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Abstract
Travel-time tomography for the velocity structure of a medium is a highly nonlinear and nonunique inverse problem.

Monte Carlo methods are becoming increasingly common choices to provide probabilistic solutions to tomographic

problems but those methods are computationally expensive. Neural networks can often be used to solve highly nonlinear

problems at a much lower computational cost when multiple inversions are needed from similar data types. We present the

first method to perform fully nonlinear, rapid and probabilistic Bayesian inversion of travel-time data for 2D velocity maps

using a mixture density network. We compare multiple methods to estimate probability density functions that represent the

tomographic solution, using different sets of prior information and different training methodologies. We demonstrate the

importance of prior information in such high-dimensional inverse problems due to the curse of dimensionality: unreal-

istically informative prior probability distributions may result in better estimates of the mean velocity structure; however,

the uncertainties represented in the posterior probability density functions then contain less information than is obtained

when using a less informative prior. This is illustrated by the emergence of uncertainty loops in posterior standard deviation

maps when inverting travel-time data using a less informative prior, which are not observed when using networks trained

on prior information that includes (unrealistic) a priori smoothness constraints in the velocity models. We show that after

an expensive program of network training, repeated high-dimensional, probabilistic tomography is possible on timescales

of the order of a second on a standard desktop computer.

Keywords Neural networks � Mixture density networks � Uncertainty estimation � Seismic tomography

1 Introduction

Seismic travel-time tomography is often used to recon-

struct images of the interior of the Earth [1–3], but is a

significantly nonlinear and nonunique inverse problem. To

find solutions with minimal computation, the physics

relating local wave speed to measured travel times is

usually simplified by linearisation [4], but this creates large

differences between linearised and true probabilistic solu-

tions [5, 9]. Increases in compute power now allow fully

nonlinear Monte Carlo sampling solutions to be found

without linearisation, to solve problems in 2D [5, 6] and 3D

[7–10]. Using Bayesian methods, such solutions provide

samples (example tomographic models) that fit the data to

within their measurement uncertainties, are consistent with

available prior information and are distributed according to

the posterior probability density function (pdf) across the

parameter space; this pdf constitutes the full solution of

tomographic problems. Nevertheless, such solutions are

acquired at significant expense, typically requiring weeks

of compute time for realistic data sets and expensive

storage of large sample sets.

An alternative approach to estimate the posterior pdf is

to use prior sampling [11, 12]. In this case, samples are

created before inference using only available prior

knowledge. The set of samples can then be interrogated for

examples that are consistent with any particular data set (a

method called resampling [13]) or used to parametrise a

function that relates data to models which can then be used

to solve the inverse or inference problem [14].
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In this work, we use a neural network-based method to

perform the inversion. Neural networks (NNs) can

approximate any nonlinear relationship between two

parameter spaces, given a so-called training set of example

pairs of dependent and independent parameter values under

that relationship [15]. In travel-time tomography, the for-

ward solution is known and calculable, but the inverse

solution is highly nonlinear and nonunique. In such cases,

the forward computation can be used to create the prior set

of samples known as a training set, of random models

drawn from the prior pdf; these can be used to train the

neural networks to approximate the inverse mapping. The

prior samples are only needed during the training process

which needs only to be performed once—thereafter, NNs

can be evaluated relatively efficiently. This allows the

inference step to be run rapidly for any new data set on

standard desktop computers, and the overall cost of the

method per tomographic problem decreases rapidly with

the number of problems to be solved.

Neural network-based inversion methods have been

applied to various nonlinear tomography problems in the

past. Roth and Tarantola [14] first used NNs to estimate

subsurface velocity structure from active source seismic

waveforms, Moya and Irikura [16] performed velocity

inversion with a neural network using waveform data from

earthquakes and Araya-Polo et al. [17] used semblance

gathers as input to a network to invert for velocity struc-

ture. Gupta et al. [18] used a convolutional network to learn

an ensemble of simpler mappings in a low-dimensional

space before reconstructing the image by combining the

mappings. Dictionary learning methods [19] create sparse

representations of the data and can be used to create a set of

representations of features. Bianco and Gerstoft [20] per-

formed linearised 2D surface wave travel-time tomography

using dictionary learning to regularise the inversion.

The methods mentioned above and in Kong et al. [21]

all provide only deterministic solutions to the inversion.

Since the solution to tomographic problems is always

nonunique, in order to assess the worth of any model

estimate, we require that neural networks produce full

probabilistic information about the set of models in the

inverse problem solution (the posterior pdf). Devilee et al.

[11] solved the first probabilistic geophysical inverse

problem using NNs. They proposed a variety of methods to

train NNs to provide discretised Bayesian tomographic

posterior pdfs. Mixture density networks (MDNs) are a

class of augmented neural networks that output a proba-

bility distribution that is defined as a sum of analytic pdf

kernels such as Gaussians [15]. MDNs can be trained such

that for any input data this distribution approximates the

posterior pdf. These methods have been used to invert

surface wave velocities for global crustal thicknesses and

seismic velocities [22, 23] and for water content in the

mantle transition zone [24], at a reservoir scale to infer

petrophysical parameters from velocities [25, 26], for

earthquake source parameter estimation [27, 28] and to

assess the uncertainty in model parameters of the Earth’s

global average (one-dimensional) radial velocity structure

from P-wave travel-time curves [29]. They have also been

used in conjunction with Markov random fields and other

statistical and graphical models to solve geophysical

inverse problems with spatially sophisticated prior infor-

mation [30–32]. They have been used in conjunction with

seismic gradiometry to perform near-real-time 3D surface

wave tomography [33]. These studies demonstrate that the

pdf obtained from an MDN is comparable to a Monte Carlo

sampling solution but is obtained at much lower compu-

tational cost in the cases where similar inverse problems

must be solved repeatedly with different data sets, and that

at the moment of application MDNs provide probabilistic

solutions almost instantaneously.

