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ABSTRACT

With the advent of large and dense seismic arrays, novel,
cheap, and fast imaging and inversion methods are needed to ex-
ploit the information captured by stations in close proximity to
each other and produce results in near real time. We have devel-
oped a sequence of fast seismic acquisition for dispersion curve
extraction and inversion for 3D seismic models, based on wave-
field gradiometry, wave equation inversion, and machine-learning
technology. The seismic array method that we use is Helmholtz
wave equation inversion using measured wavefield gradients, and
the dispersion curve inversions are based on a mixture of density
neural networks (NNs). For our approach, we assume that a single
surface wave mode dominates the data. We derive a nonlinear
relationship among the unknown true seismic wave velocities,
the measured seismic wave velocities, the interstation spacing,

and the noise level in the signal. First with synthetic and then with
the field data, we find that this relationship can be solved for un-
known true seismic wave velocities using fixed point iterations.
To estimate the noise level in the data, we need to assume that the
effect of noise varies weakly with the frequency and we need to
be able to calibrate the retrieved average dispersion curves with
an alternate method (e.g., frequency wavenumber analysis). The
method is otherwise self-contained and produces phase velocity
estimates with tens of minutes of noise recordings. We use NNs,
specifically a mixture density network, to approximate the non-
linear mapping between dispersion curves and their underlying
1D velocity profiles. The networks turn the retrieved dispersion
model into a 3D seismic velocity model in a matter of seconds.
This opens the prospect of near-real-time near-surface seismic
velocity estimation using dense (and potentially rolling) arrays
and only ambient seismic energy.

INTRODUCTION

With the recent advent of so-called largeN seismic arrays, whereN
refers to the number of seismometers (IRIS, 2018), a new class of
seismic imaging and inversion methods has been developed to esti-
mate subsurface properties from closely spaced observations of the
full seismic wavefield. Array recordings provide high spatial and
temporal resolution recordings of the wavefield, potentially allowing
the recovery of high-resolution models of the subsurface. However,
conventional imaging and inversion methods do not fully exploit the
spatial proximity of individual recordings. For instance, closely
spaced observations of the wavefield allow estimates of the spatial

gradients of the wavefield to be calculated. We show here that these
can be used to constrain the near-surface seismic velocities in the
vicinity of the stations in novel ways. The field data presented in this
study are recorded by conventional 10 Hz corner frequency geo-
phones planted in a field site southeast of Edinburgh.
It has long been known that relating observations of seismic

wavefields made by proximate stations can reveal subsurface prop-
erties. One of the earliest approaches was to extract surface wave
dispersion curves by spatial autocorrelation (Aki, 1957). Other early
approaches included the inference of the seismic wave velocity be-
tween two stations from differential traveltime observations (Gerver
and Markushevich, 1966, 1972) and the characterization of the local
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wave slownesses using a linear Radon transformation (Kennett,
1981). The reader is referred to Rost and Thomas (2002) for a good
review on common array-based techniques.
A general strategy to estimate local elastodynamic properties

from gradients of volumetric observations (observations spanning
a small volume) of an elastodynamic wavefield is based on inverting
the wave equation locally (i.e., wave equation inversion) (Curtis and
Robertsson, 2002; Muijs et al., 2003). For body waves that have no
particular known structure (any number may arrive from any angle
with any amplitude), the general method requires stations to be lo-
cated not only on the surface, but also to be buried in the subsurface.
For surface waves, this requirement can be circumvented (de Ridder
and Biondi, 2015) because surface waves propagate predominantly
along the surface where observations are available. If wavefields
can be assumed to be composed of nonoverlapping planar waves,
then Langston (2007a, 2007b, 2007c) showed that the wavefield can
be described by a plane-wave equation, which further simplifies the
wave equation inversion problem. More generally, gradiometry
refers to the measurement of gradients, irrespective of how these
measurements are used in subsequent analysis. By plane-wave in-
version, we can determine wave attributes such as horizontal slow-
ness, changes in geometric spreading, changes in the radiation
pattern, and the wave propagation azimuth. This plane-wave inver-
sion approach has been refined with time-frequency analysis using
wavelets (Poppeliers, 2010, 2011) and analysis in 3D to include the
information from wave polarization (Poppeliers et al., 2013). This
approach has been applied on a continental scale, along boreholes,
and for terrestrial and lunar near-surface site studies (Liang and
Langston, 2009; Liu and Holt, 2015; Edme and Yuan, 2016; Lang-
ston and Ayele, 2016; Maeda et al., 2016; Sollberger et al., 2016).
The propagation of surface waves is commonly approximated as

being governed by a 2D Helmholtz equation with a frequency-de-
pendent phase velocity map (Aki and Richards, 2002). Wielandt
(1993) discusses the implications of lateral velocity variations on
the interpretation of surface waves through apparent phase velocity
maps. A strategy to extract wave velocities based on the Helmholtz
equation description for surface wave propagation is to use the
eikonal equation obtained using a ray theoretical approximation
(Lin et al., 2009; Lin and Ritzwoller, 2011; de Ridder et al.,
2015; Liu and Holt, 2015). This became a popular approach that
found applications on scales ranging from continents to reservoir
overburdens (Lin et al., 2009, 2013; de Ridder and Dellinger,
2011; Gouédard et al., 2012; Mordret et al., 2013a, 2013b).
De Ridder and Biondi (2015) and de Ridder and Curtis (2017) use

measured wavefields of ambient seismic noise to directly invert the
Helmholtz equation for apparent local phase velocity maps. This cir-
cumvented the need for cross-correlating recordings of a relatively
long time duration to estimate surface-wave traveltimes. The ambient
seismic wavefield can be composed of plane waves incident from
different directions and overlapping (de Ridder and Biondi, 2015).
A comparative analysis between eikonal tomography and Helmholtz
wave equation inversion showed that using Helmholtz wave equation
inversion can yield superior results when used together with compres-
sive sensing techniques (Zhan et al., 2018).
The methods that we use to estimate near-surface earth properties

from ambient seismic data are based on Helmholtz wave equation
inversion using measured wavefield gradients. We make no attempt
to separate the energy of different wave modes when analyzing the
wavefield, which we assume to be dominated by fundamental mode

surface waves. By neglecting the wavefield energy of higher order
wave modes and body waves, we assume that all of the recorded
energy can be described by a Helmholtz equation with a single
apparent phase velocity map that we aim to estimate. Furthermore,
we develop specialized pre- and postprocessing steps that were re-
quired to handle the effect of noise and approximation errors when
using finite-difference methods to compute the required wavefield
derivatives.
Neural networks (NNs) approximate a nonlinear mapping be-

tween two parameter spaces. By presenting the network with a
set of data-model pairs, it can be trained to create a mapping from
the data to the model parameter space. This is particularly useful in
geophysical inverse problems in which the forward mapping, from
the model to the data parameter space, is well known or simple to
calculate (to construct training data) but the inverse mapping is
complex or difficult to determine directly. Once a network has been
trained, it can be given previously unseen data and will output a new
model estimate in seconds. Using a specific class of NN, called a
mixture density network (MDN), we can also output uncertainties
in the network (Bishop, 1995). Meier et al. (2007a, 2007b) use
MDNs to invert regional surface-wave dispersion curves to give
fully probabilistic estimates of global crustal thickness models.
MDNs have also been used to perform petrophysical inversion of
seismic data sets for subsurface porosity and clay content.
We start by setting out the theory for seismic wavefield gradiom-

etry and Helmholtz wave equation inversion, and we establish a
correction procedure to handle the errors resulting from noise
and finite-difference approximations. We first test this theory and
correction procedure with a synthetic data example, and then we
present the results of a field experiment over a buried landfill to
investigate the efficacy of this acquisition and processing method.

