includes a variable standard deviation
vector as described in the previous section, which is used to train
what we refer to as a Variable-Noise-MDN. To include both the
dispersion curve and their uncertainties in the latter networks two
inputs are included as shown in Fig. 4. The dispersion curve is passed
through two layers, whilst the standard deviation is input separately
and passed through one layer. The outputs of these two layers is
then concatenated before being passed through two more layers to
output the parameter vector that defines the probability distribution
of the shear wave velocity structure. For the Fixed-Noise-MDN a
single input is used (dispersion curve only) and there is no need for
concatenation.

Separate MDNs are trained for each depth interval in the velocity
structure defined in Fig. 2(b). For each interval approximately 40
networks are trained from which we select for the ensemble the
10 networks with the lowest cost value across the validation set.

The weights and biases are randomly initialized using the Glorot
uniform initializer (Glorot & Bengio 2010) for each training run,
and we use different sizes of layers in the different networks to
create diversity. The different layer sizes were determined using a
form of Bayesian optimization using the Python library hyperopt
(Bergstra et al. 2015). In Appendix A, we describe the network
configurations trained. The networks each use a Gaussian mixture
with 15 kernels, so by using an ensemble of 10 networks a total
of 150 kernels potentially contribute to each posterior distribution.
However, we found that normally only 3 or 4 kernels with different
means and standard deviations were assigned significantly non-zero
amplitudes by each individual network.

3.2 Network evaluation

A set of 100 000 synthetic velocity structures to which no network
has previously been exposed were then created. These simulate rel-
atively smooth velocity structures by not allowing the velocity to
vary more than 400 m s–1 between neighbouring depth intervals.
Corresponding data are created using the DISPER80 forward mod-
eller, to which 10 per cent Gaussian noise was added. For each depth
interval in the velocity structure we apply the MDN ensemble to
each of the 100 000 synthetic data and calculate the mean of each
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(a)

(b)

Figure 12. Fixed depth maps of (a) the mean and (b) the standard deviation of the shear velocity from Variable-Noise-MDN inversion of fundamental and first
higher mode Rayleigh dispersion at depth slices 176m-226m, 226m-326m, 526m-626m, 726m-826m.

posterior marginal pdf μ̄post

μ̄post =
M∑

i=1

αiμi . (12)

The correlation between the mean of the posterior and the true
target value for each data vector can be used to evaluate the perfor-
mance of the networks when presented with new data. This evalua-
tion does not use all of the information contained in each posterior
pdf, but does provide a practical way to begin to evaluate network

performance. Fig. 5 shows the means of the posterior pdf of the
fundamental mode Rayleigh wave Fixed-Noise-MDN inversions
versus the true velocity values across all of the synthetic smooth
velocity models, for each depth interval. The corresponding Pear-
son correlation coefficient, R, is shown in the top-left-hand corner
of the plot. The plots show a clear tendency for the mean of the
network to overestimate the true velocity value. When the same
inversions are performed using the Variable-Noise-MDNs (Fig. 6)
the correlation between the mean MDN velocities and the true ve-
locities improves at every depth level. The additional information
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(a) (b)

(c) (d)

(e)

Figure 13. Mean shear velocity along the cross-section in Fig. 1(a) from (a) MDN inversions using a training set with added Gaussian noise of fixed standard
deviation, (b) MDN inversions using estimated data uncertainties as added input data, (c) independent 1-D Monte Carlo inversions, (d) a single 2-D Monte
Carlo inversion and (e) a 3-D Monte Carlo inversion, where results in (c), (d) and (e) are from Zhang et al. (2020). The top white layer represents the water
layer, where the shear velocity is zero.

provided to the network that describes uncertainties in the data
results in a significantly more accurate estimate of the velocity
structure.

A full example inversion of noised synthetic data corresponding
to two velocity structures using Fixed-Noise-MDNs is shown in
the Supplementary Material as Figure S1. We observe significant
biases in the estimated shear velocity structure such that velocities
at several depths lie outside of the main range of uncertainty. Figure
S2 shows the results when we train the network to take the data
uncertainties as explicit inputs using Variable-Noise-MDNs: the
biases are entirely removed. This demonstrates that it is extremely
important to train networks to make explicit use of the additional
information contained in data uncertainty estimates.