We show for the first time that MDNs can perform fully

nonlinear, rapid and probabilistic 2D tomography from

travel-time data. We compare different methods for creat-

ing the prior training set and performing the neural network

inversion. The networks create approximate mean velocity

models and estimates of the full marginal posterior pdfs,

virtually instantaneously. Thus, in return for accepting

approximate posterior pdfs, we obtain a significant com-

putational saving compared to Monte Carlo methods.

2 Method

2.1 Bayesian inference

We wish to solve tomographic inverse problems in a

probabilistic framework to find the posterior distribution of

velocity models m that fit some given data d, written as

pðm j dÞ. This is defined as [34]:

pðm j dÞ ¼ k pðd j mÞ pðmÞ ð1Þ

where pðmÞ represents the prior probability density on the

model space, pðd j mÞ represents the conditional proba-

bility of some data given the model (known as the likeli-

hood) and k is a normalisation constant. In

multidimensional problems, where the dimensionality of m

is greater than 1, we often need to make inferences about a

single parameter with index i and hence must calculate the

marginal posterior distribution pðmi j dÞ. This can be

obtained by integrating over all parameters j that are not of

interest:

pðmi j dÞ ¼
Z
mj 6¼mi

pðm j dÞ dmj ð2Þ
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In this study, we focus on estimating marginal distributions

pðmi j dÞ and posterior trade-offs between pairs of indi-

vidual parameters.

2.2 Mixture density networks

Neural networks are essentially mathematical mappings

that emulate the relationship between two parameter

spaces. Given a set of N data–model pairs

fðdi;miÞ : i ¼ 1; . . .;Ng, where mi is the model used to

generate the data di under some forward relation, NNs can

be trained to model an arbitrary nonlinear inverse function

from d to some properties of the set of models m. In this

paper, we use a class of neural networks called mixture

density networks that can be trained to output the proba-

bility of any model m given some fixed (measured) data d,

written as pðm j dÞ. The probability distribution is

approximated using a sum (called a mixture) of Gaussians:

pðm j dÞ ’
XM
i¼1

aiðdÞHiðmjdÞ ð3Þ

where ai is called the mixture parameter that attaches rel-

ative importance to each Gaussian kernel, M is the number

of Gaussians in the mixture and Hi are here defined to be

Gaussian kernels with a diagonal covariance matrix given

by

Hiðm j dÞ ¼ 1Qc
k¼1ð

ffiffiffiffiffiffi
2p

p
rikðdÞÞ

exp � 1

2

Xc

k¼1

ðmi � likðdÞÞ2

r2ikðdÞ

( )

ð4Þ

where c is the dimensionality ofm, lik is the kth element of

the ith kernel in the mixture, rik is the standard deviation of

the kth element of the ith kernel in the mixture and both lik
and rik are outputs of a trained NN. The network is trained

by minimising the negative log likelihood of the pdf in

Eq. 4, equivalent to maximising the likelihood of the pdf

[15]. For a more comprehensive general introduction to

MDNs, we refer the reader to Bishop [15], or to Meier et al.

[22] and Shahraeeni and Curtis [25] for detailed descrip-

tions with applications in geophysics.

Network training is performed using gradient-based

optimisation of the network’s internal parameters. The

particular trained NN obtained is therefore sensitive to the

random parameter initialisation and to the network con-

figuration (internal structure). We train an ensemble of

multiple networks with different configurations and com-

bine them to give a group of networks—a so-called mixture

of experts. In theory, networks trained independently may

make good predictions for different reasons and under

different inputs (in our case, data vectors); using a com-

bination of networks therefore often results in better

generalisation of performance to unseen data and improves

prediction accuracy [35]. We construct the ensemble by a

weighted average of network outputs, where each weight is

determined by the performance of the associated network

on the test data set (or simply test set). The posterior

probability distribution is thus estimated by

pðm j dÞ ’
XM
i¼1

Xc

j¼1

EiaijPM
k¼1 Ek

ðdÞHijðmjdÞ ð5Þ

where Ei is the negative exponential of the error on the test

data set of the ith kernel. The final estimate of probability

distribution pðm j dÞ contains cM Gaussian kernels.

2.3 Model parametrisation and travel-time data

We define the geometry of our tomography problem to be

that shown in Fig. 1. We fix the locations of 18 wave

energy sources and receivers (stars shown in Fig. 2) and

parametrise the wave speed or velocity across the Model

Volume within which the forward relationship predicts

travel times of the first arriving energy between any

source–receiver pair. Travel times di between all possible

source–receiver pairs are calculated using an eikonal ray-

tracer [36, 37]. The travel times from the four velocity

models in Fig. 2 are shown in Fig. 3. Such travel times are

used herein to image the velocity structure within the

smaller Image Volume—wave speeds outside of that area

are disregarded and thus constitute nuisance parameters.

We use a larger volume to calculate the forward relation-

ship to avoid raypaths travelling along the boundary of the

model and causing misleading travel times.

We construct four separate training sets, each of 2.5

million discretised models where each model represents a

2D heterogeneous velocity structure. Two of these training

sets are created on an 8� 8 coarser grid of cells, and two

are created on a 16� 16 finer grid of cells within the Image

Volume (and the same resolution extends throughout the

Model Volume). Each of the four data sets is created by

selecting a random wave speed in each cell independently

from the uniform prior distribution U (0.5 km/s, 2.5 km/s).