METHODS

Helmholtz wave equation inversion for surface wave
phase velocities

We estimate phase velocity maps from wavefields dominated by
surface waves by measuring the wavefield’s temporal and spatial
derivatives and inverting a wave equation. It is common practice
to approximate the far-field behavior of surface waves as a super-
position of wave modes traveling with frequency-dependent veloc-
ities. Each mode is composed of a superposition of plane waves that
obey a scalar wave equation with a mode-dependent and frequency-
dependent phase velocity, ĉðx; y;ω; mÞ, where ðx; yÞ are the hori-
zontal coordinates on the earth’s surface, ω is the frequency, and
m is the mode number. Consequently, when a recording is domi-
nated by far-field surface waves of a single wave mode (potentially
interfering simultaneous arrivals from different azimuths), the
wavefield observed in the vertical component of particle velocity
(or displacement), here denoted with U, obeys the 2D scalar Helm-
holtz equation with frequency-dependent velocity:

∇2Ûðx; y;ωÞ þ ŝ2ðx; y;ωÞω2Ûðx; y;ωÞ ¼ −f̂ðx; y;ωÞ;
(1)

whereU is the scalar wavefield changing with time and space and Û
is its Fourier transform dual in the frequency domain, f is a gen-
eralized source term, f̂ is its Fourier transformed dual, and ŝ ¼ 1∕ĉ
is the slowness where we have dropped the wave mode dependency
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for notation simplicity. The term ∇2 is the Laplace operator, so for a
spatial 2D wavefield (in the subsequent field data examples),
∇2 ¼ ∂2x þ ∂2y, whereas for a spatial 1D wavefield (in the sub-
sequent synthetic data example), ∇2 ¼ ∂2x. Although we could have
followed the method of Allmark (2018) and estimated local sources
of energy, here, we neglect local sources acting within the domain
of recording (the array carpet) or by choosing a subdomain that
omits strong localized sources, so we assume f̂ðx; y;ωÞ ¼ 0. We
follow de Ridder and Biondi (2015) to find an appropriate time-do-
main scalar wave equation: We band-pass the recordings using a
narrow frequency-domain Hann window and central frequency
ω 0 to obtain Ûw 0 ðx; yÞ. We ignore the frequency dependency of
the phase velocity within the passed frequency bandwidth, so
ĉðωÞ ¼ cw 0 . With an inverse Fourier transformation, we then
obtain a time-domain wave equation:

∇2Uw 0 ðx; y; tÞ ¼ ∂2t Uw 0 ðx; y; tÞs2w 0 ðx; yÞ; (2)

where ∂t is the temporal derivative operator.
Equation 2 states that the spatial and temporal derivatives of the

wavefield, after a narrow band-pass filter for a particular central fre-
quency, are related through the local phase velocity. Hypothetically,
if we had direct observations of the second-order spatial and tem-
poral gradients of the continuous wavefield in space and time, we
could solve this relationship for the slowness:

sðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR tn
t0 dtf∂2t Uw 0 ðx; y; tiÞgf∇2Uw 0 ðx; y; tiÞgR tn
t0 dtf∂2t Uw 0 ðx; y; tiÞgf∂2t Uw 0 ðx; y; tiÞg

s
; (3)

where the ðx; yÞ coordinates correspond to the coordinates of a sta-
tion in the array and the recording time started at t ¼ t0 and ended at
t ¼ tn. Mapping this relationship as a function of space yields the
phase velocity map for that particular central frequency. We can in-
terpret the properties of the subsurface of the survey area using
phase velocity maps at one or more central frequencies.

Seismic wavefield gradiometry

Equation 3 requires wavefield derivatives of U to be available.
Although accelerometers could be used to observe the second-order
temporal derivative of the wavefield, we are not usually able to ob-
serve the spatial gradients of the wavefield directly. The wavefield’s
particle velocity is usually observed discretely in space and time.
We therefore estimate the spatial derivatives of the wavefield using
finite-difference approximations to the derivative operators. This
latter process is now often referred to as seismic wavefield gradi-
ometry.
We assume that seismic stations are located on a regular grid with

spacing of Δx and Δy, respectively, in the x- and y-directions, and
measurements are made with a constant sampling rate with spacing
Δt. Each recorded data point is labeled asUðxi; yj; tkÞ. Finite-differ-
ence coefficients are found from Taylor series expansions of the
function — see LeVeque (2007) for background on the finite-dif-
ference method. Higher order terms in the Taylor series are ne-
glected to curtail the number of coefficients required to estimate
the continuous derivative from discrete observations. In this work,
we use finite-difference approximations with second-order accu-
racy. We estimate the second-order temporal derivatives of the
wavefield using

f∂2t UgMðxi; yj; tkÞ

¼ Uðxi; yj; tk−1Þ − 2Uðxi; yj; tkÞ þ Uðxi; yj; tkþ1Þ
Δt2

: (4)

That is, for each time sample at each station, the second-order tem-
poral derivatives are estimated using two adjacent time-samples. We
estimate the second-order spatial derivatives of the wavefield using

f∇2UgMðxi; yj; tkÞ

¼ Uðxi−1; yj; tkÞ − 2Uðxi; yj; tkÞ þ Uðxiþ1; yj; tkÞ
Δx2

þ (5)

Uðxi; yj−1; tkÞ − 2Uðxi; yj; tkÞ þ Uðxi; yjþ1; tkÞ
Δy2

: (6)

That is, for each time sample, the second-order spatial derivatives at
one station are measured using the corresponding time-sample at
the four adjacent stations in a cross-shaped template. Using adjacent
samples means that near the boundary of the array (where no
adjacent stations are available), we cannot measure the spatial
derivatives.
The measured wavefield derivatives can be used to invert the

wave equation directly and obtain a measured estimate for the local
wave slowness (similar to equation 3):

sMðxi;yjÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt

k¼1 dtf∂2t UgMðxi;yj; tkÞf∇2UgMðxi;yj; tkÞPNt
k¼1 dtf∂2t UgMðxi;yj; tkÞf∂2t UgMðxi;yj; tkÞ

vuut ;

(7)

where Nt is the number of available measurements of second-order
spatial and temporal derivatives for each station at ðxi; yjÞ using all
samples in time. In the least-squares regression formulation in equa-
tions 3 and 7, we choose to minimize the least-squares error in the
spatial wavefield gradient because errors in the measured spatial
wavefield gradients are usually larger than those in the measured
temporal wavefield gradients (Allmark, 2018).