The plots in Fig. 6 allow us to compare how the networks perform
at different depth levels. The performance of the networks decrease
with depth, and at the deeper levels (1626–1826 m) the mean of the
Variable-Noise-MDN tends towards the mean of the prior. Fig. 7
shows an example of the marginal posterior pdf for two synthetic
velocity structures at depths below 1226 m. In both plots the true
velocity structure is far away from the mean of the prior distribution
and the predicted marginal posterior distribution remains close to
the prior: this shows that at these depths the networks are unable to
add any information to the prior pdf given the data presented to the
network. This could be due to the depth sensitivity of the periods
of Rayleigh waves selected for the inversion or the training set is

not suitable at these depths. For this reason the following results are
only shown down to a depth of 1226 m.

3.3 Field data

The final trained MDNs are applied to invert Rayleigh wave phase
velocities from the Grane field in the Norwegian North Sea. Dis-
persion curves were extracted at each grid point producing 26 772
dispersion curves to be inverted for 1-D depth–velocity structures.
The standard deviations shown in Fig. 1(b) were extracted at each
point and used as the standard deviation vector input to the Variable-
Noise-MDNs (Fig. 4). Figs 8 and 9 show the mean and associ-
ated standard deviations (representing uncertainty) of the posterior
pdf estimated at the location of the black line in Fig. 1(a) from
Fixed-Noise-MDNs and Variable-Noise-MDNs, respectively. The
standard deviation, σ post, of the weighted mixture of Gaussians is
computed by:

σpost =

√√√√ M∑
i=1

αi

(
σ 2

i + μ2
i

) −
(

M∑
i=1

αiμi

)2

(13)

Both plots of the mean show a reasonably similar structure: a near-
surface low velocity layer down to 300 m, then an increased velocity
down to 600 m, with yet higher velocities below this. However, the
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Figure 14. Standard deviation of shear velocity along the cross-section in Fig. 1(a) from (a) MDN inversions using a training set with added Gaussian noise of
fixed standard deviation, (b) MDN inversions using estimated data uncertainties as added input data, (c) independent 1-D Monte Carlo inversions, (d) a single
2-D Monte Carlo inversion, and (e) a 3-D Monte Carlo inversion, where results in (c), (d) and (e) are from Zhang et al. (2020). The top white layer represents
the water layer, where the shear velocity is zero.

Figure 15. Joint pdf comparing the velocity trade-off between two adjacent
layers mi and mi + 1 at depths given in the axis labels. The red star represents
the mean velocity shown in Fig. 9(a).

layers are more distinct in the inversion using the Variable-Noise-
MDNs. Fig. 8(a) from the Fixed-Noise-MDN shows a higher vari-
ability in the velocity below 600 m than does the mean in Fig. 9(a),
and the velocity highs in Fig. 8(a) coincide with higher uncertainties
in Fig. 8(b). When networks are trained including the full standard
deviation information (Fig. 9) these velocity highs disappear so that

the mean velocity and uncertainties are laterally smoother across
the section. We therefore now focus on the Variable-Noise-MDN
results.

Fig. 10 shows the mean and standard deviation horizontal depth
slices from the Variable-Noise-MDNs. In the near surface maps
(126–326 m) the results show similar structures to those in the phase
velocity maps in Fig. 1(a) at short periods, for examples within the
dotted red boxes in Fig. 10(a). The deeper maps (536–826 m) show
structures similar to that of the longer period phase velocity maps,
but also a higher standard deviation (Fig. 10b) than shallower layers.
As a result, the shear velocity variation in these deeper structures
falls within their standard deviation, suggesting that they might not
represent true structure.

The method outlined above can easily be extended to joint in-
version of fundamental and first higher mode data by adding two
additional vectors: the vector of first higher mode phase velocity
values generated from the velocity structures in the original train-
ing set and a vector of their associated uncertainties. For the method
outlined above this would result in 34 additional scalar inputs, two
17 dimensional vectors. Fig. 11 shows the cross-section results and
Fig. 12 shows the results from four depths layers, 126–176 m, 226–
326 m, 426–526 m, 626–726 m, from Variable-Noise-MDN joint
inversion. The same features seen in the shallow layer of Fig. 10(a)
are seen in the shallow layer of the joint inversion, highlighted by
the red dashed boxes in Fig. 12(a). However, the velocities are on
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Figure 16. Plots showing the CPU hour time for (a) one inversion per location and (b) the inversion over the entire Grane field using MDNs, linearized
inversion and Monte Carlo 1-D (MCMC 1-D) methods. The typical time taken to train the MDN (including the forward modelling runs) is included in (b) but
not in (a).