All models in one finer data set and one coarser data set are

then smoothed using a 2D averaging filter window which

was square of size 5� 5 cells for the finer model and 3� 3

cells for the coarser model. Thereafter, the velocities are

normalised to the same absolute range as the original

random models for ease of comparison of results. Then, the

travel times between all source–receiver pairs are calcu-

lated for all models, in all four training sets (examples are

given in Fig. 3).

With this method, we create training sets with two dif-

ferent amounts and types of prior information. The two sets

of random unsmoothed velocity models have relatively
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weak prior information with no correlations between

neighbouring cells. This has the advantage that any type of

velocity contrast between neighbouring cells would be

consistent with the prior pdf and hence can in principle be

imaged using the associated trained network given

sufficiently informative data (see below). This is demon-

strated by the uniform distribution of the histogram in

Fig. 2c, which shows the probability of the velocity of the

adjacent cell given that the velocity of the central cell is

1.5 km/s. On the other hand, this implies that the prior pdf

Fig. 1 Geometry of velocity

models. Larger model with

limits (- 8, 8) in the X and

Y direction is the Model Volume
within which the travel-times

are calculated. The smaller

model bounded by a white box

with limits (- 4, 4) in the X and

Y direction is the Image Volume
which we wish to image. White

stars represent the location of

colocated sources and receivers,

between which travel-time data

are obtained

(a) (b) (c)

(d) (e) (f)

Fig. 2 Example velocity models from the four training sets that are

randomly selected from uniform distributions on an a 8-by-8 grid and

b 16-by-16 grid or are randomly selected and then smoothed with a

spatial averaging filter on a d 8-by-8 grid and e 16-by-16 grid. White

stars represent the location of colocated sources and receivers. The

prior distribution of the training set is shown for one cell in the model

given a fixed neighbouring cell for c models selected from a uniform

random distribution and f similar models after spatial smoothing
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is uniform over a 64- and 256-dimensional space for the

coarser and finer training sets, respectively; these spaces

are therefore extremely sparsely sampled by the 2,500,000

training set models due to the curse of dimensionality [38].

This implies that over most of these two spaces the prior

pdf is entirely unrepresented by ‘‘proximal’’ samples.

The two sets of smoothed velocity models embody

stronger prior information as the speeds in neighbouring

cells are correlated. This is demonstrated in Fig. 2f where

the distribution of possible velocities in adjacent cells

given that the velocity of the central cell is 1.5 km/s is

approximately Gaussian. This means that models with

larger velocity contrasts between neighbouring cells are not

represented in the training data set and hence will be pre-

cluded from inversion results. This may or may not be

advantageous depending on the true prior information

about the form of the structure being imaged. However, it

has the advantage that the effective space (manifold) of

models consistent with the prior information is consider-

ably smaller than that for the smoothed models, so that the

finite-sized training set may better represent the form of the

prior pdf.

3 Results

3.1 Network configurations

We train separate MDNs to predict the marginal proba-

bility distribution pðmi j dÞ of velocity mi in cell i in each

of the two sizes of models. For the finer data sets, we train

four MDNs and for the coarser data sets we train eight

MDNs at each location i. We use different configurations

as well as randomly initialised internal network parameters

(commonly referred to as weights and biases) for each

network because diversity in the ensemble generally leads

to better predictions [35]. ‘‘Appendix 1’’ outlines the dif-

ferent network configurations. For each network, we use a

Gaussian mixture consisting of 15 kernels. The precise

number of kernels is not important as long as it is larger

than the number required to represent the marginal poste-

rior pdf in each model cell. The network can either reduce

the amplitude of the mixture parameter aij to close to zero

to remove unnecessary kernels or can combine unnecessary

kernels by giving them a similar l and r to other kernels

[15]. In practice, we found the maximum number of ker-

nels with significant weight used in any mixture was 8.

We also train networks to invert for the full model

(velocities in all cells at once) using a single network. In

this case, we use a convolutional network with three con-

volutional layers followed by three fully connected layers

and 15 kernels for the Gaussian mixture. We train ten

networks with five different network configurations (each

(a) (b)

(c) (d)

Fig. 3 Corresponding data from

the four velocity models in

Fig. 2 that are randomly

selected from uniform

distributions on an a 8-by-8 grid

and b 16-by-16 grid or are

randomly selected and then

smoothed with an averaging

filter on a c 8-by-8 grid and

d 16-by-16 grid
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configuration is trained twice with random weight initiali-

sation). Layer sizes were selected using the Python library

hyperopt [39], and ‘‘Appendix 1’’ gives further description

of the networks used. The same network configurations

were trained on all four training sets.

For every training run for each network configuration,

we use 85% of the training data set to train the network,

10% of the data set as a validation set during training and

5% as a test set to evaluate the final network once training

has finished. The training set is used in the optimisation of

network parameters. The parameters are updated iteratively

so that the output of the network best represents the

training set sample distribution. To avoid overfitting the

network to the data, the cost function is also periodically

evaluated over the validation set; when the error on the

validation set stops decreasing, we end the training opti-

misation. Once all of the networks have been trained, we

evaluate the final network performance using the test set

and sum the networks across the ensemble using Eq. 5.

3.2 Result evaluation

We tested our trained networks by applying them to syn-

thetic data sets calculated for velocity models created

specifically to test the performance of each type of net-

work. The quality of the mean of the inverted probability

distributions of 2D velocity models (comprising 1D mar-

ginal posterior pdfs in each model cell in the cases where

networks were trained for each cell individually) is com-

pared against the true velocity model using the structural

similarity index metric (SSIM). This metric is based on

three relatively independent comparison measurements:

luminance, contrast and structure (‘‘Appendix 2’’). SSIM

can assume values between - 1 and 1: a value of 1 indi-

cates the images are identical, 0 indicates no structural

similarity and negative values occur when local structure is

inverted. SSIM differs from other quality indicators such as

mean squared error (MSE) in that it measures the quality of

an image in structure and pixel value compared to a ground

truth, rather than the absolute squared errors (which often

do not mean much to someone who is trying to interpret the

resulting images).