Correcting finite-difference approximation errors in
wavefield gradiometry

Any finite-difference approximation is only accurate to a certain
order in the interstation distance and depends on the wavelength of
the underlying function. The approximation error becomes larger
with increased distance and shorter wavelengths, but the effect of
noise may dominate at small sampling distances (see the “Field data
experiment” section). In Appendices A and B, we analyze the
approximation error in finite differences and the effect of noise
in our observations and we derive the following relationship be-
tween the slowness sM , measured using wavefield gradiometry
or wave equation inversion and the true slowness sT (equa-
tion B-15):

sT ¼ γðsTÞ
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
sM; (8)

Gradiometric wave equation inversion KS15
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where ϵ < 1 is a parameter that depends on the signal-to-noise level
of the measured spatial gradients of the wavefield recordings and

γðsTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 − cosf2πfΔtgjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 − cosfsT2πfΔxgj
p Δx

Δt
sT: (9)

This equation has two unknowns (ϵ and sT ). We use fixed point
iterations to invert (solve) the nonlinear relationship between sT and
sM given a particular ϵ. We need an observation or estimate of the
average background dispersion to calibrate the noise level ϵ in this
relationship, illustrated in the “Field data experiment” section. We
will solve the nonlinear relationship in equation 8 with fixed point
iterations (Deuflhard, 2012):

sj ¼ γðsj−1Þ
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
sM j ¼ 1; 2; : : : n; (10)

starting with s0 ¼ sM and finishing with sT ≃ sn. Finally, an esti-
mate for the true velocity is recovered as cT ¼ s−1T . We expect that
γðsÞ has multiple fixed points and that there is no guarantee of con-
vergence to the fixed point corresponding to the correct sT . A com-
plete analysis of the criteria on the starting slowness, for which the
fixed-point iterations converge to the desired true slowness, is be-
yond the scope of this paper. However, given a slowness estimate
reasonably close to the true slowness (perhaps a better estimate than
s0 ¼ sM), we can expect convergence to the correct sT . We found
that n ¼ 20 iterations are sufficient to converge (see Appendix B).
The unknown noise level is more challenging to estimate. One way
is to ensure that the final corrected dispersion curves place energy in
the same region of a dispersion image of all of the data (using, for
example, a frequency-wavenumber spectrum or knowledge of a few
points along an average dispersion curve). Despite requiring some
knowledge about the average dispersion curve, we can still map
lateral phase-velocity changes with high resolution (and assuming
that ϵ does not change significantly across the array). This will be
illustrated in the synthetic and field data examples that follow.

Mixture density networks

NNs are nonlinear mathematical models that can be used to ex-
press a relationship between data d and a model m. By presenting
the network with a set of data-model ðd;mÞ pairs, it can be trained
to create a mapping from the data to the model parameter space by
minimizing a cost function (usually a sum of squared errors) that
measures the difference between the network model-space output
for each data vector d and the true model m in each pair. An
MDN is a class of NNs developed by Bishop (1995) to represent
arbitrary probability distributions in the same way that an NN rep-
resents functions. They are trained in the same way as a standard

NN but instead of outputting a model estimate, they provide an
estimate of parameters that describe a desired probability distribu-
tion — in our case, the Bayesian posterior distribution over m
given some recorded data d as input. In our networks, we param-
eterize the output by a sum (mixture) of Gaussians, which has been
shown to be adequate in other surface wave dispersion inversions
(Meier et al., 2007a, 2007b). For a detailed description of MDNs
and their application in geophysical contexts, we refer the reader to
Meier et al. (2007b) or Shahraeeni and Curtis (2011).
We forward modeled 100,000 randomly generated S-wave depth-

velocity models for dispersion curves with frequencies 18, 20, 22,
and 24 Hz using the DISPER80 subroutines by Saito (1988). The
depth-velocity models each have 11 layers that increase in thickness
with depth (summarized in Table 1) because we expect our phase
velocity data to provide less resolution the deeper the layer (Shapiro
and Ritzwoller, 2002). For each layer in the model, the S-wave
velocities VS were uniformly randomly selected from a velocity
range; for the top layer, this was 50–300 m/s, and for subsequent
layers, we used 300–2000 m/s. The pressure-wave velocity VS and
density ρ were set as VP ¼ 1.16VS þ 1.36, and ρ ¼ 1.74

ffiffiffiffiffiffi
VP

4
p

.
Once the dispersion curves were generated for each model, the
original models were averaged vertically to provide mean velocities
in five depth layers with thicknesses of 3, 7, 10, 10, and 20 m (Ta-
ble 1). Wewill invert the data for velocities in these upscaled models
to increase the degree of constraint on each layer offered by the
measured dispersion. The upscaled models m and their associated
dispersion curves d were used as the data-model pairs to train the
MDNs. Separate MDNs were trained to output the distribution of
the S-wave velocity in each layer.
Training was implemented using Google’s TensorFlow open-

source software library. Multiple MDNs were trained for each layer,
and the network with the lowest cost value was selected as the final
network for that layer. The outputs of each network are not true
Bayesian posterior distributions because we do not know the abso-
lute uncertainties on the phase velocity, but they do represent some
measure of relative uncertainty on the S-wave velocity at each
depth. They have the huge advantage over other nonlinear inversion
methods (such as Monte Carlo; Shapiro and Ritzwoller, 2002; Ga-
letti et al., 2015; Zhang et al., 2018) of computational speed: Once
the networks are trained, they can be applied to new data sets in
seconds (Meier et al., 2007b).

TWO-LAYER SYNTHETIC DATA EXPERIMENT

We first demonstrate the method to correct finite-difference
approximation errors in wavefield gradiometry, followed by wave
equation inversion using synthetic data. The model has two
spatial dimensions ðx; zÞ, and the data were generated with a full
elastic simulation. The model is a layer over a half-space with
the interface at 50 m in depth. The layer has VP ¼ 1500 m∕s
and VS ¼ 750 m∕s, whereas the half-space has VP ¼ 2600 m∕s
and VS ¼ 1300 m∕s. Both layers have density of 1000 kg∕m3.
The velocities in the half-space are higher than those in the top
layer, as is common in near-surface field scenarios. The simulated
source was placed halfway along the spatial axis and just under
the free surface inside the top layer. The source wavelet has
frequency support over the range 1–15 Hz. The wavefield was
simulated using a very dense spatial grid, so that numerical
dispersion at frequencies below 15 Hz can be neglected in the
following analysis. We record the vertical component of particle

Table 1. Summary of the parameterization of S-wave
velocity-depth models used for training the MDN.