Table 1. Table of percentage range of noise added to data
set in each of six different noise scenarios. Uncertainty
is added to each datum according to eqs (10) and (11). In
the first scenario uncertainties are zero.

Percentage noise (per cent)
Noise scenario Min Max

1 0 0
2 0 5
3 4 14
4 10 15
5 3 10
6 0 15

average higher than the fundamental mode-only MDN inversions
and the standard deviations are larger. In addition, the depth slice
at 226–326 m is entirely different to the corresponding slice in
Fig. 10(a). Fig. 11(a) shows that the low velocities observed in the
top layers of the Variable-Noise-MDN fundamental model inver-
sion (Fig. 9a) no longer exist in the joint inversion with higher
modes, showing the latter waves appear to have added additional
information to the inversion. However, we are less confident about
the quality of the higher mode dispersion measurements than those
from the fundamental mode, so we include this result as a demon-
stration, but in Section 4 we focus mainly on the fundamental mode
results.

4 D I S C U S S I O N

We inverted Rayleigh wave phase dispersion curves for subsurface
shear wave velocities using MDNs trained with added Gaussian
noise at a fixed standard deviation to simulate average data uncer-
tainties, and a second type of MDN with the data uncertainty vector
included as an additional input that could include a variable level
of noise uncertainty on the data. We showed that to invert noisy
data for reliable velocity structures the standard deviation estimates
should be included in the network.

A constant number of fixed depth–velocity intervals were used
in each MDN inversion, leading to inversions for effective medium
(averaged) shear velocities for each fixed depth interval. A trans-
dimensional network inversion would have had to include varying
depths and number of layers which would significantly increase the
dimensionality of the network inversion problem and require a much
larger training set and more complex network structure. This in turn
would increase training time and the memory needed for training,
and would likely make the network outputs less stable and reliable
since the posterior would effectively be emulating the inverse func-
tion in a higher dimensional space. As discussed in Käufl et al.
(2016), it is difficult to get meaningful posterior pdfs from MDNs
in high dimensional problems. For our intended application (to test
our ability to rapidly monitor the overburden of a permanently in-
strumented field), the inversion for effective medium parameters
over fixed depth intervals was sufficient.

4.1 Comparison with Monte Carlo methods

We compare the Noise- and Variable-Noise-MDN inversion results
to the McMC results of Zhang et al. (2020). Fig. 13 shows the
mean shear velocity cross sections of Figs 8(a) and 9(a) along with
the same cross sections from 1-D, 2-D and 3-D trans-dimensional
McMC. Despite comparing a trans-dimensional result from Monte
Carlo methods with fixed-depth layer results from MDNs, all cross
sections show a similar, approximately three-layered structure. The
1-D MCMC (Fig. 13c) most represents the networks trained using
the Fixed-Noise-MDNs (Fig. 13a) as both contain vertical velocity
anomalies in the deeper part of the section. The Variable-Noise-
MDN has smoother variations laterally but also has a thicker near
surface velocity layer and the second layer extends deeper into the
section (to ∼700 m); this is more representative of the 2-D and
3-D MCMC results (Figs 13d and e). This is confirmed by examin-
ing the mean-squared difference (MSD) between the mean of each
MDN inversion and the Monte Carlo inversions in Table 2: the
Fixed-Noise-MDN has a lower MSD compared to the 1-D MCMC
inversion and the Variable-Noise-MDN has a lower MSD compared
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Table 2. Table showing the mean-squared difference between the Fixed-
Noise- and Variable-Noise-MDN inversion cross sections, and the Markov
Chain Monte Carlo cross sections of Zhang et al. (2020).