We compare the information gain between the prior

pðmÞ and the posterior pðmjdÞ distribution using the

Kullback–Leibler (KL) divergence

DKL pðmjdÞ; pðmÞð Þ ¼
Z 1

�1
pðmjdÞln pðmjdÞ

pðmÞ

� �
dx ð6Þ

where a higher DKL indicates that the posterior pdf has

gained information over the prior and DKL ¼ 0 occurs

when the two distributions are the same. This can be used

as an indication of the effectiveness of the network: if DKL

is close to 0, then the network has been able to learn little,

if anything at all, from the data.

3.3 Prior

To show the effect of the prior on our models, we inverted

synthetic data for the three velocity models shown in

Figs. 4a and 5a using networks trained with weak prior

information (unsmoothed training models) in Fig. 4 and

those trained with stronger prior information (smoothed

models) in Fig. 5. The test models were defined on a 32�
32 grid, which is finer than either of our training sets; this

ensures that we evaluate the networks using models that are

outside the range of those used for training. For all test

models, it is clear that with stronger prior information, the

networks better resolve the velocity structure, shown gen-

erally by the much higher SSIM values in Fig. 5b, c

compared with the corresponding values in Fig. 4b, c. This

is true even though the test models contradict the stronger

prior information: they all contain structures that at least in

part are not smooth.

The velocity model in the left-hand column has a

background velocity (cells surrounding the central anom-

aly) equal to the mean of the prior pdf and a circular low

velocity and is estimated well in both inversions using

weaker prior information training sets (Fig. 4). However,

even a small increase in complexity in velocity models

gives poor inversion results as shown by the central column

of velocity models. For these, all the velocities are

increased compared to the left column, and in particular the

background velocity is increased away from the mean of

the prior. In this case, the networks with weaker prior

information are unable to recover much, if any, of the true

structure. If stronger prior information is included in the

training set, the networks accurately predict a larger variety

of velocity models. The true structures of the two circular

models in Fig. 5 are closely reproduced in the inversion.

Sharp contrasts in velocity in the true model are translated

to more gradual changes in velocity in the estimates (for

both grid sizes) due to the smoothness in the prior pdf.

Despite this, the SSIM values show that results are very

well correlated with the true model. For the more geolog-

ically reasonable model in the right column of Fig. 5 which

includes a structure that might be generated by a fault,

networks trained using stronger prior information on both

grid sizes produce models that are nearly identical to the

true model. Even though the true model contains a sharp

contrast boundary, the inverted models still contain a

(slightly smoother) version and the overall structure of the

true image is maintained.

The effect of stronger prior information is shown in the

posterior pdfs in Fig. 6. We display the posterior marginal

pdfs at three locations indicated in the upper right-hand
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model in Fig. 4a: a location in the high-velocity zone

(triangle), the low-velocity zone (circle) and at the edge of

the sharp contrast where the inversion struggles to image

correctly (star). The KL divergence values are shown

above the corresponding posterior marginal pdf. The most

striking feature is the much higher KL values for the net-

works trained with the stronger prior information (rows b

and d) indicating a larger information gain in the posterior

pdf compared to the prior pdf than is obtained when

training with uniformly random models. In fact, the low

KL values for the latter cases imply that nearly no infor-

mation was gained from the data, and even though a rough

approximation of the mean can be found, the uncertainties

on those values remain large.

3.4 Model resolution

Our networks are trained on two sizes of grid cell, a coarser

8� 8 grid and a finer 16� 16 grid. Figures 4 and 5 show

the results for varying grid sizes. Training on the finer grid

induces a factor of four more parameters to estimate from

the same data. This means that a larger training set size

would be needed to sample the increase in image dimen-

sionality. It would be impossible to sample densely the

256-dimensional space spanned by a 16� 16 grid, but as

our examples show, the networks are still able to invert for

some basic structural information (Fig. 4c). When we train

our networks with a stronger prior pdf, we reduce the

effective dimensionality of our problem by introducing a

relationship between neighbouring pixels: essentially all

prior models and hence most posterior models lie on a

(a)

(b)

(c)

(d)

(e)

Fig. 4 a True velocity models.

Using a randomly generated

training set drawn from a

uniform distribution, mean

velocities from single-cell MDN

inversions for b an 8� 8 model

and c a 16� 16 model, and

from full-model MDN

inversions for d an 8� 8 model

and e a 16� 16 model. The

corresponding SSIM values are

shown above each result (see

‘‘Appendix 2’’ for definition of

SSIM)
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significantly lower dimensional manifold that is embedded

with the 64- or 256-dimensional spaces. In that case, we

can obtain reasonable estimates of the true velocity models

regardless of grid size (Fig. 5c).

3.5 Type of network

For each of the four training sets, we trained networks in

two different ways. First, we trained separate networks to

estimate marginal pdfs in each cell so that each network

has fewer parameters (aij, lij, rij) to estimate. Note that this

does not reduce the dimensionality of the overall problem

as each velocity cell in the model contributes to the travel-

time values, and the velocity in any cell depends on the

cells surrounding it even if we do not directly invert for

them within the same network. It is important to remember

that in this case we do not obtain explicit information about

trade-offs between neighbouring cells. Those trade-offs are

already integrated into the marginal pdfs in Eq. 2.

