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S U M M A R Y
Statistical experimental design (SED) is the field of statistics concerned with designing experi-
ments to obtain as much information as possible about a target of interest. SED algorithms can
be divided into two categories: those that assume a linear or linearized relationship between
measured data and parameters, and those that account for a fully nonlinear relationship. We
compare the most commonly used linear method, Bayesian D-optimization, to two nonlinear
methods, maximum entropy design and DN-optimization, in a synthetic seismological source
location problem where we define a region of the subsurface in which earthquake sources are
likely to occur. Example random sources in this region are sampled with a uniform distribu-
tion and their arrival time data across the ground surface are forward modelled; the goal of
SED is to define a surface monitoring network that optimally constrains this set of source
locations given the data that would be observed. Receiver networks so designed are evaluated
on performance—the percentage of earthquake pairs whose arrival time differences are above
a threshold of measurement uncertainty at each receiver, the number of prior samples (earth-
quakes) required to evaluate the statistical performance of each design and the SED compute
time for different subsurface velocity models. We find that DN-optimization provides the best
results both in terms of performance and compute time. Linear design is more computationally
expensive and designs poorer performing networks. Maximum entropy design is shown to be
effectively impractical due to the large number of samples and long compute times required.

Key words: Statistical methods; Computational seismology; Earthquake source observa-
tions.

1 I N T RO D U C T I O N

Over the past 50 yr, a variety of techniques have been introduced to
find optimal designs for geophysical experiments (Curtis 2004a,b;
Maurer et al. 2010). These techniques stem from a field of statistics
called statistical experimental design (SED) and were initially devel-
oped to optimize industrial processes (Cox 1958; Kackar 1985). The
first application in geophysics was by Kijko (1977) who used SED
to find optimal receiver locations in a source localization problem.
Since then, SED has been used to design a variety of source location
experiments (Steinberg et al. 1995; Curtis et al. 2004; Winterfors &
Curtis 2008; Toledo et al. 2018), surveys for seismic tomography
(Curtis 1999a,b; Sirgue & Pratt 2004; Maurer et al. 2009), elec-
tromagnetic and electrical resistivity tomography (Stummer et al.
2004; Coles & Morgan 2009; Ren & Kalscheuer 2019) and for CO2

monitoring (Romdhane & Eliasson 2018). SED methods are also
used to minimize the data requirements for other algorithms. For
example, Maurer et al. (2017) use experimental design to limit the
data requirements for full-waveform inversion (FWI) by using SED
to select the most informative subset from a data set that contains as

much information about the subsurface target as possible. Guest &
Curtis (2010a,b, 2011) optimized the subset of source-to-receiver
offset that should be used from an active-source seismic survey
so as to preserve amplitude-versus-offset (AVO) information about
subsurface reflector properties. Thus, in each case fewer data can
be processed to obtain similar information.

SED algorithms can be divided into two categories: those that
assume a linear or linearized relationship between measured data
and parameters, and those that account for fully nonlinear rela-
tionships. Linear methods are typically presumed to be easier to
compute, while nonlinear methods are presumed to be more accu-
rate. A comparison between these categories of SED methods has
not been made for any geophysical problem, which is the goal of
this work. We compare such methods for seismic source localization
problems, and the research herein is the first to test and recommend
which class of SED methods to use.

Source locations are used in various fields of seismology (Tong
et al. 2016), for example, when studying tectonic processes and
earthquake dynamics (Waldhauser & Ellsworth 2000) or when
studying how earthquakes are related to structural features (Huang
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& Zhao 2013; Lin 2013). Source localization techniques are also
used to resolve political issues, for example, when locating and dis-
criminating nuclear tests (Wen & Long 2010; Zhang & Wen 2014).
In exploration and production for subsurface earth resources, loca-
tions of induced seismicity are of importance to check for possible
leaks in the cap-rock (Wuestefeld et al. 2018) or to attribute seis-
micity to anthropogenic activity such as shale gas production (Wil-
son et al. 2015). These applications all require a receiver network to
record the seismic events, and hence methods to design experiments
that acquire data with the most information content.

We compare one linearized design method, Bayesian D-
optimization (Box & Lucas 1959; Kijko 1977; Steinberg et al.
1995), and two nonlinear methods, maximum entropy design
(Shewry & Wynn 1987; van den Berg et al. 2003, 2005; Guest
& Curtis 2009, 2010b, 2011) and DN-optimization (Coles & Curtis
2011). Bayesian D-optimization is the most commonly used lin-
earized method that makes this research relevant to a broad range of
SED users. Maximum entropy design is the only criterion that di-
rectly maximizes the Shannon information about the parameters of
interest while using fully nonlinear physics. DN-optimization is an
approximation to maximum entropy design that is computationally
efficient and does not assume linear relationships.

Optimal designs are calculated using each method in a synthetic
source localization example. We compare the performance of the
generated networks in terms of the remaining source location am-
biguity, evaluating how many example sources in the subsurface
region of interest are needed by each method to obtain a stable de-
sign, and the overall computation time required for each method.
Thus, we draw conclusions on which method to use under various
scenarios.

The next section introduces source location problems, then we
describe inversion and optimal design theory in general, sequential
design strategies, and the above three specific SED methods. There-
after we explain the experimental methodology used to obtain the
test results, followed by the results themselves. Finally, we discuss
the implications of this work and conclude.

2 S O U RC E L O C AT I O N P RO B L E M

In source location problems, we wish to establish the location of a
source (usually an earthquake) in the subsurface. This is done by
recording the arrival times of seismic waves on a receiver network;
differences in arrival times at different receivers allow us to estimate
the source location given the subsurface velocity structure.

There are usually four model parameters in a source location
problem: the x, y and z location, and the time t0 when the earthquake
occurred. The location parameters are described by vector m and
the data are differences in arrival times d . The relation between
data d and parameters m is a mathematical function

d = FS(m), (1)

where FS is the nonlinear forward function that calculates the arrival
time differences at the receivers of seismic energy from the source.
Note that we only consider m as independent parameters of FS: sub-
surface seismic velocities are considered implicit and fixed within
the forward function. The subscript S denotes the design of the re-
ceiver network, and in this work the design consists of locations of
a network of seismometers used to record arrival times.