Fixed-Noise-MDN Variable-Noise-MDN

1-D MCMC 0.0018 0.0025
2-D MCMC 0.0025 0.0026
3-D MCMC 0.0021 0.0019

to the 3-D MCMC inversion. This implies that by adding uncertain-
ties to the MDN training we allow smoothness in the mean estimates
which the 3-D MCMC results suggest is reasonable across Grane.
The standard deviations of the results are shown in Fig. 14. It can
be seen that the MDN inversions have similar levels of uncertainty
(standard deviation) as the 1-D MCMC inversion. However the
Variable-Noise-MDN has a slightly larger standard deviation than
the 1-D MCMC, this is expected as MDNs generally produce con-
servative estimates of the uncertainty, as discussed in Käufl et al.
(2016).

4.2 Joint posterior pdfs

The results in the previous section are created from the 1-D marginal
posterior pdf p(mi|d) of the shear velocity in each layer independent
of other velocities in each 1-D profile. The correlations between
velocities at different depths cannot be derived from such results.
To estimate correlations it is necessary to analyse the joint posterior
pdf p(mi, mi + 1|d), which can be constructed from the product of
the conditional and marginal pdfs.

p(mi , mi+1 | d) = p(mi | d) × p(mi+1 | mi , d) (14)

The marginal pdfs p(mi|d) are given by the results shown in the pre-
vious sections. New networks are trained to estimate the conditional
pdfs p(mi + 1|mi, d) by extending the input vector of the data with
the velocity to which we want to condition our data: in this example
this is the velocity of the layer above the one being estimated.

Fig. 15 shows the results from the location shown by the red star in
the Grane cross-section from Fig. 9(a). The plot shows a weak nega-
tive correlation, representing the weak trade-off between velocities
in subsequent layers. This is likely to be because a relatively coarse
parametrization (compare that in Figs 2a and b) was used over depth
for the inverse problem. If a finer parametrization was used, such
trade-offs would emerge more strongly as demonstrated by Meier
et al. (2007a). We found the construction of the joint pdfs to be
less stable than the construction of the 1-D marginal results shown
in this paper. If we reverse the process to construct p(mi + 1, mi|d)
the results are not identical. This is probably due to an inadequate
training data set, so it is likely that to construct higher dimensional
pdfs a larger, more representative training set is required.

4.3 Inversion speed

Post-training, NNs invert new data extremely rapidly: in this study
it took approximately 21 CPU seconds to invert all 26 772 locations.
The results are compared to Monte Carlo methods which are known
to be computationally expensive (Bodin & Sambridge 2009): the
MCMC methods used to create the crosslines shown in Fig. 13 took
approximately 186 CPU hours for 1-D, 206 CPU hours for 2-D and
4824 CPU hours for 3-D inversions. Despite the higher vertical res-
olution of results from MCMC methods (since the parametrization
over depth varies in those inversions), the compute-time for inver-
sions is between 4 and 6 orders of magnitude larger than for trained

MDNs. It should be noted that in this case using NNs makes the
inversion extremely efficient because the problem is decomposed
into multiple 1-D inversions across the field. For problems where
there are only a few data vectors to be inverted this might not be
an efficient method once network training time has been taken into
account.

A comparison of time per inversion of an individual location for
1-D MDN, 1-D Monte Carlo and a 1-D linearized inversion is shown
in Fig. 16(a). Monte Carlo inversion is computationally the most ex-
pensive, and MDN inversion is two orders of magnitude faster than
even linearized inversion. However, in this comparison we only ac-
counted for the speed of the inversion which is not the full computa-
tional expense involved in using NNs. Training a network before the
inversion takes significant computational time: in this study we took
1280 CPU hours to train all of the networks used. It should be noted
that training the network needs only to be done once, and hence is in-
dependent of number of locations to be inverted; therefore inverting
more locations renders the MDN inversion method more compu-
tationally efficient. Fig. 16(b) compares the CPU hours needed for
monitoring-style repeated inversions across the full Grane field as
performed in this study, including the time required for training
MDNs. The initial cost of training a network before the first inver-
sion is high, but thereafter repeated inversion of new data sets is
nearly free. In comparison to 1-D MCMC methods, even accounting
for the initial training period, NN methods are more efficient. There-
fore, it would be possible to increase the size of the training set and
the complexity of the network (which would increase training time)
and still be able to produce results more cheaply than 1-D MCMC.
The training set and network complexity could be increased even
more if a monitoring scenario is considered as the upfront cost of
training the network would pay for itself within a few inversions of
data since the forward modelling and training only needs to be done
once. Increasing the training set size would give a better represen-
tation of the data-model relationship and most likely improve the
posterior pdf estimation of the MDN.