We also trained networks to invert for slowness in every

cell of the model at once. This increases the number of

parameters that the network must estimate but as a result

the trade-off between velocity values in adjacent cells can

be explored. Examples of the joint marginal pdfs from the

central model in Fig. 4a are shown in Fig. 7: the 2D pdfs

show few signs of nonlinearity, and virtually no indication

of the trade-offs that one would expect between velocities

in neighbouring cells. This indicates that the results of

these networks are unlikely to provide reliable

uncertainties.

(a)

(b)

(c)

(d)

(e)

Fig. 5 a True velocity models.

Using a training set with

spatially smoothed velocities,

mean velocities from single-cell

MDN inversions for b an 8� 8

model and c a 16� 16 model

and from full-model MDN

inversions for d an 8� 8 model

and e a 16� 16 model. The

corresponding SSIM values are

shown above each result (see

‘‘Appendix 2’’ for definition of

SSIM)

17084 Neural Computing and Applications (2020) 32:17077–17095

123



For models on a coarser grid (Figs. 4 and 5 rows b and

d), networks perform similarly when using the single-cell

networks or the full-model networks. For models trained on

a finer grid, the full-model networks perform significantly

better than the single-cell network as shown in Fig. 4. This

is almost certainly because the dimensionality of the

problem when training single-cell networks is too large, but

by giving the full-model network information about the

velocities in neighbouring cells, it can better resolve the

Fig. 6 Posterior pdfs (blue curves) compared to the prior pdfs (red

curves) for the 16� 16 grid models for three locations shown in the

top-right model of Fig. 4: circle (left), star (middle), triangle (right).

The rows show results from: (row 1) single-cell MDN’s using

uniformly random training data set. (Row 2) Single-cell MDN’s using

the smoothed training data set. (Row 3) Full-model MDN using

uniformly random training data set. (Row 4) Full-model MDN using

the smoothed training data set. The mean of the posterior is shown by

the blue solid line and the true velocity value by a black dashed line.

Corresponding KL divergence values are shown above each result

(colour figure online)

(a) (b) (c)

Fig. 7 Joint pdfs comparing the pixel inside the velocity high of the

central model in Fig. 4a. Velocity 1 is the velocity of a cell in the

centre of the velocity high. Velocity 2 is the velocity of a cell a in the

background velocity, b at the centre of the velocity high (not the same

cell as Velocity 1) and c at the edge of the velocity anomaly
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velocities. This difference is less noticeable when using

stronger prior information (Fig. 5b, d).

3.6 Uncertainty loops

A key problem in the field of nonlinear inversion is that

there are no standard solutions to which estimated posterior

pdfs can be compared in order to verify their quality. In

almost all papers that use synthetic tests to assess com-

peting methodologies in high-dimensional problems, the

main criterion applied is whether the mean or maximum-

likelihood model fits the real (true synthetic) model that

was used to generate the synthetic data. This provides no

test at all on the rest of the pdf, and indeed, there is no

reason why the mean should match the true model in

nonlinear problems—the mean may even be a zero-prob-

ability solution (one precluded by the data) [34]. The

maximum likelihood (or maximum posterior probability)

model is an alternative, but is usually an extremely volatile

statistic of pdf solutions since those solutions are neces-

sarily formed by focusing across the whole pdf rather than

simply on its modes. We therefore require some indepen-

dent property of posterior pdfs, the existence of which we

can use to assess their veracity.

Loops or halos of high uncertainty have been shown to

exist in solutions to all travel-time tomography problems

around anomalies with a spatially sharp and strong contrast

in velocity compared to their surroundings [5]. Uncertainty

loops exist due to nonlinear aspects of wave physics and

represent uncertainty in the shape of such anomalies. They

are observed most clearly in fully nonlinearised tomo-

graphic inversion problems in which rays, velocities and

travel times are all varied in concert for each sample

considered. We can therefore use the existence of loops in

posterior uncertainty as a criterion to check their quality in

models with strong and spatially sharp contrasts.

Figure 8 shows the standard deviations (bottom row) for

the results of networks trained on an 8� 8 grid. Only the

networks trained using the training set of uniformly ran-

dom velocities (Fig. 8f, h) exhibit signs of an uncertainty

loop. We include the mean (middle row) for comparison of

the shape of the velocity anomaly to the loop that surrounds

it. The difference between the two priors is clear when

comparing Fig. 8f–h: for a smoothed prior (Fig. 8g), the

maximum uncertainty is predicted to be in the centre of the

anomaly as opposed to the other two images where the

uncertainty is lowest at the centre of the anomaly and

highest on the margins as expected. However, when

inverting for the full model in a single network (Fig. 8h),

the loop is not as well defined as in Fig. 8f. Together with

the lack of clear trade-off relations in Fig. 7, this is evi-

dence that the full-model inversions are less robust than

single-cell inversions: as the networks invert for many

more parameters at once, they appear not to have been

trained so as to fully represent the correct physics of the

tomography problem.

The single-cell networks (one network trained for each

cell in the velocity model) allow us to estimate the full

marginal posterior probabilities for all cells in the model,

and these posterior distributions show how the network

represents uncertainty. We show the pdfs for three points in

the model: inside the velocity anomaly (star), at the edge of

the anomaly (triangle) and in the background velocity

(circle), where the locations are shown in Fig. 8a. We can

see for the 8� 8 model using the uniformly random

training set (Fig. 9a, c) the posterior pdf at the edge of the

anomaly has a larger uncertainty indicating that the range

of possible velocities spans the velocity of the anomaly and

that of the background velocity. This is expected at the

edge of an anomaly, the boundaries of which are uncertain:

the cells could either be inside or outside of the anomaly

and could therefore assume values of the anomaly (low

velocity) or the background model (high velocity). This is

the maximum range of velocities expected across the

model; hence, the largest uncertainties should be around

anomaly edges [5].