To avoid including t0 in the set of model parameters, there are at
least two possibilities: we can subtract the mean arrival time from
the arrival times across the group of stations. Or, we can consider

only arrival time differences between the first arriving S and P waves
(ts and tp). We use the latter and assume a constant vp/vs ratio (i.e.
common ray paths L for P and S waves between the same source
and receiver), the traveltime difference can be written as

ts − tp =
∫

r∈L(S,m)

1

vs(r )
− 1

vp(r )
dr, (2)

where r is a position vector and the integration is carried out along
L, and where m contains only the location of the source.

3 T H E O RY

3.1 Introduction to inverse theory

Consider some recorded arrival time data dobs from which we want
to infer the values of parameters m. Assume that parameters m are
linked to synthetic data dsyn by the forward model dsyn = FS(m).
We relate d to m by finding the likelihood of observing data d
given the parameter values m: ρ(d|m), which is also known as the
likelihood function (Tarantola 2005). ρ( · ) denotes the probability
density function (pdf) of a continuous variable or the probability
distribution function of a discrete event (e.g. earthquake) being in a
particular set, and ρ(d|m) is the probability of observing data d in
the current experiment given that model m is true. The form of the
likelihood therefore depends on the uncertainty in recorded data d,
since it must define how likely it is that data dsyn might have been
recorded in the experiment.

Before conducting an experiment we already have some infor-
mation about the parameters. This is described by a so-called prior
pdf ρ(m). Possible parameter prior information might include that
there is a higher probability that earthquakes occur close to a known
fault or that earthquakes always occur below ground level.

To combine the information on parameter space M and data
space D we use the fact that in M × D, ρ(m, d) = ρ(m|d)ρ(d) =
ρ(d|m)ρ(m) from which we derive:

ρ(m|d) = ρ(d|m)ρ(m)

ρ(d)
. (3)

This equation is known as Bayes’ theorem for probability densities
(Bayes 1763) and it gives the so-called posterior pdf ρ(m|d) in
terms of the likelihood ρ(d|m), the prior ρ(m) and a normalization
factor ρ(d) that is constant for any particular fixed data set. The
normalization factor, called the evidence, is given by

ρ(d) =
∫

ρ(d|m)ρ(m)dm (4)

3.2 Introduction to optimal design theory

To better understand the optimization of FS consider the schematic
in Fig. 1. The horizontal-axis depicts a parameter, the vertical-axis
a datum, and lines Fa (Fig. 1a) and Fb (Fig. 1b) represent FS for two
different receiver network designs, denoted a and b. The blue area
represents the recorded datum dobs and its measurement uncertainty
±σ . The red areas represent the corresponding uncertainty on the
model parameter if we infer its range of possible values from the
data using the two different designs. We see Fa produces greater
parameter uncertainty than Fb, which means that we can better
constrain the parameter with design b, despite making the same
nominal experimental effort (the same number of data with the
same σ ) for both designs.
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946 H. Bloem, A. Curtis and H. Maurer

Figure 1. Two representations of the parameter–data relationship FS for two receiver network designs a and b. The blue area represents a datum dobs with its
corresponding measurement uncertainty ±σ . The red areas show the inferred projected parameter uncertainty for designs a and b.

Because the model–data relations shown in Fig. 1 are linear,
it is relatively easy to infer a heuristic rule for optimal design: a
steeper gradient of FS is more favourable as this reduces the resulting
uncertainty on the parameters. This logic does not hold for nonlinear
functions per se as nonlinear functions can have a different gradient
for each value of m; it is therefore difficult to devise a simple rule of
thumb, and to find optimal designs for nonlinear relations we need
to use formal SED methods (van den Berg et al. 2003, 2005).

3.3 Sequential design

If multiple receivers are used in a network, we would ideally cal-
culate the quality of information for every possible combination of
receiver locations within a specified set (here a grid), then select
the best as the survey design. In our experiment below, 3.67 × 1018

possible designs exist, which rules out an exhaustive search. Addi-
tionally, the optimization of receiver coordinates is usually difficult
due to the strongly nonlinear relationship between receiver place-
ment and the expected information. Therefore, nonlinear algorithms
must be used to optimize receiver placement [previously genetic al-
gorithms (Curtis 1999a,b) or simulated annealing (Barth & Wunsch
1990), for example].

Curtis et al. (2004) reduce the dimensionality of the search by
starting with a design containing all possible receiver locations, then
reducing the design by sequentially deleting the least informative
receiver until a practical number of receivers is reached. Guest &
Curtis (2009) reduce computational demand still further by adding
receivers one at a time to a design, starting from the first receiver. The
latter algorithm is referred to as sequential design in the statistical
literature (Atkinson et al. 2007). In this algorithm, the first receiver
is placed in the location that is expected to provide most information
and is thereafter fixed at that location. In each subsequent iteration,
the algorithm searches for where to add another single receiver to
the network for optimal effect, given the receiver locations already
fixed in the network. This means that for each receiver a 1-D domain
is searched (the vector of possible receiver locations), thus reducing
the search so as to scale proportionally to the number of receivers.
This method results in only 3721 × 6 = 22 326 design combinations
to be searched. Mathematically, to find an optimal design consisting

of N receiver locations the following schema is used herein:

S1 = argS1
max[�(S1)]

...

Si = argSi
max[�(Si |S1, · · · , Si−1)]

...

SN = argSN
max[�(SN |S1, · · · , SN−1] (5)

where S = {S1, ···, SN} is the vector containing the N optimal
receiver locations, � is a quality measure for each receiver location
and argSi

max[·] is a mathematical function that denotes the receiver
location Si where the quality is maximized for receiver number i.
While not all possible designs are evaluated, the method does take
into account previously fixed receiver locations when assigning a
new location. This method greatly reduces the number of designs
to be tested for optimality. However, since at each stage only one
receiver position is optimised (we do not re-adjust previously located
receivers in the light of information from the new receiver), it is
possible that a local quality maximum is achieved rather than a
global maximum. It has been postulated that the sequential deletion
approach of Curtis et al. (2004) is less susceptible to this problem
since at iteration 1 it considers all possible receiver locations that
are never considered in the sequential addition approach of Guest
& Curtis (2009). However, in early iterations, the former method
requires quality to be evaluated in a far higher dimensionality of data
space, which we show below is impractical for at least one quality
measure. We therefore apply the sequential method of Guest &
Curtis (2009), defined in eq. (5), for all tests herein.