Linear inversion methods are computationally cheaper that MDN
methods: in this case approximately 1000 inversions of the same
field would be needed for the NN method to become cheaper. Sur-
face wave tomography is a non-linear inversion problem and despite
the linearized inversions involving fewer CPU hours they only pro-
vide approximate solutions, in particular for standard deviation esti-
mates, due to their implicit assumption of incorrect (linear) physics.
The NN method provides a fully probabilistic, fully non-linear so-
lution that, once a network is trained, can be used to obtain rapid,
repeated inversions.

5 C O N C LU S I O N

We trained MDNs to invert fundamental mode Rayleigh wave dis-
persion curves for subsurface shear wave velocity using two dif-
ferent methods to represent data uncertainties. The MDNs give a
fully probabilistic solution to this non-linear inverse problem giving
comparable results to Monte Carlo solutions. We show that inputting
data uncertainties explicitly to the network provides a more reliable
solution estimate on noisy synthetic data, and a smoother result that
is more similar to 3D Monte Carlo inversion results on field data.
The same method is used for joint inversion of fundamental and
first higher mode data. Once trained, the NN approach gives rapid
results that can be repeatedly applied to similar types of data in
monitoring scenarios.
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Supplementary material.pdf
Figure S1 1-D depth inversion result from Fixed-Noise-MDNs for
two synthetic velocity structures with individual probability density
functions (pdfs) shown for four depth levels. In the depth inversions
dark colours represent areas of higher probability, each row of the
posterior integrates to unity, and the black solid line is the true
synthetic velocity structure. In the individual pdfs the solid line is
the marginal posterior pdf from the MDN, the vertical dashed line
is the true velocity structure, and the dot-dash line is the prior pdf.
Figure S2 1-D depth inversion result from Variable-Noise-MDNs
for two synthetic velocity structures with individual probability
density functions (pdfs) shown for four depth levels. In the depth
inversions dark colours represent areas of higher probability, each
row of the posterior integrates to unity, and the black solid line is the
true synthetic velocity structure. In the individual pdfs the solid line
is the marginal posterior pdf from the MDN, the vertical dashed line
is the true velocity structure, and the dot–dashed line is the prior pdf.
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A P P E N D I X A : N E T W O R K
C O N F I G U R AT I O N S

The terminology used here is standard for NNs and is defined suc-
cinctly in Bishop (1995). The networks using Gaussian noise to
simulate uncertainty in the data were trained using three fully con-
nected (FC) layers, where each node receives an input from every
node in the previous layer. Between each node of the FC layers a
rectified linear unit (ReLU) is used. The individual layer sizes and
the total number of parameters to be trained in each network is
outlined in Table A1.

Table A1. Network configurations of the networks for which Gaussian
noise of fixed standard deviation was added to the training set. Each network
structure is trained five times with different random initializations of starting
parameter values.

FC 1 FC 2 FC 3 Total parameters

200 300 200 133 145
400 200 350 173 545
400 1000 150 565 145
200 1000 350 570 745
400 500 350 398 845
400 1000 200 617 445
300 300 150 147 645
400 1000 350 774 345

The networks that included uncertainties as inputs were trained
using two fully connected layers connected to the dispersion curve
data and one fully connected layer connected to the standard devi-
ation data, before concatenating the layers together and applying a
further two hidden layers of size 250 and 150, respectively (Fig. 4).
In between each node of the fully connected layers a ReLU is used.
The individual layer sizes and the total number of parameters to be
trained in each network is outlined in Table A2.

Table A2. Network configurations of the networks that included standard
deviation vectors in the training set. Each network structure is trained
five times with different random initializations of starting parameter values.

Dispersion Standard deviation Total
FC 1 FC 2 FC 3 parameters

1295 240 500 573 045
1100 900 550 1427 795
960 860 400 1210 635
1000 220 1000 605 915
950 1000 140 1300 315
1100 800 450 1265 895
930 960 100 1221 995
1200 200 600 517 295
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