We do not see uncertainty loops in any model trained on

the smoothed models. This makes sense because by

imposing prior information that the model is relatively

smooth, we have removed the possibility to include the

effect of spatially sharp contrasts between anomalies and

the background velocity model, precluding the types of

physical trade-offs that create uncertainty loops. This is

represented in the pdfs (Fig. 9b, d) where the uncertainty is

much smaller than in (a) and (e) and where there is no

noticeable increase in uncertainties at the boundary of the

anomaly. Note that there is again a larger information gain

for the results from the smooth training set as shown by the

KL divergence values.

3.7 Realistic velocity models

Figures 10 and 11 show the results when applying the

trained networks to other types of structures that might be

encountered in geophysical or nondestructive testing

applications. Figure 10 shows results using uniformly

random training set, whereas Fig. 11 shows the equivalent

results obtained using the smoothed training set. The

models inverted on a coarser grid produce reasonable

estimates of the velocity models using either prior pdf;

however, for the smoothed prior, all the models, regardless

of grid size, are recovered fairly well. Figure 12 shows the

uncertainty maps for a coarse grid model trained using both

types of prior information and inverted using the single-cell

MDN models. When inverting the models with a uniformly

random prior (Fig. 12b), the uncertainty maps show a
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higher uncertainty at the anomaly interfaces (as expected

by analogy with the uncertainty loops above), thus helping

to define uncertainty in the model geometry, while the

results from the smooth prior miss this extra information.

4 Discussion

We compared different methods of mixture density net-

work inversions to estimate tomographic posterior proba-

bility density functions. When using data sets with little

prior information (Fig. 2a, b), the networks struggle to

estimate more than the simplest of velocity models: due to

the curse of dimensionality, it is simply not possible to

provide a sufficient density of prior samples on which to

train the MDN. Including stronger prior information in our

examples by training on smoothed velocity models

(Fig. 2d, e) improves inversion results, although the net-

works are no longer able to image sharp velocity contrasts,

nor estimate uncertainty in the shapes and locations of

spatially sharp velocity anomalies, as information about

such models is not contained in the training set. Our tests

indicate that the prior pdf is the most important factor in

improving a network performance since it restricts both the

training set and inversion results to a more constrained

(effectively lower-dimensional) manifold embedded within

the high-dimensional parameter space. This manifold is

more densely sampled than the full space, thus improving

network training and performance. All test models inverted

using the stronger prior information give higher SSIM and

KL divergence values compared to those using weaker

priors, regardless of grid size or how many pixels were

inverted with each network. Also, the two circular

anomalies in Fig. 5 are symmetrical, and this symmetry is

also shown in all of the smooth-prior inversion results

which is not seen in the uniform-prior results in Fig. 4.

Nevertheless, we show that when imposed prior informa-

tion is false (if the true model is rough but the prior pre-

cludes such models), then uncertainty results will be

compromised as in Fig. 8g, i. It should be noted that nei-

ther of the training sets created in this study are fully

representative of the true Earth. In reality, actual geo-

physical features of the Earth are neither uniformly random

nor smoothed, but are dependent on geological character-

istics that can include smooth variations or sharp bound-

aries. The results in Figs. 10 and 11 show that different

structures not seen in the training set can be recovered

using this neural networks method. However, a clearly

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 8 a True velocity model. For a single-cell MDN, using a training

set from a uniformly random distribution, results shown are b mean

velocities and f corresponding standard deviations. Using the same

type of network with a training set of spatially smoothed velocities,

we obtain c mean velocities and g standard deviations. For a full-

model MDN, using a training set from a uniformly random

distribution, we obtain d mean velocities and h standard deviations.

Using the same type of network with a training set of smoothed

velocities, we obtain e mean velocities and i standard deviations
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advantageous strategy for the future of neural network

tomography is to invest effort in finding and using more

sophisticated and correct prior information [40]. Recent

efforts in this direction include [41] who use expert elici-

tation to constrain prior multipoint geostatistics, Mosser

et al. [42] who use neural networks to parametrise geo-

logical prior information and Nawaz and Curtis [30–32]

who use Markovian models and variational methods with

embedded neural and mixture density networks to combine

geological and geophysical information; these various

directions appear to be strategically important for the future

of this field.

We illustrate the differences in the KL divergence val-

ues in Fig. 13. The top graph shows histograms of KL

values obtained when networks are applied to all synthetic

test data for the four different prior and network training

types for the 8� 8 grid model, and the bottom graph is

similar but for 16� 16 models. Both plots confirm that

training with a stronger prior increases the information gain

in the posterior as indicated in Fig. 6. Notice that this is not

necessarily an intuitively obvious result: if prior informa-

tion is weaker or less informative, we might expect the data

to add relatively more information, compared to the case

where prior information is stronger. We therefore suspect

that this result indicates that we simply cannot train the

MDNs in the case of weaker prior information and sparser

training examples; even though by adding stronger prior

information, we should decrease the relative value of the

data, this effect is outweighed by the fact that we can better

train the network and thereby extract more information

from data.

The effect of increasing the number of cells in the model

is also clearly highlighted: Fig. 13a has higher KL values

than Fig. 13b. Interestingly, both plots show that training

using a full-model inversion slightly increases the KL

divergence, implying that the networks are making use of

the relationship between adjacent pixels to better constrain

the posterior pdfs.