3.4 Linear design: D-optimization

In Fig. 1, we saw that a general rule for optimal design could be
to maximize the gradient in FS as this leads to a smaller parameter
uncertainty for a given data uncertainty. This is the idea behind the
D-optimal linearized design method introduced to statistics by Box
& Lucas (1959), to geophysics by Kijko (1977) and the extension
for multiple sources by Steinberg et al. (1995).
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In D-optimization, we assume the nonlinear model parameter–
data relationship FS to be locally linear around m. Eq. (1) can then
be written as a linear system of equations

d = XSm + ε, (6)

where XS is the so-called planning or design matrix and consists
of partial derivatives of data with respect to model parameters, the
subscript S indicates that the elements are functions of receiver
locations and ε is the data error which is assumed to follow a
Gaussian distribution. In experimental design, the model parameters
are chosen from the prior and the data are then forward modelled;
by perturbing m we can construct finite-difference approximations
of the gradient to calculate XS. Alternatively, ray theory could be
applied to obtain analytical partial derivatives (Cerveny 2005).

When parameters m are estimated by inverting eq. (6) in a least-
squares sense, their covariance matrix is

D = σ 2(XT
S XS)−1, (7)

where σ 2 is variance of the measurement uncertainty of each da-
tum recorded by a receiver which, for the sake of this comparative
synthetic study, may be taken constant. A point source is therefore
efficiently monitored by a network if XT

S XS is ‘large’ in some sense
so that (XT

S XS)−1 is ‘small’ (Steinberg et al. 1995). An appropriate
measure to use is the matrix determinant

�S = argS max[|XT
S XS |], (8)

where | · | denotes the determinant, which is then maximized. This
is appropriate because the volume of parameter space defined by co-
variance matrix D and corresponding to any given confidence level
is proportional to |XT

S XS|−1 (Box & Lucas 1959); by minimizing
the determinant with respect to the receiver locations we therefore
minimize this volume.

Sequential design can be carried out efficiently by noting that if
a single receiver location i would be added to the network of design
S, matrix XS is augmented by a single row, and so the determinant
of the augmented matrix becomes

|XT
S XS|(1 + vi ), (9)

where the increase of the determinant is

vi = f T
i (XT

S XS)−1 f i (10)

with f the partial derivatives of the arrival time with respect to the
parameters for the new receiver location i. Instead of maximizing
the full determinant for each location on the grid, we can therefore
maximize vi (Steinberg et al. 1995). This is more efficient because
once (XT

S XS)−1 has been calculated then the quality criterion for
every potential receiver location i is found by matrix-vector multi-
plications.

However, this method only works for a single source point. We
would like to design a survey that would perform well for many
different possible event locations. Steinberg et al. (1995) extended
the work of Kijko (1977) to make eq. (8) suitable for the case with
multiple sources:

S =
k∑

j=1

a j ln(|XT
S, j XS, j |), (11)

referred to as the D-optimum for multiple source (DMS) criterion.
The summation is over all source locations that are considered
within the design with a relative importance factor aj for the jth
source. The importance factor can be used to prioritize optimization
for some sources over others, where a larger factor means that

the resulting design will better constrain source locations around
that site. If the aj are assigned to the prior probability of source
j, then the sum in eq. (11) approximates the expected value of the
logarithm term. Using that criterion to design a survey is called
Bayesian (linearized) design (Chaloner & Verdinelli 1995) and is
the method used in this paper. For brevity, we refer to this simply as
D-optimization from hereon.

As for single sources, we can calculate the quality criterion more
efficiently for sequential design by only looking at the change in
DMS when a single receiver location i is added. This results in the
following equations:

DMSi = ∑k
j=1 a j ln[|XT

S, j XS, j |(1 + vi, j )] (12)

= ∑k
j=1 a j ln[|XT

S, j XS, j |] + ∑k
j=1 a j ln[(1 + vi, j )], (13)

where

vi, j = f T
i, j (X

T
S, j XS, j )

−1 f i, j . (14)

Subscripts i and j denote the receiver location i being evaluated and
the source location j. The second term of eq. (13) is the quality
measure and will be evaluated for every receiver location on the
grid; the location with the largest value is the location at which a
receiver is added to the network.

At the beginning of the sequential design process there will be
fewer receivers in the network than parameters; hence, the problem
is underdetermined and the determinant is zero. Therefore, in our
design algorithm the first three receivers are optimized together us-
ing the DETMAX algorithm (Mitchell 1974). DETMAX generally
starts with a random network of n receiver locations. An optimal
location n + 1 is added according to eq. (13). The n + 1 network
is reduced to n again by removing the location that contributes the
least information to the network. This procedure is iterated until a
sufficiently high quality network is found. In our linear case, we use
DETMAX with n = 3 to find the first three receiver locations and
use sequential design as described above thereafter starting with S4

in eq. (5). We note that this may give the linear design method an
advantage over the other two methods since DETMAX may find a
globally optimized solution for receivers 1–3 while the sequential
design of the other methods might not.

3.5 Nonlinear design: maximum entropy design

In SED, we want to design an experiment such that the information
I about the parameters m is maximized. All information about m
is contained in the posterior pdf: we therefore need to quantify the
information in that distribution. The entropy of a pdf of any random
variable y ∈ Y is related to Shannon’s measure of information I
(Shannon 1948) as

Ent(Y) = −
∫

Y
g(y) log(g(y))dy = −I (g(y)) + c1, (15)

where Ent is the entropy function, g(y) is the pdf of y and c1 is a
constant (Guest & Curtis 2009). A fully nonlinear quality measure
(Lindley et al. 1956) is therefore

�(S) = −
∫

D
Ent(ρ(m|d, S))ρ(d|S)dd, (16)

where ρ( · |S) represents the dependence on the receiver network
design of both the posterior and the evidence. This quality mea-
sure is the information content in the posterior distribution over
all data that might be recorded by a sensor network S. Calculating
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948 H. Bloem, A. Curtis and H. Maurer

this quality measure directly would require that we know the poste-
rior distribution ρ(m|d, S) for all possible sets of data d, which is
computationally intractable. However, for a fixed number of data,

− �(S) + Ent(ρ(d|S)) = c2 (17)

[Coles & Morgan (2009), after Shewry & Wynn (1987)] for some
constant c2, which means that instead of maximizing �(S) for each
new receiver we can instead maximize Ent(ρ(d|S)). The evidence
ρ(d|S)—which describes the probability of data d being recorded—
requires data d to be calculated from all possible sets of parameters
m (or a representative subset of those) using FS, which is computa-
tionally more demanding than calculating the posterior pdf. Since
the evidence is not known analytically, we sample it stochastically
to calculate a numerical approximation. To do this, samples of m
are drawn from the prior pdf and forward modelled through FS; the
resulting set of discrete sampled data is used for entropy estimation
as shown next. Note that if too few samples are used in entropy es-
timation the results become inaccurate, so it is necessary to assess
the number of samples needed to obtain accurate results; in what
follows we increase the number of samples until the result becomes
stable.