KS16 Cao et al.
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velocity at the surface, uðx; tÞ, which is a scalar field that has one
spatial dimension and one temporal dimension (a sampling rate
of Δt ¼ 0.1 ms).
Figure 1 shows the simulated wavefield. Besides strong funda-

mental mode surface waves, we recognize at least two overtones.
Refracted and reflected waves cannot be recognized, but they
may be hidden beneath the surface waves. The wave motion of sur-
face waves attenuates with depth, and lower frequencies penetrate
deeper than higher frequencies. Because the velocity of the medium
increases with depth, we often find that surface waves travel with
faster velocities at lower frequencies than do higher frequencies.
This phenomenon is known as dispersion. From here on, we neglect
all body wave energy and higher mode surface-wave energy in
the simulated wavefield and assume that the dispersive Helmholtz
equation provides a good description of the dominant fundamental
mode surface waves.
The frequency wavenumber spectrum of the shot record is shown

in Figure 1b. The velocity with which the various wave-modes are
observed by the array is given by the slope of the anomaly in the f-k
space with respect to the origin. Their apparent velocity is much
easier to observe in a dispersion image, which shows the energy
as a function of phase velocity and frequency. To obtain this, we
transform the f-k spectrum to an f-s spectrum
given the relationship s ¼ k∕f. In the gray-
shaded backgrounds of Figure 2, we thus identify
the relationship between the frequency (f) and
phase velocity (c) for the fundamental mode sur-
face waves (the dominant wave mode) in the si-
mulated wavefield.
We first study a case in which the observations

are spaced 11 m apart. This recording is extracted
from the fully sampled wavefield by subsam-
pling. We perform a series of band-passes to
the data with different central frequencies. These
band-passes are 1 Hz wide, and the central
frequencies are spaced 0.5 Hz apart. We use
wavefield gradiometry to estimate the spatial
and temporal derivatives, and we perform wave
equation inversion by regression to extract the
phase slownesses sωðxÞ. We average this phase
slowness over space but exclude the measure-
ments made in the source region. The prelimi-
nary phase slownesses are shown as a light-
blue curve in Figure 2a. This retrieved dispersion
curve follows the dispersion image of the data at
low frequencies, but it deviates at higher frequen-
cies at which we underestimated the slowness of
the surface waves. This is because at high
frequencies, the wavelength of the waves is
closer to the Nyquist frequency, so the approxi-
mation errors of the spatial and temporal finite
differences used in the wavefield gradiometry in-
crease. An underestimation of the spatial deriv-
atives results in an overestimation of the velocity
(an underestimation of the slowness). We repeat
this procedure for the case in which the observa-
tions are spaced 22 m apart (shown in Figure 2b).
As expected, the finite-difference approximation
errors increase with increased interstation spac-

ings. The preliminary phase slowness curve deviates significantly
from the true dispersion and corrupts the slowness-frequency
dispersion relationship that one would use to reveal the subsurface
layering.
To correct the dispersion curves, we use equation 8 and omit the

effect of noise in this synthetic data example; thus, ϵ ¼ 0. Even
though the effect of the temporal finite-difference approximation
is small, we take the spatial and temporal finite-difference approxi-
mation errors into account and use the correction factor in equation 9
(see also equation B-13 in Appendix B). Solving the relationship in
equation 8 (with ϵ ¼ 0), we obtain the corrected phase slowness
curves shown as the red curves in Figure 2a. The corrected
dispersion curves are in agreement with the dispersion of the fun-
damental surface-wave mode.

FIELD DATA EXPERIMENT

Acquisition

We acquired field data on land beside Newton Farm located in
southeast Edinburgh on 17 November 2016, a windy and wet day.
The field is now a picturesque meadow complete with a rather pro-
lific flock of sheep, but it used to be a landfill. This farm is flanked

Figure 1. (a) Seismogram of the two-layer synthetic data set. Several surface wave
modes can be recognized in the recordings. (b) Frequency-wavenumber spectrum of
the two-layer synthetic data set. The strongest amplitudes correspond to the fundamen-
tal-mode surface waves.
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by two roads, the Old Craighall Road on the
northwestern side and the A720 Ring Road on
the southeastern side. Figure 3 shows the main
elements of the field site and the deployed seis-
mic array.
We mapped out a square with measure tapes so

we could place the geophones with care on a
regular rectangular grid. The local coordinate
axes mapped out in the field are shown in Fig-
ure 3 and are the reference axes in subsequent
figures. The azimuth of the y-axis points
37.37° anticlockwise with respect to north. The
array consisted of 88 geophones, deployed on
an 8 × 11 grid with 5 m spacing in the x- and
y-directions. Each geophone had a 10 Hz corner
frequency and recorded virtually no energy of
less than 1 Hz (see Figure 4).
We recorded the seismic energy continuously

for a little more than an hour with a temporal
sampling rate of 125 Hz. Traffic on both roads
provided a source of ambient seismic energy.
In addition, we recorded seismic energy due to
our own footsteps and perhaps the wind and
water waves from the nearby coast. A recording
geometry deployed as in this field survey could
easily be moved around in a rolling fashion until
the entire area of interest is covered.

Figure 2. Frequency-slowness spectrum (background shading) and phase slowness
measurements (curves) obtained by gradiometry for the two-layer synthetic data set.
The strongest amplitudes correspond to the fundamental mode surface wave. The spatial
sampling Δx used in the finite differences are (a) Δx ¼ 11 m and (b) Δx ¼ 22 m. The
light-blue curves show the phase slowness measurements obtained by gradiometry be-
fore applying the finite-difference error correction procedure, whereas the red curves
show the phase slowness measurements after applying the correction procedure.