Fig. 9 Posterior pdfs (blue curves) compared to the prior pdfs (red

curves) for the 16� 16 grid models for three locations shown in the

true model of Fig. 8: circle (left), star (middle), triangle (right). The

rows show results from: (Row 1) Single-cell MDN’s using uniformly

random training data set. (Row 2) Single-cell MDN’s using the

smoothed training data set. (Row 3) Full-model MDN using

uniformly random training data set. (Row 4) Full-model MDN using

the smoothed training data set. The mean of the posterior is shown by

the blue solid line and the true velocity value by a black dashed line.

Corresponding KL divergence values are shown above each result

(colour figure online)
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4.1 Inference limits

When creating the training data set, we set hard bounds on

the grid cell velocities, thus limiting the range of velocity

models that should be found using the trained networks.

Figure 14 shows the inversion of a model at the limits of all

training data sets. The middle row shows results when

using the uniformly random training data set: none of the

inversions give reliable results. Although the network

trained to invert the full model at once performs slightly

better, all networks produce extremely poor results. This is

expected as the velocity model has a background velocity

at the lower limit of the training sets, 0.5 km/s and an

anomaly at the upper limit, 2.5 km/s. This is an extreme

example that is not likely to have proximal samples in the

training set; therefore, the results are expected to be poor.

The same model lies out with the data set with a stronger

prior as well, but networks appear to recognise that there is

a velocity anomaly. However, since the prior data set used

is smoothed, strong contrasts are precluded and none of the

networks give accurate velocity information, despite being

able to represent the geometry of the structure.

4.2 Inversion speed

As this is a prior sampling method, the training data set

must be created in advance. It took tprior ¼ 11 h, to create

the training data set of 2.5 million samples using 5 CPUs

on a Dell PowerEdge R820. However, this only needs to be

done once; even if more prior information becomes avail-

able, we may be able to update our prior using the prior

replacement method of Walker and Curtis [43] or the

resampling method of Sambridge [13] rather than calcu-

lating entirely new training examples.

In this work, each network took between 1 and 2 h to

train (converge) using 16 GB of RAM over 2 NVIDIA

TITAN X GPUs. For the 8� 8 grid models with an

ensemble of eight networks when training the network for

(a)

(b)

(c)

(d)

(e)

Fig. 10 a True velocity models. Using a randomly generated training

set from a uniform distribution, mean velocities from single-cell

MDN inversions for b an 8� 8 model and c a 16� 16 model and

from full-model MDN inversion for d an 8� 8 model and e a 16� 16

model. The corresponding SSIM values are shown above each result

(see ‘‘Appendix 2’’ for definition of SSIM)
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each grid cell separately, we required 8� 8� 8 ¼ 512

networks in total and for the 16� 16 models with an

ensemble of four networks, we required 16� 16� 4 ¼
2048 networks. However, the training of each network is

independent of others so the process can easily be paral-

lelised and using 50 cores a full training run for the larger

16� 16 grid model takes ttrain ¼ 80 h of real clock time.

For the full-model networks, only one network is trained

for all cells so the total training time is much lower: each

network takes around 3 h to train using 48 GB of RAM

over 4 NVIDIA TITAN X GPUs so training ten networks

only takes 30 h without running them in parallel. This

process could be reduced to 3 h by using only ten cores and

reduced further by training each network across cores. The

advantage of an MDN is the speed of inversion after

training: once a network is trained, new inversions take a

fraction of a second, even on a standard desktop computer.

Computational efficiency is therefore gained only when the

trained networks will be applied to many different data

sets.

Monte Carlo methods are known to be computationally

expensive [6], and a fully nonlinear Markov chain Monte

Carlo (McMC) tomographic inversion can take weeks or

months of compute time. Monte Carlo methods use pos-

terior sampling so for every new inversion a new sample

set must be performed. This is often a far less demanding

sampling task than sampling with similar density of sam-

ples from the prior since high-probability parts of the

posterior pdf usually span a significantly smaller volume of

parameter space. Nevertheless, neural network methods are

advantageous over traditional Monte Carlo methods when

n repeated inversions of similar data types are to be per-

formed provided that n[ ðtpriorþttrainÞ
tMC

, as the computationally

expensive sampling step only needs to be performed once

and the network-based inversion becomes faster. In a

tomographic setting, this could be useful for monitoring

purposes, where data collected periodically from the same

(a)

(b)

(c)

(d)

(e)

Fig. 11 a True velocity models. Using a training set drawn of

smoothed random models, mean velocities from single-cell MDN

inversions for b an 8� 8 model and c a 16� 16 model and from full-

model MDN inversions for d an 8� 8 model and e a 16� 16 model.

The corresponding SSIM values are shown above each result (see

‘‘Appendix 2’’ for definition of SSIM)
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set of sources and receivers can be inverted with the same

network(s) each time new data arrive. However it should be

noted that despite the longer computational time, Monte

Carlo methods can be used to produce higher resolution 2D

or 3D models [10, 44]. Mixture density networks have also

been shown to give conservative uncertainty estimates

compared to Monte Carlo methods [12].

4.3 Training flexibility

In this work, we train networks assuming that the data

(travel times) are recorded with exactly the same data

acquisition geometry as was used for training. It would also

be possible to train more flexible networks that account for

missing data. For example, one could augment the training

set with additional samples constructed from the same

data–model pairs ðdi;miÞ : i ¼ 1; . . .;N but with a certain

number of travel-time values in the data set randomly set to

0, to indicate a missing value [29]. Then, new data sets

with a missing values (for example due to a noisy stations

causing errors in travel times) can be inverted by the same

network.

Data from new receivers added after training the net-

work cannot be used. However, we can create a new

training set containing only the data from the added

receiver station and fine-tune the original network by using

the original network parameter values as a starting point for

training optimisation. This has the advantage that the

training process will be much faster.