3.5.1 Entropy estimation

The method to estimate entropy used here was introduced by Stowell
& Plumbley (2009). For a random variable y ∈ Y. Let A be a partition
of Y with A = {Aj|j = 1...n}, Aj∩Ak = ∅ and

⋃
j A j = Y . Then, we

approximate the continuous Shannon entropy H = Ent(Y) in eq. (15)
with a discrete version

Ĥ =
m∑

j=1

n j

N
log

(
N

n j
μ(A j )

)
, (18)

where nj is the number of sampled data points in Aj, N is the total
number of data points and μ(Aj) is the D-dimensional volume of Aj.
Normally, a fixed partition width or number of partitions is used to
approximate integrals, but Stowell & Plumbley (2009) partition the
data based on two criteria: (1) the distribution inside each partition
element must be uniform and (2) the data must be split into a
minimum number of partition elements. A test for uniformity of a
distribution is (Chu et al. 1955)

Z j = √
n j

2 · medd (A j ) − mind (A j ) − maxd (A j )

maxd (A j ) − mind (A j )
, (19)

where medd(Aj), mind(Aj) and maxd(Aj) are the median, minimum
and maximum of partition element Aj along dimension d, respec-
tively. If |Zj| > 1.96, then element Aj is considered to show a nonuni-
form behaviour at a significance level of 95 per cent and criterion
(1) is not met. This uniformity test is weak and prone to errors.
Therefore, the data have to be divided into a minimum number of
partitions such that every partition has

√
N data points (criterion 2).

This corresponds to a branching level LN (the number of partitions)
of

L N = �1

2
log2 N�, (20)

where � · � denotes the ceiling function. If either one of the criteria
is not met then Aj is divided into two elements with the division
along medd(Aj).

Before this partitioning algorithm is executed, all data samples
are placed in the same partition element A = {A1}. The data are then
partitioned following criteria (1) and (2) according to the following
scheme:

Figure 2. 10 prior model samples (bottom panels) and the data that would
be observed for each model (top panels) using two different experimental
designs a and b [modified after Coles & Curtis (2011)]. Top panels: the
dark grey region represents expected data measurement uncertainty, in this
case shown for data set 5 as an example under each design. The light grey
region around the data points in each design represents the covariance of
the entire set of samples, and is the measure that is maximized with DN-
optimization. Arrows: The dashed arrow represents the forward modelling
operator which maps each prior model to the corresponding measured data
and their expected uncertainties. The solid arrows represent inversion of the
data (shown for data set 5): this maps the data uncertainties in the top panels
onto the posterior model uncertainties represented by grey regions in the
lower panels.

(1)Consider partition element Aj

(2)Check criteria:

(i)Check for uniformity: |Zj| ≤ 1.96
(ii)Check branching level: n ≥ LN

(3)If both criteria passed, increment j
Else, split the cell at the median along dth dimension and return to
step 2 for the newly created cells.

If both criteria are met for all j then the entropy can be computed
using eq. (18).

This method is called k-d partitioning; it works in high dimen-
sions, can be computed efficiently and has low memory require-
ments (Stowell & Plumbley 2009), which is all advantageous as we
evaluate entropy many times. An added benefit is that the partition
element size is optimized by the algorithm, useful because choos-
ing the partition element width incorrectly can result in incorrect
estimates of the entropy (van den Berg et al. 2003, 2005).

3.6 Nonlinear design: DN-optimization

DN-optimization was proposed by Coles & Curtis (2011) as an
approximation to maximum entropy design. Both methods are de-
signed to maximize the entropy of the evidence, which in turn can
be seen as maximizing the scatter (difference) between the sampled
data points (Shewry & Wynn 1987). Coles & Curtis (2011) method
is illustrated conceptually in Fig. 2, where 10 samples from the
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prior are taken {mi: i = 1, . . . , 10} (representing 10 earthquake
locations). These samples are recorded using design a and design
b, each of which records two observations d1 and d2 (e.g. arrival
times of two receivers). The data generated by the two observations
are scattered across the 2-D data space, and say the expected mea-
surement uncertainty is shown as the grey shaded area. The latter is
only shown for parameter set five, but is assumed to be predictable
for all parameter sets. The design used for design a causes the data
for the 10 parameter sets to be close to each other, whereas design
b produces data which are more spread out (scattered). Design b
is advantageous because it is easier to discriminate between the
different models (different possible earthquake locations) using the
measured data. Parameter set three, for example, lies within the
measurement uncertainty region of parameter set five under design
a meaning that earthquake locations 3 and 5 can be discriminated
using design b, but this is not the case for design a. Coles & Curtis
(2011) therefore argue that data for parameter samples in design a
are more similar to each other than in the case for data generated
by design b, so design b is preferred.

Consider two parameter sets mi and mj with corresponding data
sets di and dj distributed according to pdfs pi(di) and pj(dj), and
assume both pi and pj are multivariate Gaussians with the same
covariance �d (S). Then, the relative entropy between the two is
analytic, given by (Goldberger et al. 2003)

D(pi ||p j ) = 1

2
[FS(m j ) − FS(mi )]

T × [�d (S)]−1

×[FS(m j ) − FS(mi )], (21)

where �d is the data-noise covariance. We can approximate D(pi||pj)
with (Wunsch 1996)

D(pi ||p j ) ≈ 1

2
δ(S)T �(S)δ(S), (22)

where

δ(S) = [�F(S)]−
1
2 [FS(m j ) − FS(mi )] (23)

�(S) = [�F(S)]
1
2 [�d (S)]−1[�F(S)]

1
2 , (24)

where �(S) is the nonlinear data covariance matrix. �(S) can be
decomposed into two covariance matrices, �F(S) and �d (S), where
the former is the deterministic covariance of the data governed by
the forward function FS, and the latter is the data-noise covariance
and describes the stochastic component of the data (Coles & Curtis
2011).