Figure 3. Satellite map of the acquisition field site southeast of Edinburgh. The GPS coordinates of the white star, the origin of our local
reference grid, are (55.914766N, 3.070977W). The azimuth of the y-axis points to 37.37° anticlockwise with respect to north. There are two
main roads that provide traffic noise: Old Craighall Road to the northwest and the A720 (Edinburgh ring road) to the southeast. The small white
circles show wooden posts, and the yellow square corresponds to the local reference coordinate grid that we use to deploy the array. The array
geometry within the yellow square is depicted in the top-right corner.
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Data characterization and preprocessing

The recorded data had widely varying amplitudes for different
stations due to differences in coupling for each geophone. Noise
bursts and spikes further complicated processing and analysis.
We first applied an automatic gain control (AGC) filter with a short
window length (0.25 s) to attenuate amplitude bursts and spikes. To
ensure a similar frequency content across stations, we reweighed the
complex spectrum by a running average of the complex amplitudes
in a 0.12 Hz wide running window. The final result of preprocessing
and the effect of the AGC in the time and frequency domains is
shown in Figure 4a and 4b. The average absolute amplitude of
the data in Figure 4a and 4b is compared in Figure 4c.
Spatially coherent wavefield energy emerges only after this fairly

aggressive preprocessing, suggesting that receiver coupling and
very near receiver effects dominate over amplitudes of the wave-
field that we need for gradiometry. The AGC in time corrects long
period trends (low frequencies), but the gradiometry measure-
ments are taken as the second derivatives in time (sensitive to the

high-frequency content). However, differences in coupling between
nearby stations are now largely removed. We apply a Hann window
band-pass filter with a central frequency of f0 ¼ 19 Hz and width
of Δf ¼ 5 Hz to the data, and we find a clear pattern of waves
propagating from across the array (Figure 5a). From an animation
of the recorded amplitudes as a function of time, we observe that
these waves propagate predominantly in a northwestern direction.
To further analyze the character of the directional wave propaga-

tion across the array, we perform a beamform experiment (see, for
example, Rost and Thomas, 2002). We filter the data between 18
and 20 Hz and perform a slant-stack transform (stacking the gathers
over planes with the given intercept time at zero offset and apparent
slownesses along the x- and y-axes). We average the absolute value
of the resulting ðτ; px; pyÞ cube over arrival times τ, resulting in an
image as a function of the x- and y-direction slowness, px and py,
respectively (Figure 5b). The analysis confirms that the dominant
source of the ambient seismic noise comes from the southeast, sug-
gesting that the dominant energy is generated by traffic on the A720
Ring Road. Some seismic energy originates from the northwest,
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Figure 4. (a) Gather of 2.5 s of raw data. (b) The same gather after preprocessing with AGC in the time domain and reweighing in the
frequency domain with a running average. (c) The same gather as in (b) after a Hann window band-pass filter with a central frequency
of f0 ¼ 18 Hz and width of Δf ¼ 2 Hz.

Figure 5. (a) A snapshot of processed recorded ambient seismic noise for data filtered between 18 and 20 Hz. (b) Phase slowness images
obtained by beamforming for the same data, again filtered between 18 and 20 Hz.
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which may be generated by traffic on Old Craighall Road. It is less
clear what generates the seismic energy originating from due west.
Possibly, this is seismic energy generated on the A720 Ring Road
that is backscattered from a series of railroad tracks west of the
field site.

Surface wave dispersion from wavefield gradiometry
and wave equation inversion

We further analyzed the data to obtain dispersion curves using
independent shorter portions of the full recording. After the above
described preprocessing procedures, we successively band-passed
the data with 5 Hz wide Hann windows spaced 1 Hz apart from
3 to 36 Hz. For each window and each band-passed recording,
we measured spatial and temporal derivatives and inverted the wave
equation. This yields dispersion curves for each station location in
the interior of the array. We will verify these dispersion curves by
comparison with the frequency wavenumber spectrum of the data
ðf; krÞ, where k2r ¼ k2x þ k2y, which shows one dominant wave
mode (the background shading in Figure 6).
We processed all of the data, used the neighboring stations

to measure the spatial second-order derivative with ΔX ¼ 5 m,
and made average dispersion curve measurements across the entire
array from 11 recordings, each lasting 3 min. We also made
dispersion curve measurements using the full hour of recording.
The dispersion curves were averaged over the interior of the array,
discarding the station locations at the edges at which no spatial
derivative could be measured. This procedure yields average
dispersion curves for the entire array, which we normalize by fre-
quency for comparison with the f-kr spectrum (shown as the light
blue curves in Figure 6).

The dispersion curves obtained by wavefield gradiometry and
wave equation inversion do not accord with the array-averaged
dispersion image obtained by the frequency wavenumber transform.
At higher frequencies, errors due to the finite-difference approxima-
tions dominate and the retrieved velocity is too high, whereas at low
frequencies, noise dominates the wavefield gradiometry and the re-
trieved velocity is too low. To correct the dispersion curves, we use
equation 8 and include the effect of noise, so ϵ ≠ 0. We take only
spatial finite-difference approximation errors into account, and the
correction factor in equation 9 simplifies to (see also equation B-14
in Appendix B):

γ2ðstÞ ¼
ffiffiffiffiffi
1

α2s

s
¼ sT2πjfjΔxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j1 − cosfsT2πfΔxgj
p : (11)

This correction factor is valid for the case that Δx ≈ Δy (which is
valid for the geometry of the array that we deployed); in the event
that Δx ≠ Δy, a derivation of this correction factor would be sig-
nificantly more complicated and a procedure as proposed by de Rid-
der and Curtis (2017) may be more suitable. We tested several
values of ϵ and finally selected ϵ ¼ 0.2, which produced good
agreement above 15 Hz between the measured dispersion (the
red curves in Figure 6) with the frequency-wavenumber spectrum,
both averaged across the entire array. At less than 15 Hz, this agree-
ment breaks down (not shown in Figure 6). Although we cannot
assume that the effect of the S/N in the measured gradients is con-
stant over the entire frequency range, we note that even with a con-
stant ϵ, we achieve good results within a certain finite frequency
range. This is analyzed further in the “Discussion” section.
To move the support of the signal closer to the Nyquist frequency,

we repeat the analysis (again using ϵ ¼ 0.2) by measuring the spa-
tial second-order derivative using the same second-order finite-dif-
ference stencil but decimating to a station spacing of ΔX ¼ 10 m.
This set of retrieved dispersion curves agrees with the frequency-
wavenumber spectrum at less than 15 Hz (the yellow curves in
Figure 6).
Finally, we are interested in how the phase velocity changes as a

function of space. Using ϵ ¼ 0.2, a value that results in maximum
agreement between the array-averaged frequency wavenumber
spectrum and the dispersion curves from wavefield gradiometry and
wave equation inversion, we correct the dispersion curves for each
point in space (with no spatial averaging). This produces phase-
velocity maps, shown for 18, 20, 22, and 24 Hz in Figure 7. These
phase-velocity maps are obtained by processing the central 30 min
of an hour-long recording. We note similar velocity structures for
phase velocity maps at different frequencies. This is the first indi-
cation that our results are reliable.
To further test the reliability of these maps, we obtained similar

maps using the first and second half-hour recordings independently:
There is good agreement between maps of phase velocity despite
using independent recordings (Figure 8). The velocity anomalies
are of the same order of magnitude as the finite-difference error
correction to the phase velocities. This might raise concerns that
the correction procedure itself generates different structure. We
therefore present maps of phase velocities obtained without apply-
ing the finite-difference error correction procedure and verify that
the correction procedure did not alter the main geometric features

Figure 6. Frequency-wavenumber spectrum (background shading)
and corresponding phase slowness measurements (curves) obtained
by gradiometry for the ambient-noise field data set. The highest am-
plitudes correspond to the fundamental surface wave mode. Each
set of curves shows the phase slowness measurements obtained
by gradiometry and consists of a series of dotted curves (each ob-
tained from single-data files that last approximately 130 s) and one
solid curve (a combination of all such files lasting approximately
half an hour). The light-blue curves show the phase slowness mea-
surements obtained by gradiometry with a spatial sampling used in
the finite differences of Δx ¼ 5 m without applying the finite-differ-
ence error correction procedure. The red curves show the phase slow-
ness measurements obtained with a spatial sampling of Δx ¼ 5 m
after applying the correction procedure. The yellow curves show
the phase slowness measurements obtained with a spatial sampling
of Δx ¼ 10 m, after applying the correction procedure.
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identified in the maps (Figure 9, where we used cubic spline inter-
polation to aid the visual comparison).