5 Conclusion

We present neural network-based, nonlinear inversion

methods applied to a 2D travel-time tomography problem

to estimate posterior probability density functions. The

flexibility of mixture density networks means that we can

provide uncertainty estimates for 2D velocity maps. We

show that the prior information used to create the training

data set is the most important factor in providing accurate

(a)

(b)

(c)

Fig. 12 a True velocity models. For a single-cell MDN, b the

standard deviations using a training set generated from a uniformly

random distribution. Using the same network with a training set of

smoothed velocities, we obtain standard deviations (c)

(a)

(b)

Fig. 13 Histograms of KL

divergence values for results of

inverting synthetic data for all

models in the test set. a 8� 8

models, b 16� 16 models
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velocity estimates and uncertainties as such information

effectively reduces the dimensionality of the tomography

problem. However, as with all Bayesian inversions if we

impose false prior information, we can lose important

information about uncertainties. By training networks to

invert for a full tomographic model at once, we can also

understand the relationship between velocities in neigh-

bouring pixels; however, the number of parameters in the

inversion increases substantially, and training for accurate

models proves to be significantly more difficult. We

compare the speed of neural network inversion to more

standard Monte Carlo methods and determine that for

many repeated inversions which occur in monitoring situ-

ations, MDNs may outperform Monte Carlo methods in

terms of computational cost.
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Appendix 1: Network configurations

The networks trained on individual cells used four fully

connected layers (FC), where each node receives an input

from every node in the previous layer. In between each

node of the fully connected (FC) layers, a rectified linear

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 14 a True velocity model. For a single-cell MDN, using a

training set from a uniformly random distribution, results shown are

mean velocities for b an 8� 8 model and c a 16� 16 model. Using

the same network with a training set of spatially smoothed velocities,

we obtain mean velocities for d an 8� 8 model and e a 16� 16

model. For a full-model MDN, using a training set from a uniformly

random distribution, we obtain mean velocities for an f 8� 8 model

and g a 16� 16 model. Using the same network with a training set of

spatially smoothed velocities, we obtain mean velocities for an

h 8� 8 model and i a 16� 16 model. Corresponding SSIM is shown

above each result. The colour axis has been clipped to the velocity

bounds of the training set (0.5 km/s, 2.5 km/s) (colour figure online)
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unit (ReLU) is used. The individual layer sizes and the total

number of parameters to be trained in each networks are

outlined in Table 1.

Networks trained on the whole model (all cells at once)

used a convolutional network with three convolutional

layers (Conv) and four fully connected layers. The sizes of

each layer and the total number of parameters to be trained

in each networks are outlined in Table 2.

Appendix 2: Structural similarity index
measure (SSIM)

We use the form of the SSIM metric described in [45]. Let

x and y be a window of N � N size. We calculate the

luminance l(x, y), contrast c(x, y) and structure s(x, y)

defined as:

lðx; yÞ ¼
2lxly þ C1

l2x þ l2y þ C1
ð7Þ

cðx; yÞ ¼ 2rxry þ C2

r2x þ r2y þ C2
ð8Þ

sðx; yÞ ¼ rxy þ C3

rxry þ C3
ð9Þ

where l and r are the mean and variance of the windows x

or y and rxy is the covariance of x and y. To avoid insta-

bility in the division, constants C1, C2 and C3 are defined as

C1 ¼ ðk1LÞ2 and C2 ¼ ðk2LÞ2 where L is the dynamic range

of the cell values, while k1 ¼ 0:01 and k2 ¼ 0:03, and

C3 ¼ C2=2. The three components are combined to give

the full SSIM:

SSIMðx; yÞ ¼ ½lðx; yÞa � cðx; yÞb � sðx; yÞc� ð10Þ

where a, b and c are weighting parameters. Setting

a ¼ b ¼ c ¼ 1, we can simplify the expression to:

SSIMðx; yÞ ¼
ð2lxly þ C1Þð2rxy þ C2Þ

ðl2x þ l2y þ C1Þðr2x þ r2y þ C2Þ
ð11Þ

We perform the calculation over sliding windows and take

the mean of the resulting SSIM (x, y) values. For the 8� 8

models, we use 3� 3 windows and the 16� 16 models use

7� 7 windows, so that the windows cover a similar spatial

area.

Table 1 Configurations of the

networks with four fully

connected (FC) layers

Size of model FC 1 FC 2 FC 3 FC 4 Total no. of parameters

8� 8 270 1000 380 600 1,544,765

100 500 450 550 1,622,685

800 325 100 300 1,165,660

200 400 200 50 334,335

300 250 200 50 331,685

900 700 70 550 2,077,505

200 250 200 50 274,185

300 400 200 50 406,835

16� 16 375 500 300 600 5,265,470

300 250 200 50 625,445

200 400 200 50 628,095

800 1000 500 550 6,076,995

Each row in the table represents a separate network trained. Eight networks were trained for the 8� 8

models and four networks for the 16� 16 models

Table 2 Configurations of the

convolutional networks with

three convolutional (Conv)

layers and four fully connected

(FC) layers

Conv 1 Conv 2 Conv 3 FC 1 FC 2 FC 3 FC 4 Total no. of parameters

Filter Kernel Filter Kernel Filter Kernel 8� 8 16� 16

128 5 128 5 64 1 800 150 600 1500 4,717,405 13,363,165

32 9 32 5 16 1 500 300 600 1500 4,354,183 12,999,943

32 9 32 5 16 1 500 200 2000 1250 5,641,438 12,847,243

32 9 8 5 16 1 500 300 600 1750 4,986,575 15,054,335

32 9 32 5 16 1 500 1500 50 1250 3,528,333 10,734,093

Each row in the table represents a separate network trained
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