Eq. (22) is an approximation of the entropy between two data
sets. To obtain an approximation for all parameter values in M, we
integrate over δ. The expectation of the entropy can then be found
by (Coles & Curtis 2011)

Eδ[δT �δ] =
∫

δT �p(δ)dδ = Tr �. (25)

Thus, the expected entropy of a design is the trace of the nonlinear
data covariance matrix. However, if δ(S) = 0, the integral is maxi-
mized for any design S, which occurs when mi = mj or f(FS)−1 is
non-unique. The former is trivial as the same parameters produce
identical data sets. The latter case was mitigated by Coles & Curtis
(2011) by modifying eq. (25) to the following nonlinear criterion
which is maximized for DN-optimization:

�DN (S) = Tr ln �(S) = ln det �(S). (26)

4 N U M E R I C A L E X P E R I M E N T S

Now, we describe the numerical experiments to find what quality
measure is best to design source location problem surveys. We first
present the synthetic modelling domain and methods used to obtain
arrival times. Then, we evaluate the number of prior samples needed
for stable designs, the compute time needed for each method and the
various quality measures applied in a sequential design algorithm.
Finally, we assess the performance of the networks designed using
the different quality measures.

4.1 Synthetic models

Cross-sections through the synthetic velocity models within which
we conduct tests are shown in Fig. 3. The velocity structure is shown
by the colour map, the region in which earthquakes occur is defined
by the red region and a cross-section through the grid of possible re-
ceiver locations is shown by red triangles. Velocities vary only with
respect to the z-axis, thus we only consider horizontally layered
subsurfaces. Four different models are used: one homogeneous, a
two-layered and two three-layered subsurface structures, with ve-
locities between 2 and 4 km s−1 that increase with depth. Properties
for the four subsurface models are shown in Table 1. The number
of samples needed to stabilize each design method and compute
time comparisons for the three SED algorithms are evaluated in the
homogeneous model, whereas the design performance comparison
between the algorithms is made for all four subsurface velocity
models.

The location parameter prior is defined using a region in the
subsurface where earthquakes are likely to occur. For this test, we
define the region as a rectangular cuboid with horizontal dimensions
of 20 km in x and y directions, and 10 km in depth z, centred
at x = y = 0 km, z = 17.5 km for the homogeneous, two- and
three-layered models a–c. Model d has the sources not in the half-
space but in the second layer; for that model the cuboid dimensions
are the same but it is centred at x = y = 0 km, z = 10 km. We
assume the probability of an event at a particular location to be
uniform within the cuboid and zero outside. Sample events are
drawn on a grid with equidistant spacing chosen such that there
is always a sample at the centre and at the borders of the cuboid
to make sure the full extent of the cuboid is considered in every
comparison.

Receivers may be placed on the surface z = 0 km at any of the set
of pre-defined locations on a regular square grid shown in Fig. 3(e).
The spacing between possible locations is 2 km in both x and y
directions and the maximum offset from the centre of the source
cuboid is 60 km along the x and y axes. These maximum dimensions
were fixed by testing when all three SED algorithms stop placing
receivers at the grid boundaries (except for the receivers placed at
infinite offset which occurs due to the lack of energy attenuation in
our synthetic test).

4.2 Arrival time calculation

Arrival times at the surface are calculated using a finite-difference
scheme on a subsurface 2-D vertical cross-section (Podvin &
Lecomte 1991) by solving the Eikonal equation

(∇t)2 = s2, (27)

where t are the traveltimes and s is the slowness of each location
in space. We add Gaussian noise to t with a standard deviation of
0.1 s and a mean of 0 s. The 1-D nature of the subsurface velocity
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950 H. Bloem, A. Curtis and H. Maurer

Figure 3. Cross-section at y = 0 of the four synthetic velocity models (a–d), where the red box shows the cuboid within which sources occur, red triangles
show the possible receiver location grid and the colour map indicates the subsurface velocity model. Panel (e) shows a top view of the model where the grid of
points shows all possible receiver locations and the red box is the top projection of the source cuboid.

Table 1. Four different subsurface velocity models, one homogeneous and three horizontally
layered. Velocities and corresponding layer thicknesses are shown. Deepest layers are half-
spaces indicated by infinite thickness.

Model Layer velocities Layer thicknesses

Homogeneous 3 km s−1 ∞ km
Two layers 2, 4 km s−1 6, ∞ km
Three layers 2, 3, 4 km s−1 5, 10, ∞ km
Three layers, sources in second layer 2, 3, 4 km s−1 5, 15, ∞ km

model then allows us to calculate the arrival times to any receiver
by rotating the 2-D cross-section between the event and receiver
around the epicentre location. Furthermore, source samples on the
same z-plane produce the same arrival times, but shifted in space by
their (x, y) coordinates. Thus, for sources on the same depth level
only one arrival time calculation is made across the 2-D grid to
obtain arrival times at all receiver locations for all such sources.

The arrival times are thus effectively calculated on a radial 2-D
cross-section around the source whereas the receiver grid is rect-
angular. To assign each receiver grid point an arrival time we take
the arrival time closest to each receiver grid point, and to minimize

the error the arrival times are computed with a much smaller spac-
ing compared to the receiver grid. With an arrival time calculation
spacing of 10 m and a receiver grid spacing of 2 km, we accrue a
maximum error of 0.05 per cent in the modelled arrival time.

4.3 Number of samples

We sample the source location cuboid defined by ρ(m) as described
above, and forward model those samples to estimate ρ(d) which
is in turn used to assess the experimental designs. The number of
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Statistical experimental design 951

Figure 4. The number of samples N required to find a stable network. The
left- and right-hand panels show the same data, but on the right the number
of samples is shown per data space dimension where the dimensionality is
d; that is, d

√
N is plotted. The number of samples required is calculated for

a uniform velocity model in all cases.

source samples defines how accurately we sample the parameter
prior distribution and hence ρ(d), and we wish to find the number
of samples needed to create a stable design (a design that does not
change when the prior is sampled more densely). We evaluate the
number of prior samples needed for each receiver added sequentially
to the network.