Mixture density network inversion

Using the phase velocity maps for frequencies 18, 20, 22, and
24 Hz shown in Figure 7, we extracted the dispersion curve at each
grid location and inverted it for a 1D depth-velocity model beneath
that location. Figures 10 and 11 are maps of the mean result and the
corresponding standard deviation of the output probability distribu-
tion at each depth level. As an example, the 1D depth profile for
location ðx; yÞ ¼ ð35 m; 10 mÞ is shown in Figure 12a, and the
individual probability density functions at each depth level are
shown in Figure 12b–12f. Note that the probability density func-
tions show that by summing multiple Gaussian kernels with differ-
ent means and standard deviations, non-Gaussian solutions can be
recovered, demonstrating that, in principle, the MDN method can
give full probabilistic solutions. We used six kernels when training
our final MDNs, but we found that no matter how many kernels we
used, the networks assigned negligible amplitudes to all but two or
three kernels in each case. In other words, the networks were able to

represent the probability density function for each layer using fewer
kernels than we allow in the training.

DISCUSSION

We propose to use the scalar wave equation to extract frequency-
dependent velocity maps for the fundamental (or dominant) surface-
wave mode from dense observations of an elastodynamic wavefield
(ambient noise, controlled sources, etc.). The synthetic example
shows that when a wavefield is dominated by fundamental-mode
surface waves, the body waves and higher order surface waves
can be neglected. In the field data example, we learned from the
f-kr spectrum (Figure 6) that our field data are dominated by a sin-
gle surface wave mode. However, wave equation inversion
using wavefield gradiometry to measure the spatial derivatives re-
quires careful analysis of the effect of the spatial sampling and noise
(aka that component of the recordings that does not correspond to a
noise-free observation of the dominant surface wave mode) in the
recordings. We derived an iterative procedure to correct our
dispersion curves for the effect of spatial sampling and to include
the effect of noise.
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Figure 7. Phase velocity maps obtained from the ambient-noise field data set by gradiometry at four center frequencies: (a) 18 Hz, (b) 20 Hz,
(c) 22 Hz, and (d) 24 Hz. These maps were obtained using half an hour of recordings extracted from the middle of the recording period (which
lasted a total of 1 h). The axis limits correspond to the complete survey dimensions; the lack of velocity information near the edges is because
the finite-difference method requires four neighboring stations (corresponding to locations outside of the acquisition area).
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Because we use finite differences using neighboring receivers to
measure the spatial derivatives of the wavefield (i.e., wavefield gra-
diometry), it is interesting to discuss what occurs when the wave-
field is sampled beyond the Nyquist criterion. The error in the

measurement of spatial derivatives using finite differences increases
when the spacings between observations increases. The expression
for the spectrum of the finite difference operator (equation A-5 in
Appendix A) holds for spacing larger than the Nyquist criterion;
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Figure 8. Phase-velocity maps obtained from the ambient-noise field data set by gradiometry at two center frequencies after applying the
finite-difference error correction procedure: (a and b) 20 Hz and (c and d) 24 Hz. The maps for each center frequency are obtained from
independent data, respectively, (a and c) from the first half hour of recordings and (b and d) from the second half hour of recordings.
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Figure 9. Phase-velocity maps obtained from the ambient-noise field data set by gradiometry at a 22 Hz center frequency, (a) before and
(b) after applying the finite-difference error correction procedure.
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however, at twice the Nyquist criterion sampling, this spectrum has
zero amplitude, as opposed to the correct value of ð2kÞ2, and
the correction factor becomes infinite. The (nonlinear) expressions
for the error in measured velocities resulting from the approxima-
tion error in the spatial finite differences (equations B-13 and B-14
in Appendix B) also hold for station spacings beyond the Nyquist
criterion. However, for wavefields that are sampled beyond the Ny-
quist criterion, we do not expect the fixed-point iterations to con-
verge to the correct slowness, when the starting slowness for the
fixed-point iterations is far from the true slowness. More impor-
tantly, the effect of noise becomes dominant as the station spacing
exceeds the Nyquist criterion.
There are several causes of noise in the recordings. For example,

the sensor coupling with the subsurface and electronic noise in the
cables typically vary from station to station. We applied an AGC
filter to the field data to attenuate coupling artifacts. There may
be signals in the recordings resulting from scattering with wave-
numbers beyond the Nyquist criterion. Noise typically has support
over a wide (perhaps even the full) wavenumber spectrum; however,
the signal in which we are interested has only limited support.
Therefore, the application of the spatial derivatives (an operator
with the spectrum wavenumber-squared) changes the signal-to-
noise ratio (S/N). Because the noise near the Nyquist criterion is
amplified the most, the S/N is usually improved when the signal
has wavenumber support near the Nyquist criterion. However, this
also means that ϵ should be dependent on the wavenumber (and
therefore frequency). This poses an additional challenge because
of the effect of noise in the iterative correction procedure with a
factor that has to be estimated from the data (ϵ in Appendix B).
Unfortunately, because the true velocity is unknown, it is chal-

lenging to estimate the ϵ factor for a single frequency. Instead, we
choose a factor for which we retrieve a dispersion that overlies the
dispersion observed in a frequency-wavenumber plot averaged over
all of the data. This means that we assume that the effect of noise in
the measurements of the spatial wavefield derivatives varies only

weakly as a function of frequency. However, our analysis in the
previous paragraph has shown that this is incorrect because the
S/N of the signal changes as the wavenumber support of the signal
varies with frequency. From the results in Figure 6, we nevertheless
see that this assumption is approximately true over small frequency
ranges. The assumption breaks down (especially at lower frequencies)
as the support of the signal moves away from the Nyquist criterion.
Therefore, in the example of Figure 6, we subsampled the wavefield
to twice the grid spacing so that the support of the signal remained
closer to the Nyquist criterion and the noise does not completely
corrupt the analysis. In this study, we manage to extract dispersion
curves between 11 and 30 Hz; this bandwidth is limited (especially
on the lower end) by not averaging over the entire patch. The upside is
that we are able to recover spatially varying dispersion curves.
The required matching process for the noise impact correction