The number of samples needed to obtain a stable design is found
by visual inspection. We compute designs for an increasing number
of prior samples and observe whether the design changes when more
samples are taken. Designs are considered stable for a given number
of prior samples if taking more prior samples does not change
the design. During the visual inspection, we take into account the
rotational symmetries caused by our symmetric velocity structure
and prior pdf. That is, we count designs as identical if they are
rotations of each other by ±90◦ or 180◦, or if they are symmetric
reflections across any of a number of symmetry planes.

In Fig. 4, the number of samples needed to reach stability for
each sequential receiver location is shown for a homogeneous sub-
surface velocity. The left-hand panel shows the number of samples
N required to place each receiver stably, while the right-hand panel
shows the average number of samples per data space dimension

d
√

N (where the dimensionality d is equal to the number of re-
ceivers) for increasing network size. The figure gives insight into
how the sample requirements change with the desired network size.

DN-optimization needs about 32 samples for each iteration until
the fourth receiver, whereafter 108 samples are needed to place re-
ceivers stably. Maximum entropy design needs exponentially more
samples for every receiver added, with 500 samples for the first
receiver and around 440 000 for the sixth receiver. However, for the
latter method the number of samples per dimension decreases to a
stable number of around 10 as more receivers are added.

DETMAX is used to locate the first three receivers in linear
design and provided good results from 32 prior samples. DETMAX
is initialized with a random design so we pick the best design from
4 runs of DETMAX for the first three receivers. Sequential linear
design needs 32 samples for the fourth and fifth receiver and 108 for
the sixth receiver. For computational simplicity, we now continue
to use the number of samples required for a six receiver network
for the full sequential process and for the other velocity models as
shown in Table 2.

4.4 Optimal network designs

In Figs 5–7, the sequential receiver placement for each method is
shown for the homogeneous subsurface. The colour map represents
the quality measure for every receiver location on the grid: higher
(yellow) values are more favourable locations to add a receiver to
the network according to each SED algorithm’s quality measure.
The cross represents the highest quality measure value and hence
the location where a receiver is placed and added to the network;
the pink dots are the receiver locations placed in previous iterations.

Linear design quality measures are shown for sequential design
from the fourth receiver onwards in Fig. 5. The receivers placed by
DETMAX are the dots in the iteration 4 panel, and are placed close
to three of the corners of the source cuboid. The fourth receiver is
placed at a distance, presumably to better constrain x and y source
parameters since trade-offs with source depth will be reduced at far
offsets from the sources. Receiver five is placed close to the last
corner of the source cuboid. Receiver six is placed at a position
which we cannot explain intuitively.

The maximum entropy design quality measure (Fig. 6) for the
first receiver location has high values on the diagonals which are
highest at maximum offset. The second receiver is placed on the
diagonal opposing the first, and the third receiver is placed above
the centre of the source cuboid. This setup is intuitive as the middle
receiver location is most sensitive to changes in the z parameter
while the other two are more sensitive to x and y values of the
source location. Iterations 4 and 5 might seem unintuitive as the
receivers are placed almost at the same locations as iterations 2 and
3, but the near repeating of locations does give twice the constraint
on the horizontal source location (for Gaussian data distributions
this would correspond to increasing the signal to noise ratio by

√
2).

The final receiver is not a repeat, but is still located at far offset from
the sources.

DN-optimization (Fig. 7) produces essentially the same first three
receiver locations as maximum entropy design. Receivers 4–6 are
thus placed in a smaller triangle pointing in the opposite direction
compared to the triangle formed by receivers 1–3. The quality mea-
sure maps for DN-optimization look like more dramatic versions of
those from maximum entropy design for the first three iterations.
The quality measure decreases after the third iteration, presumably
due to the source localization problem becoming overdetermined
and the extra receivers only adding marginal information about the
source parameters. Interestingly, the designs are similar to the de-
sign found to be optimal by Lilwall & Francis (1978) for a single
source location.

4.5 Design results

We now show the network designs then compare network perfor-
mance for each quality measure and each velocity structure.

4.5.1 Network designs

The receiver networks found using the three design methods, plus a
completely random network, and all four subsurface velocity mod-
els, are shown in Fig. 8. We rotated the designs by 90◦, 180◦ or 270◦

to make them visually more similar. The random network design is
the same for each velocity model. The designs for the homogeneous
velocity model (Fig. 8a) are the same as shown in Section 4.4.

Linear design (D-optimization) shows designs for the two- and
three-layered subsurfaces that have two or three receivers are placed
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Table 2. The number of samples used for each method to calculate the optimal design of a six-
receiver network for the four velocity models. We used slightly more samples than were required
for us to be confident that a stable solution had been reached. The compute times on a small
compute server (Dell PowerEdge R820, 64 cores, 256 GB RAM, using 12 MATLAB threads) for
a six-receiver network for each SED method using the number of samples from the table. Note
that the number of samples required for maximum entropy design is larger than the axis in Fig. 10.

Method Number of samples Compute time required

Linear 108 216 s
Maximum entropy design 442 368 3517 s
DN-optimization 108 1.26 s

Figure 5. Receiver placement designed using linearized (Bayesian) D-optimality. The colour map shows the quality measure in eq. (13) calculated at each
position on the grid of possible receiver locations; the maximum value defines where the next receiver will be placed (the cross). Dots show receiver locations
already added to the network in previous iterations.

Figure 7. Receiver placement designed using DN-optimization. The colour map shows the quality measure in eq. (26) calculated at each position on the grid
of possible receiver locations; the maximum value defines where the next receiver will be placed (the cross). Dots show receiver locations already added to the
network in previous iterations.

at far offset compared to just one for the homogeneous case. Inter-
estingly, the design for the three-layered subsurface with the sources
in the second layer (Fig. 8d) is very similar to the network for the
homogeneous case.

Unlike the other two measures, maximum entropy design places
more receivers at far offsets than over the source region. As
the velocity structure becomes more complicated, receivers are

moved towards the centre. This may be because refractions causing
informative arrival times can be observed closer to the centre—
particularly for model (d) in which the sources are closer to the
surface than in the other models. The same behaviour is seen in lin-
ear design: model (a) has the receivers positioned in a larger circle
compared to model (d). In all cases, maximum entropy design places
receivers in almost repeated locations to improve those constraints.
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Statistical experimental design 953

Figure 6. Receiver placement optimized using maximum entropy design. The colour map shows the quality measure Ent(ρ(d|S)) calculated at each position
on the grid of possible receiver locations; the maximum value defines where the next receiver will be placed (the cross). Dots show receiver locations already
added to the network in previous iterations.

DN-optimization finds the same design for the homogeneous and
two-layer subsurfaces. This design is the same as the optimal design
for a single point source (Lilwall & Francis 1978) which has one
receiver directly above the source region and the other receivers
placed on concentric circles around it. The more complex the ve-
locity structure the more receivers are placed towards the centre,
but still with one receiver over the centre of the source region.

4.5.2 Network performance

To find which quality measure finds the best networks, we quantify
the performance of the resulting network designs. We could eval-
uate the posterior model uncertainty for each model under every
design (Fig. 2, bottom) to quantify receiver network performance.
However, that would require that we then summarize the quality
of those posterior distributions by one or more metrics or statis-
tics for comparisons. In fact, by looking at the uncertainty in data
space we can also evaluate metrics of network performance, without
inverting data for the posterior pdf. We do this by evaluating the
volume around each source sample defined by an arbitrary uncer-
tainty threshold around the true data values for that source in data
space. We choose the threshold to be 0.5 s. For this assessment,
sources are sampled from the same prior distribution as used for de-
signing the networks, but with far higher density leading to a much
larger number of samples (864 000). These samples are discrete, so
we can estimate the size of the volume by counting the number of
source samples inside the volume. As an example consider Fig. 2:
if we were to evaluate the volume of the posterior in Fig 2 under
design a for source 5 and we count the number of other sources in
its uncertainty region in data space defined by the dark grey region.
So, for design a we count two other sources occupying the volume,
whereas in design b no other sources occupy the dark grey region:
thus design b has smaller posterior uncertainty for event 5 than de-
sign a. We repeat this by evaluating the posterior of all other source

samples and count the average number of other sources within the
posterior uncertainty volume. Thus we calculate the percentage of
distinguishable source pairs, averaged over all source samples.

We note that some inversion algorithms would not be able to
discriminate source pairs that give significantly different arrival
times. For example, by definition linearized methods assume incor-
rect physical relationships between traveltimes and parameters in
nonlinear problems, and hence implicitly assume incorrect arrival
times across most of parameter space. Therefore, our performance
number can be seen as an optimistic bound: it represents the perfor-
mance that could be achieved by a network if locations were found
using an ideal (non-linearized) inversion method.

We compute optimal designs for each SED method and each of
the four subsurface velocity models, and evaluate their performance
by looking at the percentage of distinguishable event pairs with
results shown in Fig. 9. We present the number of distinguishable
source pairs as a percentage of the total number of pairs evaluated;
the best network has the highest such number. To understand the
relative size of this number, we compare each set of results with the
random network.

In all velocity structures, we see a similar pattern: all quality
measures are able to find a network that performs better than a com-
pletely random network, network performance increases with the
rate of increase that reduces with network size, and DN-optimization
finds designs that are best at distinguishing sources. Also, it seems
that the rate of increase in performance converges to roughly the
same rate for all quality measures (the increase from a five re-
ceiver network to a six receiver network is approximately equal
for all measures). We therefore expect to see a similar comparison
between SED method performance for larger receiver networks.

Linear design starts from a three receiver network as that is
created by DETMAX instead of sequential design. After that, a
large increase in performance is seen which flattens for a six receiver
network. Maximum entropy design follows the same performance
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954 H. Bloem, A. Curtis and H. Maurer

Figure 8. Network designs for each method and each subsurface model, rotated by 90◦, 180◦ or 270◦ to make them visually more similar. The four subsurface
models are: (a) homogeneous, (b) two-layered, (c) three-layered subsurface and (d) a three-layered subsurface with the sources in the second layer as shown in
Fig. 3. Triangles represent receiver locations.

trend as DN-optimization for the first three receivers, but performs
worse for larger network sizes. Maximum entropy design finds the
worst networks, except for the three-layer subsurface for which
it performs better than linear design. We acknowledge that this
relatively poor performance may be due to inaccurate calculation of
the entropy related to a limited number of samples.

4.6 Compute time

For a six receiver network computed using different numbers of prior
samples, we plot the compute times in Fig. 10. Receiver networks
are computed for a range of prior sample numbers from 4 to 2916.
For this range, the computation time ranges from 8 s to 2.8 h for
linear design, from 4 to 14 s for maximum entropy design and from
1.2 to 3 s for DN-optimization. Note that the compute time for the

linear method depends on how many iterations DETMAX needs
to reach a stable result, which is related to the random network
from which it starts. Therefore, linear design computation time
results are averaged over four runs. Both nonlinear methods follow
similar trends but with maximum entropy design having a steeper
gradient. As discussed earlier the number of samples needed is
different for each measure, therefore compute times for the six
receiver network are shown in Table 2. DN-optimization is fastest to
compute, followed by linear design, then maximum entropy design.

Fig. 11 shows the time needed to place a single receiver in the
fourth iteration. The right-hand plot shows the increase in compute
time required for each receiver added to the network. The compute
times for each receiver are normalized by the compute time needed
for the fourth receiver so that we compare all quality measures
using sequential design. For each receiver added to the network
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Figure 9. Performance of receiver networks generated by each of the three sequential SED methods, plus a random network, compared for (a) a homogeneous
subsurface velocity model, (b) a two-layer model, (c) a three-layer model with the sources in the half-space and (d) a three-layer model with the sources in the
second layer (see Fig. 3). Performance is expressed as the percentage of distinguishable source pairs from a total of 7.4 × 1011 pairs within the source cuboid.

with linear design the computation time is roughly constant, while
maximum entropy design and DN-optimization take more time for
each receiver added.