may impede the quantitative interpretation of the recovered disper-
sion curves as a function of frequency, but this does not prevent the
quantitative interpretation of lateral variations in the dispersion
velocity maps. For example, the phase velocity maps in Figure 7c
can be divided into a high-velocity region and a low-velocity region,
and these were shown to be robust to using different sections of
recorded noise. The boundary may be a partitioning of the buried
landfill, and the three peaks in the phase-velocity maps may indicate
further heterogeneities.
A principal advantage of the methods presented here is that it can

potentially be used on very short noise records, as suggested in
Figure 6, with the dashed blue obtained from only 2 min. This
would allow the possibility to “roll” a relatively spatially limited
array around an area of interest as fast as the equipment can possibly
be installed, moved, and reinstalled in new locations; because the
sensors would in any case be installed in each set of locations for
more than a few minutes, this would allow the surface-wave
velocity structure to be estimated across the entire area. We thus
create a practical method for mapping and characterizing subsurface
properties over extended areas with relatively small and affordable

a) b)

c)

e)

d)

Figure 11. The standard deviation of the S-wave velocity maps
from MDN inversion for (a) 0–3 m, (b) 3–10 m, (c) 10–20 m,
(d) 20–30 m, and (e) 30–50 m.

a) b)

c)

e)

d)

Figure 10. The mean S-wave velocity maps fromMDN inversion for
(a) 0–3 m, (b) 3–10 m, (c) 10–20 m, (d) 20–30 m, and (e) 30–50 m.
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sets of equipment. Another advantage of the methods presented
here over approaches relying on for example beamforming using
smaller subarrays (Löer et al., 2018) is that those approaches rely
on stacking wavefields spatially over several wavelengths; its effect
of averaging phase velocity estimates over space is certainly
stronger than gradiometry and wave equation inversion. If point
measurements of spatial wavefield gradients would be available,
then the spatial resolution of the wave equation inversion could
be as high as the point sensitivity.
We produced five depth maps for S-wave velocity and an indi-

cation of their associated uncertainties from inversion byMDN. The
mean velocity maps (Figure 10) show a correlation with the phase
velocity maps produced in Figure 7. The large uncertainties in the
deepest (30–50 m) layer shown in Figures 11e and 12 imply that we
are approaching the depth limit to which the frequencies in the data
are sensitive.
Standard nonlinear 3D inversion methods, such as Monte Carlo

methods (Bodin and Sambridge, 2009; Galetti et al., 2015; Zhang
et al., 2018), that are commonly used to produce probabilistic re-
sults are computationally expensive. In contrast, an NN takes a cou-
ple of hours to train and can then be used repeatedly, without further
training, to produce results in a matter of seconds for any data pro-
vided as input. By using a mixture of Gaussians, the MDN can re-
present any shape of distribution as long as a sufficient number of
kernels is used. Therefore, using this method, it is possible to pro-
duce a non-Gaussian, nonlinear, fully probabilistic solution at a
speed that is compatible with the rate at which phase dispersion data
can be acquired using gradiometry (of the order of minutes).

CONCLUSION

We propose a sequence of fast seismic acquisition for dispersion
curve extraction and inversion for 3D seismic models, based on
wavefield gradiometry, wave equation inversion, and machine-
learning technology. We can use short noise recordings, even if they
contain directional seismic noise only, made in rapidly deployed
rectangular acquisition grids and invert a dispersive scalar Helm-
holtz equation for phase-velocity maps using measured wavefield
gradients. In turn, these phase velocity maps are turned into 3D seis-
mic velocity models, with uncertainty estimates, using pretrained
MDNs. We establish a nonlinear relationship between the unknown
true seismic wave velocities, the measured seismic wave velocities,
the interstation spacing, and the noise level in the signal (with a
control coefficient related to the data noise). Our synthetic data ex-
ample shows that this relationship can be inverted using fixed-point
iterations. This procedure corrects for the frequency-dependent
approximation error in the finite differences used to measure the
wavefield gradients. To correct for the effect of noise in the S/N
of the measured wavefield spatial gradients, we have to assume that
the control coefficient noise level varies only weakly with frequency,
and we need to be able to independently verify the retrieved disper-
sion curves. We propose to do so using the array-averaged data analy-
sis demonstrated herein. The field data experiment revealed a
relatively sharp boundary between low- and high-velocity regions
and three more high-velocity anomalies. The lateral variations in
the phase velocity maps are not altered by the correction procedures
and are reproducible using independent portions of the ambient noise
recordings. This indicates that the features identified in the velocity
maps are reliable. These maps are obtained using 30 min of noise
recordings and computationally cheap processing and inversion tech-
niques. The results of this study open the prospect of near-real-time
velocity estimation using dense (and potentially rolling) arrays.
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APPENDIX A

FOURIER SPECTRA OF FINITE-DIFFERENCE
STENCILS

The spectrum of the continuous second-order derivative operator
is j − 2πk2j. The finite-difference approximation to that operator is a
stencil applied as a convolution filter. The filter coefficients for the
finite-difference approximation to a spatial second-order derivative
operator are given as f (with elements fi, with i ¼ 1; : : : ; NF), and
the stencil spacing is Δx. We use the filter f to compute the deriva-
tive h of the discrete function g (with elements hj and gj):

a) b)

c)

d)

e)

f)

Figure 12. The 1D depth inversion result for location ðx; yÞ ¼
ð35 m; 10 mÞ. (a) The MDN posterior density function result: Dark
colors represent areas of higher probability. The normalized posterior
density function at each depth level is shown in panels (b) 0–3 m,
(c) 3–10 m, (d) 10–20 m, (e) 20–30 m, and (f) 30–50 m.
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hj ¼
XNF

i¼1

figj−kþl where l ¼ ðNF − 1Þ∕2: (A-1)

The spectrum of that filter can be computed using the discrete
Fourier transform:

FffgðkÞ ¼ Δx
XN
i

fi expf−i2πkxig; (A-2)

where k is the wavenumber with the unit ð1∕mÞ. We find the energy
normalized spectrum as

1

Δx
jFffgðkÞj: (A-3)

The spatial axis spans the stencil length; hence,
xi ¼ x0 þ ði − 1ÞΔx, where x0 ¼ −N − 1∕2Δx.
For the familiar set of finite-difference coefficients approximat-

ing the second-order derivative with second-order accuracy
1∕ðΔxÞ2½1;−2; 1�, we have

Ff½1;−2;1�gðkÞ¼ 1

ðΔxÞ2 ðΔx expfi2πkΔxg

−2Δx expfi2πk0gþΔx expf−i2πkΔxgÞ

¼ 2

Δx
ðcosf2πkΔxg−1Þ: (A-4)

The energy-normalized amplitude spectrum of the approximation is
therefore

1

Δx
jFffgðkÞj ¼ j2ðcosf2πkΔxg − 1Þj

ðΔxÞ2 : (A-5)

This relationship and a comparison to the amplitude spectrum of the
true second-order operator are shown in Figure A-1.