5 D I S C U S S I O N

The designs are symmetric in the sense that they can be rotated by
90◦, 180◦ or 270◦ around the origin and can be mirrored through all
symmetry axes of the square region that we considered, and under
each reflection or rotation the quality measures will be identical.
This is due to the symmetry of the square edges of the model, the
square edges of the centrally located earthquake source region and
due to our choice of one dimensional velocity models. We exploit
this symmetry when finding the number of samples required to
obtain a stable design: we rotated and mirrored each network to find

whether each final network was similar to a network created with
fewer samples.

However, the designs themselves are not symmetric, and to our
knowledge neither should they be. For example, using the linearized
design measure, the first three receivers were optimized simultane-
ously and the three optimal locations are shown by pink spots in
the left-hand panel of Fig. 5. While there is clearly some apparent
regularity in two of those locations relative to the centre of the grid,
this design actually breaks all symmetries in the problem. Any of the
rotations and reflections listed above results in a different design. A
three-receiver design could have preserved at least two symmetries
of the square grid (e.g. by rotating the array slightly to align it with
the diagonals of the square), but the optimal design does not do so.
This illustrates a key point about optimal designs: they may break
symmetries in order to better constrain parameter combinations that
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Figure 10. Compute time for a six-receiver network for a changing number
of prior model samples. Linear design is shown by the red dots, maximum
entropy design and DN-optimization are shown with yellow and purple dots,
respectively.

would be less constrained, or indeed be hidden by (lie in the null
space of) symmetric designs.

The exact designs shown in Fig. 8 are on the whole not easily
intuitively justified or explained. This is to be expected: the forward
physics relating data to parameters is nonlinear, and the design
metrics are all nonlinearly related to the designs as shown in Figs 5–
7. This reveals the need for formalized design procedures such as
those explored here; such methods can construct seemingly intuitive
designs (e.g. DN-optimization design in Figs 8a and b) but can
operate just as effectively when intuition cannot help.

Fig. 9 shows that all three SED methods produce better than ran-
dom networks. This proves that the methods are working correctly
and produce credible results. Looking at Fig. 8, we see that the
designs change when the velocity structure changes. This confirms
that the methods are able to adapt to different scenarios.

It could be assumed that DN-optimization performs similarly to
maximum entropy design because the former is an approximation of
the latter. However, this appears not to be the case as maximum en-
tropy design performs worse than DN-optimization. Three possibil-
ities exist: (1) the sequential design method may not find the global
maximum, (2) entropy is estimated inaccurately or (3) the perfor-
mance metric used is not a good approximation to the Shannon
information. The maximum entropy design algorithm could have
got stuck in a local maximum. This is supported by the data (Fig. 9)
because Maximum Entropy Design has approximately the same
performance as DN-optimization until the third receiver and only
thereafter performs worse, which could be the point at which Max-
imum Entropy Design diverges towards a local maximum. Entropy
is difficult to evaluate: it requires many samples and a well-chosen
partition size (van den Berg et al. 2003, 2005). Entropy estimation
by k-d partitioning solves the latter problem by choosing a partition
size based on the samples themselves. Our performance metric is
the same for all algorithms, and although it does not quantify the
Shannon information directly it is a proxy for inversion performance
which, in a geophysical setting, is more important. Future research
could evaluate whether adding even more parameter prior samples
would find the global maximum.

Fig. 10 shows the compute times needed for each method when
we use different numbers of prior samples. Linear design is inef-
ficient for large numbers of samples. This is because calculating
gradients is computationally expensive, and in addition we must

use DETMAX to design the first three receiver locations which re-
quires more designs to be evaluated than are required for sequential
design. The random initialization of DETMAX also makes compu-
tation times somewhat inconsistent as seen by the notable increase in
time around 2000 prior samples (results given are averaged over four
runs). Maximum entropy design and DN-optimization are more effi-
cient for larger numbers of samples, requiring lower compute times.
All methods converge to a roughly log-linear increase in compute
time with the number of samples. However, the large number of
samples required by maximum entropy design (Table 2: 442 368
samples) causes that method to cost substantially more in compute
time to design a six receiver network compared to the other two
methods.

The marginal cost of adding a receiver to a given network using
a fixed number of prior samples is shown in Fig. 11. Maximum
entropy design and DN-optimization require more compute time
for each subsequent receiver, whereas linear design always takes
roughly the same time for each added receiver. Given the similar
prior sample requirements for linear design and DN-optimization
(Fig. 4), linear design could be faster to compute for large receiver
networks.

Our performance metric quantifies the resolvability of source
pairs, or in other words, the average volume of a contour in (x,
y, z) around each event within which other events cannot be dis-
criminated from the first given data uncertainty threshold of 0.5 s.
However, the acquired data may also be used for other purposes, for
example for seismic tomography or to estimate event magnitudes.
De Landro et al. (2019) quantify the performance of seismic net-
works against multiple objectives which could be a useful extension
of our work.

Nonlinear data–parameter relationships could cause multiple
modes in the likelihood or posterior pdf. Linear design methods may
perform less well in such cases because the locally determined gra-
dient is assumed to be the same across the full parameter range. To
improve network performance from linear design, Curtis & Spencer
(1999) and Curtis (2004b) proposed to find the number of modes
in the misfit function as a (negative) quality measure in addition
to standard linear design measures. This might make the design
scheme nonlinear while retaining low sample number requirements
and constant compute times per receiver added, but more research
is required to assess that potential.

6 C O N C LU S I O N

We show that DN-optimization designs best performing receiver
networks with lowest compute times for a range of source loca-
tion problems out of the three methods tested. Linear design using
D-optimization have the advantage of constant compute times per
added receiver, but produce worse designs and need substantially
more total compute time than DN-optimization. Maximum entropy
design is inefficient and in our tests is effectively impractical as
it requires many samples and very long compute times to obtain
a stable design (which we did not achieve in this study) compa-
rable to DN-optimization. We conclude that DN-optimization con-
sistently designs the best source location experiments and does so
with far less computational resources than linear or maximum en-
tropy design. There therefore appears to be no reason not to adopt
DN-optimization in future survey and experimental design projects.
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Figure 11. Left: the compute time needed for placing the fourth receiver. Right: the compute time needed per receiver added, relative to (divided by) the
compute time required to add the fourth receiver to the network. A value of 2.5 would mean a compute time of 2.5 times that of the fourth iteration. Note that
the fourth iteration compute times differ per method, and hence only the trends are compared here (absolute compute times for six receiver networks are shown
in Fig. 10).
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