APPENDIX B

FINITE-DIFFERENCE APPROXIMATION ERRORS
AND EFFECTS OF NOISE IN WAVE EQUATION
INVERSION AND WAVEFIELD GRADIOMETRY

We aim to extract the local wave slowness as the equivalent of the
ratio between spatial and temporal derivatives of the wavefield (see
equation 2):

s2 ≃
∇2U
∂2t U

; (B-1)

where ∇2U ≜ ∂2xU þ ∂2yU ¼ f∂2xUgT þ f∂2yUgT , ∂2t U ¼ f∂2t UgT ,
and the subscript fgT denotes the true spatial and temporal deriv-
atives. We consider that the total wavefield U is divided into two
parts U ¼ US þ UN , a signal wavefield US and a noise field UN .
The correct true velocity in the wave equation inversion would
ideally be extracted from noise-free signal-only waveforms as

s2T ≃
∇2US

∂2t US
: (B-2)

In most cases, we cannot measure the signal wavefield independ-
ently from the noise, so we estimate the velocity from measured
quantities:

s2M ≃
f∇2USgM
f∂2t USgM

; (B-3)

where fgM denotes that these are derivatives measured by
deploying wavefield gradiometry.
We shall consider the effects of the finite-difference approxima-

tion error in the spatial and temporal wavefield derivative compu-
tations that are implicit in equation B-1. In this study, we consider
that noise mainly affects the spatial derivatives. The measured tem-
poral derivative of the wavefield is assumed to be related to the true
temporal derivative of the wavefield by a factor β as

Figure B-1. An example of the iterative correction procedure. The
initial measurement (380 m/s) was made at a frequency of 20 Hz for
an average over the entire array in the field data example. We plot
the phase velocity as a function of iteration number. The solid curve
shows the phase velocities during the correction procedure without
considering the effect of noise in wavefield gradiometry. The
dashed curve shows the phase velocities during the correction pro-
cedure while taking into account the effect of noise in wavefield
gradiometry (with ϵ ¼ 0.2).

Figure A-1. Wavenumber spectrum of the continuous second-order
derivative operator and the spectrum of the finite-difference
approximation to that operator (with second-order accuracy). The
wavenumber Knyq is normalized to take the value of �1 at the
Nyquist wavenumbers.

Gradiometric wave equation inversion KS25
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f∂2t UgM ¼ f∂2t USgM ¼ β2f∂2t USgT: (B-4)

The effect of noise on the spatial derivative measurements in equa-
tion B-1 cannot be neglected. The derivative is linear, so the spatial
derivatives of the total wavefield can be written

∂2xU ¼ ∂2xUS þ ∂2xUN; (B-5)

∂2yU ¼ ∂2yUS þ ∂2yUN: (B-6)

However, measuring the spatial derivative of the wavefield accurately
is further complicated by the error of the finite-difference approxima-
tion. Our measured results for the spatial wavefield derivatives are
therefore related to the wavefield derivatives of the true signal and
the derivatives of the noise field by two factors αS and αN as

f∂2xUgM ¼ f∂2xUSgM þ f∂2xUNgM
¼ α2Sf∂2xUSgT þ α2Nf∂2xUNgT; (B-7)

f∂2yUgM ¼ f∂2yUSgM þ f∂2yUNgM
¼ α2Sf∂2yUSgT þ α2Nf∂2yUNgT: (B-8)

Here, we implicitly assumed that when evaluating the spatial deriv-
atives by finite differences Δx ¼ Δy, the characteristics of the effect
of noise are directionally invariant. This does not imply that the seis-
mic wavefield itself is directionally invariant.
The desired true slowness in equation B-2 can then be found by

s2T ≃
β2

α2S

½f∇2UgM − α2Nf∇2UNgT �
f∂2t Ugm

¼ β2

α2S

�
1 − α2N

f∇2UNgT
f∇2UgM

� f∇2UgM
f∂2t UgM

: (B-9)

We define a new parameter ϵ ¼ α2Nðð∇2UnÞ∕ðf∇2
xUgmÞÞ. Because

ϵ depends on the (dominant) wavelength of the noise (and hence of
the noise amplitude) and ϵ is a “noise-to-signal ratio.” This term
should be small, so we consider ϵ < 1. If we assume that the (dom-
inant) wavelength of noise and its amplitude remain constant during
a recording, ϵ is an unknown constant.
From equations B-3 and B-9, we find that the relationship be-

tween the true slowness sT and the measured slowness sM can
be written as

sT ≃
β

αS

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
sM; (B-10)

where ϵ < 1. When ϵ ¼ 0, or when the effect of noise is neglected,
we correct a zero noise level.
We defined the relationship between the measured and the true

spatial and temporal derivatives of the signal wavefield as, respec-
tively, f∂2xUsgt ¼ α2sf∂2xUsgm and f∂2t Usgt ¼ α2sf∂2t Usgm. Using
the expressions for the Fourier spectra of the true continuous
operator and the measured finite-difference approximation to the
operator from Appendix A, we find

α2S ¼
−ð2πjkMjÞ2
−ð2πjkSjÞ2

¼
2j cosf2πkSΔxg−1j

ðΔxÞ2

−ð2πjkSjÞ2
(B-11)

and

β2 ¼ −ð2πjfMjÞ2
−ð2πjfjÞ2 ¼

2j cosf2πfΔtg−1j
ðΔtÞ2

−ð2πjfjÞ2 : (B-12)

For the case where we consider spatial and temporal finite-differ-
ence approximation errors, we define a new parameter γ1 (using
kS ¼ sTf) as

γ1ðsTÞ ¼
ffiffiffiffiffi
β2

α2S

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 − cosf2πfΔtgjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 − cosfsT2πfΔxgj

p Δx
Δt

sT: (B-13)

For the case in which we neglect temporal finite-difference errors
and only consider spatial finite-difference approximation errors, we
have β ¼ 1 and define a new parameter γ2 as

γ2ðsTÞ ¼
ffiffiffiffiffi
1

α2S

s
¼ sT2πjfjΔxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j1 − cosfsT2πfΔxgj
p : (B-14)

Finally, with either of these definitions, the relationship between the
true slowness sT and the measured slowness sM can be written as

sT ¼ γðsTÞ
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
sM: (B-15)

This is a nonlinear relationship, which we attempt to solve by fixed-
point iterations:

sj ¼ γðsj−1Þ
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
sM j ¼ 1; 2; : : : n; (B-16)

starting with s0 ¼ sM and finishing with sT ≃ sn after n iterations.
Finally, the true velocity is given by cT ¼ s−1T . An example of this
procedure, for the measurement at 20 Hz averaged across the entire
array in the field data study, is shown in Figure B-1.
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